Bioplastic Metabolism                                                                                    Chris Nomura

FCH 798                                                                                                            318 Jahn

Fall 2008                                                                                                            ctnomura@esf.edu

SYLLABUS

Room and Time:  FCH798 “Bioplastic Metabolism” will meet from 6:00-7:00 PM on Tuesdays in room 122 Jahn.

 

Text: The ACS Style Guide: Effective Communication of Scientific Information (An American Chemical Society Publication) (Hardcover)

 

http://www.amazon.com/ACS-Style-Guide-Communication-Information/dp/0841239991/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1219760413&sr=8-1

 

General course outline:  This class will be an overview of literature related to bioplastic metabolism.  We will also go over general time management plans, paper organization and presentation strategies.

 

Grading and Exams:  Students will be responsible to come up with a time management plan for their own research and do 30 minute Powerpoint presentations with 30 minute discussions on the assigned literature.  In addition to the article covered, students will be required to go over literature pertinent to the bioplastic field.  Students not presenting will be required to come up with 3 questions regarding the work.

 

 

Schedule:  A tentative schedule with papers is included with this syllabus.  Students will be required to get the papers from the library or download.

 

TENTATIVE SCHEDULE;

August 26

Papers/Powerpoint presentations

Time management strategies

Assignment 1: Come up with your Gantt Chart

September 2

1

September 9

2

September 16

3

September 23

No Class (holiday )

September 30

No Class

October 7

4

October 14

5

October 21

 6

October 28

 7

November 4

 8

November 11

 9

November 18

No Class

November 25

10

December 2

11

 

 

 

1.            Slater, S. C.; Voige, W. H.; Dennis, D. E., Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 1988, 170, (10), 4431-6.

2.            Slater, S.; Houmiel, K. L.; Tran, M.; Mitsky, T. A.; Taylor, N. B.; Padgette, S. R.; Gruys, K. J., Multiple beta-ketothiolases mediate poly(beta-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 1998, 180, (8), 1979-87.

3.            Fiedler, S.; Steinbuchel, A.; Rehm, B. H., The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 2002, 178, (2), 149-60.

4.            Haywood, G. W.; Anderson, A. J.; Ewing, D. F.; Dawes, E. A., Accumulation of a polyhydroxyalkanoate containing primarily 3-hyddroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135. Appl Environ Microbiol 1990, 56, (11), 3354-3359.

5.            Hoffmann, N.; Steinbuchel, A.; Rehm, B. H., The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett 2000, 184, (2), 253-9.

6.            Snell, K. D.; Feng, F.; Zhong, L.; Martin, D.; Madison, L. L., YfcX enables medium-chain-length poly(3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J Bacteriol 2002, 184, (20), 5696-705.

7.            Jo, S.-J.; Matsumoto, K.; Leong, C. R.; Ooi, T.; Taguchi, S., Improvement of poly(3-hydroxybutyrate) [P(3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P(3HB) biosynthetic genes. J Biosci Bioeng 2007, 104, (6), 457-463.

8.            Fukui, T.; Kichise, T.; Iwata, T.; Doi, Y., Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromolecules 2001, 2, (1), 148-53.

9.            Martinez, A.; Kolvek, S. J.; Yip, C. L. T.; Hopke, J.; Brown, K. A.; MacNeil, I. A.; Osburne, M. S., Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 2004, 70, (4), 2452-2463.

10.            Sandoval, A.; Arias-Barrau, E.; Arcos, M.; Naharro, G.; Olivera, E. R.; Luengo, J. M., Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environ Microbiol 2007, 9, (3), 737-751.

11.            Sabirova, J. S.; Ferrer, M.; Lunsdorf, H.; Wray, V.; Kalscheuer, R.; Steinbuchel, A.; Timmis, K. N.; Golyshin, P. N., Mutation in a "tesB-Like" Hydroxyacyl-Coenzyme A-Specific Thioesterase Gene Causes Hyperproduction of Extracellular Polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J Bacteriol 2006, 188, (24), 8452-9.