EFB 427: Plant Developmental Biology

(Shared Resource with EFB 627) 3 credits (2 h lec and 3 h lab per week)

FALL 2010

Instructor:	Dr. Danny Fernando 461 Illick Hall	Tel: 470-6746; E-mail: <u>dfernando@esf.edu</u> Office hr: T & Th 8-10:30 am or by appointment
Textbook:	Howell, S.H. 1998. Molecu University Press, NY.	lar Genetics of Plant Development. Cambridge

Course Description and Objectives:

This course is an introduction to Plant Developmental Biology. It offers a dynamic approach to the study of plant structure and development by integrating recent advances in Genetics and Molecular Biology. At the end of the course, the students should be able to describe: the internal structures of the various plant organs, how the organs are formed, the genes involved in organ formation, the mechanism behind the transition from vegetative to reproductive development, and the interplay between genes and environment. The students will also gain various skills through hands-on experience on techniques such as tissue culture, histology, web tools in bioinformatics, characterization of transgenic plants using fluorescence microscopy, and protein isolation and electrophoresis.

Course Requirements:

A. Lecture (60%)		B. Laboratory (40%)		
1. Exam 1	20%	1. Five Lab Reports	25%	
2. Exam 2	20%	2. Class Participation	15%	
3. Exam 3	20%			

In addition to the text, I will refer to Raven et al. (Biology of Plants, 2005) for background information and use some journal articles for current topics. A few speakers might be invited to talk on special topics. Student participation during lectures and seminars is strongly encouraged. Topics discussed in the lectures will be emphasized in the exams.

For the laboratory, we will meet regularly as scheduled, but there will be times when we will only have to do a few things, so the laboratory work will be shorter than the scheduled time. However, there will be times when you need to continue or follow-up some experiments outside of the regular laboratory period, which unfortunately cannot be avoided especially if you want to get actual experiences in as many aspects of the laboratory procedures as possible.

Read the exercises prior to each of the laboratory periods and make sure that you understand what you are doing and know the reason why you are doing it. This will not only help you to intelligently interpret and discuss your results, but also so that you can appreciate and enjoy the laboratory activities.

DATE	TOPICS	READINGS
Week 1 Aug 30 Sep 01 Lab 1A	Overview of Plant Developmental Biology Model Plant Systems Demonstration of Totipotency: Culture of Explants Paraffin Method: Fixation	1-18 18-20
Lab 2A Week 2 Sep 06 Sep 08	Labor Day (no lec and lab) Elements of Genomics	**** Supplement
Week 3 Sep 13 Sep 15 Lab 2B	Generation of Developmental Mutants Regulation of Gene Expression Paraffin Method: Dehydration and Infiltration	20-23 Raven et al.163-179
Week 4 Sep 20 Sep 22 Lab 1B Lab 2C	Zygotic and Somatic Embryogenesis Genes Affecting Embryo Development Demonstration of Totipotency: Analysis of Growth Paraffin Method: Embedding	55-59, 75-80 59-72 & Subculture
Week 5 Sep 27 Sep 29 Lab 3A	Genes Affecting Embryo Development Seedling Development Seedling Development Introduction to Bioinformatics	59-72 83-100 83-100 454 Baker
Week 6 Oct 04 Oct 06 Lab 1C Lab 2D	First Lecture Exam Organization of Shoot Apical Meristems Demonstration of Totipotency: Analysis of Growth Paraffin Method: Sectioning	***** 103-108 & Subculture
Week 7 Oct 11 Oct 13 Lab 1D Lab 2E	Genes Affecting Activities of Shoot Meristems Origin of Leaves Submission of Lab Report 1 Paraffin Method: Sectioning	108-117 136-142

Course Schedule and Outline

	Third Lecture Exam – Schedule to be annou	ınced	
Lab 5D	Submission of Lab Report 5		
Dec 08	Programmed Cell Death	312-334	
Dec 06	Vascular Tissues (Xylem and Phloem)	312-334	
Week 15			
Lab 5C	Protein Gel Electrophoresis: Gel Documentation & Analysis		
Dec 01	Development of Primary and Lateral Roots 289-309		
Nov 29	Genes Affecting Seed Development	263-280	
Week 14			
Lab 5B	Protein Gel Electrophoresis: Running & Staining of Gel		
Nov 24	No Lecture (Thanksgiving Break) *****		
Week 13 Nov 22	Seed Germination and Dormancy	263-280	
	rioteni Ger Lieutophoiesis. rioteni Extraction	1	
Lab 5A	Protein Gel Electrophoresis: Protein Extraction	1	
Lab 4C	Submission of Lab Report 4		
Nov 15 Nov 17	Mate Choice in Plants	252-260	
Week 12 Nov 15	Directionality of Pollen Tube Growth	244-252	
Lab 4B	Characterization of Transformed Arabidopsis		
Nov 10	Female Reproductive Development	232-242	
Nov 08	Second Lecture Exam	****	
Week 11			
Lab 4A	Characterization of Transformed Arabidopsis		
Lab 2H	Submission of Lab Report 2		
Nov 03	Mechanism and Importance of Male Sterility	228-232	
Nov 01	Male Reproductive Development	222-228	
Week 10			
Lab 2G	Paraffin Method: Microscopic Analysis of Sec	tions	
Oct 27	Floral Homeotic Genes	200-210	
Oct 25	ABC Model of Flower Development	192-200	
Week 9			
Lab 3B	Submission of Lab Report 3		
Lab 2F	Paraffin Method: Staining		
Oct 20	Transition to Flowering	169-189	
Oct 18	Trichome and Stomate Development	157-166	
Week 8			