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s u m m a r y

This study presents a framework to evaluate the performance of rainfall-runoff models for the estimation
of low flow at sites with limited streamflow data. Estimates of low flow statistics are important for water
supply, waste-load allocation, irrigation, hydropower, and ecological and habitat assessment. Paradoxi-
cally most rainfall-runoff models focus on flood simulations and use oversimplified representations of
baseflow processes resulting in poor performance simulating low flow statistics. Such baseflow models
cannot account for variations in topography and hydrogeology that impact baseflow processes and have
limited applicability to evaluate land use and climate change impacts on low flow. Both a hillslope-stor-
age Boussinesq model (hsB) and a kinematic wave hillslope-storage model (kw) have shown good results
in simulating baseflow in synthetic hillslopes; one major challenge is how to apply these models in real
watersheds. In this study hsB and kw are coupled to the Sacramento Soil Moisture Accounting (SAC-SMA)
model and tested at two similarly sized watersheds in North Carolina with different watershed slopes.
The partitioned kw and hsB models are also compared to the original SAC-SMA model (Sac) and SAC-
SMA applied to a partitioned watershed (Sacm). Both 5 years and 1 year of full and reduced ranges of
streamflow data are employed for model calibration. All partitioned models improved their estimation
of low flow when calibrated to a lower range of streamflows but with kw and hsB performing slightly bet-
ter at the steeper sloped watershed. The performance of the coupled models with limited streamflow
data is encouraging and can potentially improve the estimation of low flow statistics at sites with limited
streamflow data.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Estimates of low flow discharges and statistics are needed for
water quality management, watershed ecosystem restoration and
water supply planning under both present and climate change con-
ditions (Pushpalatha et al., 2011; Ouyang, 2012). This includes
determining the necessary dilution of waste-load allocations,
allowable surface water and groundwater withdrawals for munici-
pal and industrial water uses, the design of reservoir storage capac-
ity, and minimum downstream releases for the aquatic ecosystem
(Riggs, 1980; Metcalf and Eddy, 1991; Mosley and McKerchar,
1993; Vogel and Fennessey, 1995; Kroll and Vogel, 2002; Karim
et al., 1995; Caruso, 2002). When a historic record of sufficient
length is available at the streamflow site of interest, analytical
methods have been developed to assess low flow characteristics.
This includes estimation of annual minimum d-day, T-year flow
statistics (Riggs, 1961), low flow quantiles from flow duration
curves (Smakhtin, 2001), and low flow duration and severity (Salas
et al., 2005). Often a period of 20–30 years of historic record is con-
sidered sufficient to estimate such statistics (Hisdal et al., 2004). Of
particular concern is how best to estimate low flow characteristics
when limited or no streamflow data is available. In addition, even
when a historic record is available, it is often unclear how to pre-
dict changes in low flow characteristics when a watershed under-
goes climatic or anthropogenic changes. While statistical methods,
such as regional regression (Vogel and Kroll, 1996; Kroll et al.,
2004), baseflow correlation (Stedinger and Thomas, 1985; Zhang
and Kroll, 2007), index low flows (Clausen and Pearson, 1995;
Madsen and Rosbjerg, 1998), and geostatistics (Skøien et al.,
2006; Laaha et al., 2007), have been proposed to address the prob-
lem of no or limited streamflow data, these methods are not
equipped to handle low flow prediction in watersheds undergoing
change. One solution to this problem is to employ a physics-based
rainfall runoff (RR) model to estimate low flow characteristics at
the site of interest.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jhydrol.2013.04.032&domain=pdf
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While the hydrologic literature is inundated with RR models
that focus on the estimation of peak discharges, there have been
limited studies regarding the use of RR models for low flow predic-
tion. During low flow events, streamflow consists primarily of
groundwater discharge (Brutsaert and Nieber, 1977), which is
commonly called baseflow, where this discharge recedes over time
when there is no recharge to groundwater. Baseflow discharge
models employed within RR models vary from a single linear res-
ervoir with a lumped recession parameter, to multiple reservoirs
with varying parameters, to more complex distributed models,
such as MODFLOW, that is based on the 3-dimensional Richard’s
equation. Van Lanen et al. (1997) compared three different RR
models of varying complexity for estimating hydrological drought.
They found that even more complex models had difficulties in sim-
ulating drought details. Engeland and Hisdal (2009) compared re-
gional regression to the semi-distributed HBV model for
estimating low flow indices at ungauged watersheds. They found
regional regression produced better low flow estimators than the
HBV model, which employs a linear reservoir based model for
baseflow. The difference in performance of the two models was lar-
ger for smaller values of the low flow index. Samuel et al. (2011)
found that using a non-linear discharge-storage relationship in
deeper soils to replace the linear discharge-storage in McMaster
University-Hydrlogiska Byraens Vattenbalansavdelning (MAC-
HBV) model combined with increasing the range for each parame-
ter values and inclusion of low flow criteria in model calibration
improved MAC-HBV ability to simulate baseflow time series at
ungauged sites in northern Ontario, Canada. Querner and van La-
nen (2001) employed the transient model SIMGRO to simulate
the impact of urbanization strategies on hydrologic drought. They
found that urban stormwater management has an impact on the
length and severity of low flow periods. Wagener et al. (2009) ana-
lyzed parameter sensitivity for the upper and lower soil zones in
the National Weather Service’s (NWS) Sacramento Soil Moisture
Accounting (SAC-SMA) model and how it relates to high and low
flows. In their study they found that low flows are sensitive to both
upper and lower zone parameters as opposed to only upper zone
parameters which primarily impact high streamflow. Staudinger
et al. (2011) studied the impact of model structure on model ability
to simulate low flow and recession behavior for the Narsjo catch-
ment in Norway. They found that different structural combination
of conceptual models for a lower layer, subsurface flow and perco-
lation have a significant impact on summer and winter model per-
formance but with the lower layer and subsurface flow having
more influence on winter performance. Son and Sivapalan (2007)
describe a downward approach for model structure development
including the use of auxiliary data (deuterium composition and
groundwater level dynamics) and multiple wetting front water
movement in the unsaturated zone to reduce model predictive
uncertainty and improve the physical realism and streamflow
simulation.

Of interest in this study is the development of models which ac-
count for variations in the topography, geometry and hydrogeology
that impact baseflow processes (Tucker and Bras, 1998; Bogaart
and Troch, 2004), yet are not overly complex such as distributed
groundwater models. One potential solution is integrating hillslope
discharge models into a RR model. Studies have shown how topog-
raphy and geometry are two dominant factors that influence hill-
slope discharge (Troch et al., 2002). Fan and Bras (1998)
proposed a methodology to simplify the 3-dimensional hillslope
runoff processes into a 1-dimensional approach that maintains
some of the 3-dimensional characteristics of baseflow. Extending
this approach, Troch et al. (2003) applied two solutions to the
Boussinesq Equation (Boussinesq, 1877), the kinematic wave
(kw) and the hillslope-storage Boussinesq (hsB) model, a more gen-
eral form that accounts for both gravity and diffusion flow genera-
tion mechanisms, to a series of synthetic hillslopes. Studies on
synthetic hillslopes have shown that the relatively simple 1-
dimensional hsB model can in general simulate synthetic hillslope
flow dynamics as well as a model based on the 3-dimensional Rich-
ards equation (Paniconi et al., 2003). Hilberts et al. (2007) showed
that coupling hsB with a 1-dimensional Richard’s equation model
to simulate vertical unsaturated flow can simulate water table lev-
els and outflow in synthetic hillslopes with varying geometry bet-
ter than the original hsB model, which does not account for an
unsaturated zone component. Broda et al. (2011a) combined the
hsB model for shallower baseflow with an analytical element
(AE) model to account for deep regional groundwater flow using
a connected leakage element based on Darcy’s law. The resulting
hsB/AE approach showed good results in simulating heads, hydro-
graphs and exchange fluxes on shallow (0.2% and 5%) uniform and
divergent synthetic hillslopes, and good simulation of heads in
confined and unconfined aquifers of an open-book catchment
when compared to a 3-dimensional Richards equation.

A major challenge is how to apply the hsB model concept in real
watersheds. A model application requires the development of a
model framework to account for other processes in the hydrologic
cycle at a watershed scale. Fan and Bras (1998) applied the kw
model in a watershed in the White Mountain National Forest,
New Hampshire. For their application, they considered hillslopes
as areas between two streamlines at the ends of a channel link
or ‘‘from a channel head to the ridgelines’’ (Fan and Bras, 1998).
The size of the hillslopes was extended for adjacent areas as long
as the plan and profile curvatures were similar. Their model frame-
work was based on the following assumptions: (i) the kinematic
approximation of the hsB model applies; (ii) no evapotranspiration,
interception or infiltration, and thus all rainfall becomes recharge
directly; (iii) saturation excess overland flow is possible but not
infiltration excess (Hortonian) runoff; and (iv) the hillslope plan
profile is described by a second-order polynomial. Matonse and
Kroll (2009) examined the use of the kw and hsB hillslope-storage
models to improve the prediction of baseflow and low flow statis-
tics. Using a relatively simple model framework based on a mass
balance to estimate discharge, and a variable range of streamflow
calibration, they showed that by partitioning the watershed into
multiple hillslopes with variable parameters that account for
changes in topography, geometry and hydrogeology can improve
model performance. Though models calibrated with a lower range
of streamflow data can better describe the corresponding lower
envelope of streamflow data, there was no evidence of a significant
improvement from using different calibration ranges in simulating
the 7-day (Q7) and 30-day (Q30) low flow statistics. Their results
also indicated that the kw and hsB models perform similarly for a
steep sloped watershed (such as the 34� Maimai M8), where grav-
ity processes dominate over diffusion processes. However, their re-
sults were constrained by the limited availability of input data, the
small size of the study site, and the steepness of the watershed.

In this analysis, we develop a modeling framework by cou-
pling the kw and hsB models to the SAC-SMA model and apply
these models to two larger watersheds with similar drainage
areas but different watershed slopes. The watersheds are parti-
tioned into multiple hillslopes, and the kw and hsB models are
compared to the original SAC-SMA model, which represents
baseflow as two homogeneous linear reservoirs, and a parti-
tioned SAC-SMA where baseflow from each hillslope is individu-
ally parameterized. Using this application, calibrating these
models with either 5 years or 1 year of data, and examining
the models ability to predict low flow discharges and statistics,
the following is investigated:

(1) If improvements in the baseflow component in SAC-SMA can
lead to improved low flow prediction.
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(2) Whether applying the hsB model to a watershed with a
lower mean average slope (or shallower sloped watershed),
where hillslope diffusion processes should be present, will
improve low flow prediction.

(3) If calibrating models using
a. A range of streamflow data below the 20th or 50th

percentile.
b. A variable calibration length, i.e. 1-year versus 5-year cali-

bration period.
c. Data representing a particular hydrologic regime, i.e. data

from a dry, normal, wet, or mixed period, will improve low
flow prediction.

2. Model framework development

To account for most elements of the hydrologic cycle and pre-
serve the overall watershed mass balance, we adopted a model
framework based on the coupling of the kw and hsB hillslope-stor-
age models to the SAC-SMA model, a well-accepted model within
the hydrologic community. SAC-SMA was originally developed
for flood forecasting. It is a lumped-parameter continuous simula-
tion RR model that incorporates land cover, evapotranspiration,
infiltration, lateral flow (interflow), baseflow and overland flow
to estimate runoff at the watershed outlet (Burnash, 1995). The
model represents subsurface processes as two layers: one active
root zone layer and one lower soil layer. In each layer current ten-
sion water and free water content are estimated. The free water in
the upper layer is available for percolation to the lower zone and
for lateral flow. In the lower layer two reservoirs of free water
coexist. Water discharges from these two linear reservoirs for
baseflow at two different rates of decline. In this manuscript we
use the abbreviation ‘‘Sac’’ to refer to lumped SAC-SMA watershed
application, and ‘‘Sacm’’ when the model is applied to multiple
hillslopes.

Here we compare four models for estimating low flow series
and statistics: the original Sac model, Sac applied to multiple hill-
slopes (Sacm), the Sac model with the lower soil layer replaced
by the kw hillslope-storage model (Sackw or simply kw), and the
Sac model with the lower soil layer replaced by the hsB hillslope-
storage model (SachsB or hsB). Our objective is to improve baseflow
simulation by accounting for physical variations in hydrogeology,
hillslope geometry and topography that are important for ground-
water flow at a hillslope scale. Fig. 1a illustrates the coupling be-
tween Sac and the two hillslope-storage models. The coupling is
performed at a hillslope basis meaning that both Sac and hill-
slope-storage models are connected and run for each individual
hillslope. As in the original Sac structure, the saturation excess
moisture from the lower zone is sent back to the upper layer and
is subject to evaporation, becoming lateral flow, or re-percolating
to the lower layer during the following time step. Because of the
large size of the watersheds, contributions from individual hill-
slopes are routed through the channel network to the basin outlet
(as illustrated in Fig. 1b) using the looped-rated Muskingum–Cun-
ge method by Ponce and Lugo (2001). As with the original Sac the
models are run at a 6 h time step.

3. Hillslope-storage models

Two hillslope-storage models are applied in this study, the kine-
matic wave (kw) and the hillslope-storage Boussinesq (hsB) mod-
els. The formulation of the hsB model results from combining
Darcy’s law:

Q ¼ � kSðx; tÞ
f

cos i
@

@x
Sðx; tÞ
fwðxÞ

� �
þ sin i

� �
ð1Þ

where Q [L3T�1] is volumetric groundwater flow, k [LT�1] is the soil
(effective) saturated hydraulic conductivity, S [L2] is the storage at
location x at time t, f [�] is the drainable porosity, and i is the hill-
slope slope angle, with the continuity equation:

@S
@t
¼ @Q
@x
þ Nw ð2Þ

where N represents recharge and w a width function. The final hsB
formulation has the form:



Table 1
Watershed characteristics (CV: coefficient of variation).

Watershed characteristic Watershed name

LRN ICL

Area (km2) 173 179
Average slope (�) 14.8 4.6
Main channel length (km) 56 30
Channel average slope (m/km) 14 2.5
Mean elevation (m) 1009 287
Minimum elevation (m) 366 224
Maximum elevation (m) 1782 410
Average annual precipitation [1951–2002] (mm/year) 1619 1207
Average annual discharge [1951–2002] (mm/year) 795 444
CV – annual discharge 0.30 0.29
20th Percentile of streamflow [1951–2002] (mm) 0.76 0.42
50th Percentile of streamflow [1951–2002] (mm) 1.41 0.75
CV – lower 20% streamflow 0.26 0.27
CV – lower 50% streamflow 0.37 0.37
CV of all streamflow 1.78 1.77
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Fan and Bras (1998) introduced the storage capacity function:

ScðxÞ ¼ wðxÞdm

�
ðxÞf ð4Þ

where w(x) [L] is the hillslope width function, and dm

�
ðxÞ is the aver-

age hillslope depth, to reduce the 3-dimensional soil mantle to 1-
dimension. Eq. (3) accounts for both diffuse and gravity drainage
and is applicable to 3-dimensional flow in hillslopes with different
plan and profile curvature (Troch et al., 2002, 2003). For this appli-
cation the hsB model in Eq. (3) is solved numerically by discretizing
in space using finite differences and applying a multistep ordinary
differential equation (ODE) solver. This solution can accommodate
different boundary conditions, as well as temporal and spatial var-
iability of recharge, hydraulic parameters, and slope angles. In addi-
tion, the hydraulic conductivity k was determined for each time
step and for each hillslope according to a power function (Rupp
and Selker, 2006; Matonse and Kroll, 2009)

kðdÞ ¼ kSdl ð5Þ

where ks is the effective saturated hydraulic conductivity at the
storage capacity (calibrated for each hillslope) and d [�] represents
a ratio between the volumetric storage at the beginning of the cur-
rent time step divided by the volumetric storage at full capacity.
The use of effective hydraulic conductivity is justified because (i)
most traditional small-scale ks measurements do not capture the ef-
fect of macropores at a hillslope scale (Brooks et al., 2004), (ii) given
the size of hillslopes employed in this study, topographic gradient
(as opposed to water table gradient) is more likely to be the domi-
nant factor, and (iii) different (localized) ks values associated with
heterogeneous porous medium across individual hillslopes are dif-
ficult to parameterize (Harman and Sivapalan, 2009).

The hsB model becomes a kw approximation under relatively
steep impermeable bed slopes where it is assumed that the rate
of groundwater flow is relatively high. As a consequence the sec-
ond-order diffusive term in Eq. (1) can be dropped (Paniconi
et al., 2003). For a more detailed description and derivation of
the kw and hsB models see Fan and Bras (1998), Paniconi et al.
(2003), Troch et al. (2002, 2003), and Matonse and Kroll (2009).
4. Description of the study sites

Two watersheds were modeled in this study: the Linville River
watershed near Nebo, NC (LRN) (USGS 02138500), and the Indian
Creek watershed near Laboratory, NC (ICL) (USGS 02143500).
Table 1 presents general topographical, meteorological, and hydro-
logical characteristics of these sites. While the drainage areas are
similar, the average channel and watershed slopes vary greatly,
with LRN being the steeper of the watersheds. In addition, LRN is
at a higher elevation and has an average annual precipitation
approximately 30% more than ICL. While discharges are larger at
LRN, the coefficient of variation (CV) (standard deviation divided
by the average) of the discharge at these two sites is similar. Note
that in table 1, and throughout this manuscript, streamflow [L3T-1]
values were converted into specific discharge units [L T-1] (i.e.
streamflow divided by the basin drainage area).

Both LRN and ICL are part of the Catawba River Basin, and their
outlets are approximately 100 km apart. LRN is located at the east-
ern edge of the Blue Ridge physiographic province, while ICL is lo-
cated at the western edge of the Piedmont physiographic province.
At LRN the first 10 cm of soil are predominantly loam and sandy
loam, while at ICL they are predominantly sandy clay loam (Daniel
et al., 1997). Most of the Piedmont and Blue Ridge physiographic
provinces are underlain by dense, almost impermeable bedrock
that yields water primarily from secondary porosity and perme-
ability provided by fractures. These bedrock fractures provide a
network of channels for water movement, but provide little storage
volume with porosity typically less than 1%. Most of the water is
stored in the unconsolidated materials overlying the bedrock,
where the porosity is 20–40%. The thickness of the regolith overly-
ing the bedrock can vary between 0 to more than 150 ft in the re-
gion (Daniel and Sharpless, 1983; Daniel and Dahlen, 2002). While
the hydrogeology of the region varies and is challenging to model,
it is important to note that the hillslope-storage models employ
‘‘effective’’ hydraulic conductivities, where the overall drainage
characteristics of the watershed hillslopes are aggregated and
characterized. In the work of Matonse and Kroll (2009) and that
presented here, it was assumed that hydraulic conductivity de-
creases with depth (Eq. (5)), as is commonly observed in practice.
5. Data and methods

5.1. Input data and hillslope derivation

Data for both study sites are available via the Internet through
the Model Parameter Estimation Experiment (MOPEX) project, US
MOPEX Data Set at (http://www.nws.noaa.gov/oh/mopex/
mo_datasets.htm) (Hogue et al., 2004; Schaake et al., 2006). The in-
put data include: observed daily streamflow, daily potential evap-
oration (PE) with monthly PE adjustment factors, 6-h rainfall, and
eleven a priori (Duan et al., 2001) Sac parameters listed in Table 2.

GIS pre-processing was employed to partition the watersheds
into hillslopes. Each watershed was partitioned into nine hillslopes
following an empirical approach similar to Fan and Bras (1998)
using Arc Hydro tools and the ‘‘Editor’’ function in ArcGIS. Hill-
slopes were classified as straight, convergent, or divergent, or a
combination of these shapes, based on the general flow line pat-
terns (Fan and Bras, 1998; Troch et al., 2002; Paniconi et al.,
2003). Areas with similar hillslope characteristics were aggregated
to form larger hillslopes, and width function parameters were cho-
sen to preserve the surface area of the hillslopes. Fig. 2 presents
both watersheds partitioned into nine hillslopes.

Bogaart and Troch (2006) showed how multiple hillslope from a
basin can be represented by a single hillslope folded around the
channel network and how such a hillslope exhibit divergent char-
acteristics. Matonse and Kroll (2009) found that partitioning a
small headwater catchment into multiple hillslope with varying
parameters resulted in improved model simulation of low statistics
than either a single hillslope representation or using multiple hill-

http://www.nws.noaa.gov/oh/mopex/mo_datasets.htm
http://www.nws.noaa.gov/oh/mopex/mo_datasets.htm


Table 2
List and values of Sac a priori parameters and monthly PE adjustment factors used for
LRN and ICL watersheds.

Parameter name Parameter value

LRN ICL

UZTWM – upper zone tension water capacity (mm) 57.7 30.9
UZFWM – upper zone free water capacity (mm) 51.4 27.7
UZK – fractional daily upper zone free water

withdrawal rate
0.47 0.46

ZPERC – maximum percolation rate coefficient 75.02 30.02
REXP – percolation equation exponent 1.879 2.626
LZTWM – lower zone tension water capacity (mm) 192.2 196.5
LZFSM – lower zone supplemental free water capacity

(mm)
21.4 45.8

LZFPM – lower zone primary free water capacity (mm) 142.8 84.3
PFREE – fraction of percolated water going directly to

lower zone free water storage
0.14 0.36

PE_Adj (1) – January PE adjustment factor 0.65 0.61
PE_Adj (2) – February PE adjustment factor 0.69 0.67
PE_Adj (3) – March PE adjustment factor 0.72 0.73
PE_Adj (4) – April PE adjustment factor 0.87 0.96
PE_Adj (5) – May PE adjustment factor 1.22 1.09
PE_Adj (6) – June PE adjustment factor 1.33 1.06
PE_Adj (7) – July PE adjustment factor 1.31 1.01
PE_Adj (8) – August PE adjustment factor 1.32 1.03
PE_Adj (9) – September PE adjustment factor 1.28 1.08
PE_Adj (10) – October PE adjustment factor 0.98 0.95
PE_Adj (11) – November PE adjustment factor 0.66 0.69
PE_Adj (12) – December PE adjustment factor 0.60 0.61
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slope with uniform parameters; however, the difference in model
performance between 3 and 10 hillslopes was minor. While the
tradeoff between number of hillslope partitions, model complexity
and level of improvement in model performance is important, this
issue is not investigated in this study. For these simulations all hill-
slopes were discretized using 100 m Dx intervals. The length of
hillslopes ranged between 1900 and 10,400 m for ICL and 1300–
7300 m for LRN.

5.2. Model calibration and verification

Because models are a simplified representation of real world
systems, models are associated with errors and uncertainties
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Table 4
Annual statistics for the streamflow discharge for each of the 5 years applied during
model calibration at ICL watershed.

Statistic (mm/day) Water year

1964–65 1965–66 1966–67 1967–68 1968–69

Average discharge 1.93 1.23 0.70 1.30 0.93
Minimum discharge 0.45 0.45 0.18 0.35 0.22
Maximum

discharge
35.0 19.5 4.62 11.9 12.1

20th Percentile 0.75 0.56 0.41 0.53 0.36
Q7 0.47 0.47 0.21 0.40 0.23
Q30 0.62 0.54 0.32 0.54 0.27
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performance when estimating low flow statistics. Tables 3 and 4
present selected annual streamflow statistics for the calibration
years at LRN and ICL, respectively. In general and as expected,
streamflow statistics at the shallower sloped ICL watershed are
of lower magnitude than at LRN given the differences in slope
and average annual precipitation (Table 1).

For the present analysis, model calibration was performed using
the Shuffled Complex Evolution (SCE) algorithm (Duan et al., 1992,
1993). The SCE algorithm has been shown to be a robust, effective,
and efficient method for finding the global optimal set of parame-
ters for many hydrologic models (Duan et al., 1992, 1993; Gan and
Biftu, 1996; Gupta et al., 1998). The following 8 parameters were
calibrated to be constant for all hillslopes in each watershed: min-
imum impervious area (PCTIM), additional impervious area
(ADIMP), ratio of deep recharge to channel baseflow (SIDE), frac-
tion of lower zone free water not transferable to lower zone ten-
sion water (RSERV), beta and alpha parameters for the gamma-
function in the unit hydrograph calculations, a parameter for chan-
nel routing (only for partitioned models; does not apply to Sac),
and a factor setting the amount of saturation excess water that is
returned to the upper layer. For the Sac model, the 2 baseflow
recession parameters in the lower soil layer were calibrated as
being constant for the entire watershed; in the Sacm model appli-
cation these parameters were calibrated for each hillslope. For the
kw and hsB models, saturated hydraulic conductivity (kS) and soil
porosity (f) were calibrated for each of the 9 individual hillslopes,
while the constant l for the hydraulic conductivity power function
decrease in Eq. (5) was assumed constant for all hillslopes.

Model calibration was performed at a daily time step by mini-
mizing the Root Mean Square Error (RMSE) (Lettenmaier and
Wood, 1993; Wagener et al., 2004):

RMSE ¼
Pn

i¼1ðOi � SiÞ2

n

" #1
2

ð6Þ

where Oi [L] and Si [L] are the observed and simulated streamflows
at day i, respectively, and n is the number of streamflow days. The
lower the RMSE, the better the model fit to measured streamflow. As
a calibration stopping criteria we applied the same method of func-
tion convergence described by Sorooshian and Gupta (1995)

ðfi�1 � fiÞ=fi 6 ef ð7Þ

where fi�1 and fi are the best function values from the previous and
actual iteration step, respectively, and ef is the convergence crite-
rion, here set equal to 10�4.

For model verification a thirty year period (1971–2000) was se-
lected. A Scaled Root Mean Square Difference (SRMSE) was applied
to evaluate model performance at the watershed outlet for the
lower 20% and 50% of streamflow (i.e. comparing simulated versus
observed streamflow equal or smaller than the 20th or 50th per-
centiles of the observed streamflow distribution, respectively),
Table 3
Annual statistics for the streamflow discharge for each of the 5 years applied during
model calibration in LRN watershed.

Statistic (mm/day) Water year

1964–65 1965–66 1966–67 1967–68 1968–69

Average discharge 2.66 1.68 1.91 1.71 1.87
Minimum discharge 0.41 0.38 0.42 0.38 0.27
Maximum

discharge
32.3 56.8 14.5 19.0 39.3

20th Percentile 0.93 0.68 1.01 0.83 0.73
Q7 0.49 0.42 0.51 0.41 0.28
Q30 0.65 0.59 0.88 0.63 0.37
and the full range of streamflow. In addition we compared the
average Q7 and Q30, as well as the 7-day, 10-year (Q7,10) and 30-
day, 2-year (Q30,2) low flow statistics. The scaled Root Mean Square
Difference is calculated as

SRMSE ¼ ðn� 1Þ
n

Pn
i¼1ðOi � SiÞ2Pn
i¼1ðOi � �OÞ2

" #1
2

ð8Þ

where O
�

is the mean of the observed values. SRMSE [�] represents
the RMSE divided by the standard deviation of the observed stream-
flow over the validation range. While the RMSE provides a measure
of the differences between model and measured data and is easy to
interpret when evaluating the models fit to the same range of
streamflow, it is scale dependent. We apply the SRMSE to indicate
the relative magnitude of model errors to the standard deviation
of the measured streamflow in the verification range. The SRMSE
is useful when comparing model performance across different
ranges of data.
6. Results and discussion

6.1. Model calibration using five years of streamflow data

6.1.1. LRN
Initial results are presented for LRN, the steeper and wetter wa-

tershed. Fig. 3 shows the RMSE values for the four models run over
a five year calibration period for LRN.

The four models are the Sac lumped on the entire watershed
with 11 a priori and 9 calibrated parameters, Sacm run on a hill-
slope scale with 11 a priori, 8 calibrated constants, and 2 varying
parameters per hillslope, Sackw (kw) using 11 a priori, 8 calibrated
constant Sac model parameters, and 2 calibrated kw parameters
Fig. 3. Calibration RMSE for the LRN watershed with the Sac, Sacm, kw, and hsB
models calibrated using varying ranges of streamflow (shown in the x-axis) at the
watershed outlet over a 5 year calibration period.
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per hillslope, and SachsB (hsB) with 11 a priori, 8 calibrated con-
stant Sac model parameters and 2 calibrated hsB model parameters
per hillslope. The four models were calibrated using the full range
(all data), and the lower 20% and 50% of streamflow (x-axis in
Fig. 3) and were evaluated over the same range as the calibration.
As expected, models calibrated using the lower 20% of data show
the best RMSE for streamflow data below the 20th percentile and
models calibrated with the lower 50% of data exhibit a better per-
formance than all other models when describing streamflow under
the 50th percentile. All models calibrated with the full range exhi-
bit the best performance to describe the full streamflow hydro-
graph, but they perform poorly in describing data at lower
ranges. These results are similar to those of Matonse and Kroll
(2009), showing that as the range of data used during calibration
increases (particularly above the 50th percentile), the difficulty
for the model in describing data at lower ranges also increases.
For all evaluated streamflow ranges models calibrated at a hillslope
scale performed better than Sac (with lumped parameters across
the entire watershed). Though Sacm performs better than Sac
across all calibration ranges, the RMSE associated with this model
was always slightly higher than for kw or hsB. At the LRN wa-
tershed the kw and hsB models exhibit similar performance at all
ranges of streamflow.

Fig. 4 shows the SRMSE results over the thirty year (1971–2000)
verification period. A SRMSE value less than 1 indicates that the
RMSE is less than the standard deviation of the observed
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Fig. 5. Low flow statistics for a relatively steep slope LRN watershed over the 30 year ver
streamflow ranges.
streamflow in the corresponding range. The Sac model shows over-
all a poor performance at all ranges of streamflow. Interestingly the
partitioned models calibrated using data below the 50th percentile
perform well at all ranges, with the hillslope-storage models show-
ing better results when calibrated using the lower 50% of stream-
flow. Models calibrated using the full range of streamflow
continue to show poor performance at predicting the lower range
of streamflow.

Fig. 5 summarizes modeled and observed low flow statistics for
the thirty year verification period, including average Q7 and Q30, as
well as Q7,10 and Q30,2.

As one would expect given the difficulty in fitting low flow data,
the Sac model performs poorly in simulating low flow statistics.
Sacm and the coupled models calibrated with data below the
20th percentile can predict Q7,10 relatively well, with Sacm and
hsB model showing slightly better performance than the kw model;
both kw and hsB perform much better than the Sac model. It ap-
pears from these results that partitioned models calibrated with
the lower 20 and 50% of streamflow exhibit a better ability to esti-
mate the average Q7 and Q30 as well as Q7,10 and Q30,2 than the Sac
model. At a type I error a = 0.05, one would reject the null hypoth-
esis (Ho) that observed and modeled average Q7 and Q30 are equal
except for the average Q30 of the partitioned models calibrated
with the lower 20% of data. These hypothesis tests were performed
with results from the verification period. In general all partitioned
(Sacm, kw and hsB) models simulate both low flow statistics better
when calibrated using streamflows below the 20th percentile,
although there is a trend of slightly overestimating Q7,10 and
underestimating Q30,2. Coupled models calibrated with the lower
50% of streamflow can also simulate Q30,2 relatively well (within
a 1 mm/day range difference), but with the hillslope coupled mod-
els showing a slightly better performance. Models calibrated using
the full range of streamflow data systematically underestimate
both low flow statistics, suggesting a difficulty of these models to
describe the lower range data while trying to fit to high streamflow
values (Matonse and Kroll, 2009). When calibrated with the full
range the partitioned models are as bad as the Sac in estimating
low flow statistics.

6.1.2. ICL
The following results are for ICL, the shallower sloped and drier

watershed. Based on the RMSE values from the five year calibration
period presented in Fig. 6, the partitioned models continue to per-
form similarly and better than a lumped Sac model when simulat-
ing the lower ranges of streamflow. The kw and hsB models
acm kw hsB Sac Sacm kw hsB

er 50th percent Full Range

calibration range

Average Q30 30 Q 2

ification period using models calibrated with 5 years of streamflow data and varying



Fig. 6. RMSE for the ICL watershed with the Sac, Sacm, kw, and hsB models
calibrated using varying ranges of streamflow at the watershed outlet over the
5 year calibration period.
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perform slightly better than Sacm for the lower 50% of streamflow
but Sac and Sacm appears to better fit the full range of streamflows
when calibrated using the full range of streamflows. Overall, these
results suggest that calibrating Sac using a lower percentage of
streamflows does not improve the model’s ability to simulate the
lower range of streamflows.

Fig. 7 compares the performance of all four models over the 30-
year verification period. As in LRN, here again the Sac model has a
poor performance at the lower percent streamflow. All three parti-
tioned models calibrated using the lower 20% of streamflow show a
SRMSE between 0.5 and 1.5 for the lower 20% of streamflow but
with Sacm exhibiting the lowest SRMSE, a sign that the calibration
process allows this model to have enough flexibility to fit stream-
flow at this range relatively well. The hsB model calibrated with the
lower 50% of streamflow shows the best performance for a similar
streamflow range over the verification period, but all models had a
RMSE that is smaller than a standard deviation of the observed
streamflow. All models calibrated using the full range of stream-
flow perform similarly over the full range of streamflow but poorly
for the streamflow below the 50th percentile.

The performance of coupled models in predicting low flow sta-
tistics is shown in Fig. 8. As with the steeper sloped LRN watershed,
partitioned models calibrated using the lower 20% of streamflow
simulate ICL low flow statistics that are closer to the observed val-
ues. However, the overestimation of Q7,10 is larger for the
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shallower sloped ICL compared to LRN. Interestingly, the Sacm
model estimates are slightly higher than kw and hsB, suggesting
that a small SRMSE with the lower 20% of streamflow in Fig. 7 is
a result of a better fit to the higher values in the range. These re-
sults may be an indication that to better simulate Q7,10 we may
need to calibrate our models using a threshold lower than the
20th percentile of streamflows or, possibly, include Q7 as one of
the calibration metrics. Another possible reason for the overesti-
mation of Q7,10 may be that during extreme low flow events, these
rivers may be losing water to the groundwater system, a situation
that is not accounted for in the presented model formulations. Dur-
ing the same verification period partitioned models calibrated
using the lower 20 and 50% of streamflow show better Q30,2 predic-
tions with models calibrated using the lower 20% showing the best
statistics. While the kw and hsB models calibrated with the lower
50% of streamflow show close Q30 and Q30,2 results, the values from
the hsB model appear to be slightly larger than from the kw model
(although slightly smaller than Sacm), indicating the possible effect
of the diffusive term in the hsB model at this relatively shallow
sloped watershed.

Hypothesis tests comparing mean Q7 and Q30 values from ICL
resulted in rejecting the hypothesis that observed and modeled
averages are equal for Q7, except for the partitioned models cali-
brated with the lower 20% of streamflow. For Q30 the test failed
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to reject the null hypothesis that simulated averages are equal to
observed averages for all partitioned models calibrated with the
lower 20% of streamflow and for the kw model calibrated using
the lower 50% of streamflow. All models calibrated using the full
range and Sac using any range of streamflow performed poorly in
simulating ICL low flow statistics.

6.2. Model calibration using one year of streamflow data in the ICL
watershed

To analyze the impact of reducing the amount of data and the
data regime characteristics for calibration on model results, the
kw and hsB models were calibrated at the ICL watershed using
three different 1 year periods representing the following hydro-
logic regimes: a dry year (1968), a normal year (1967), and a wet
year (1964). For this analysis we focus on coupled hillslope-storage
models only. Note that a low flow hydrologic year was employed
(April 1 – March 31). In these simulations, all models were cali-
brated using only the lower 20% of streamflow, which appears war-
ranted given the results from calibrating using 5 years of data
presented in Section 6.1.

The model’s SRMSE over the 30 year verification period is shown
in Fig. 9. In this figure, results for 1 year calibrations are also com-
pared to those with 5 year calibrations. For the normal year, mod-
els with 1 year of calibration data have similar performance to
models calibrated using 5 years of streamflow. However, for the
lower 20% range of streamflow models calibrated using the wet
year show overall the best (lowest and <1) SRMSE values, with this
performance decreasing from wet to normal and normal to dry
years. These results suggest that because the five year period in-
cludes wet, dry and normal years its combined behavior is similar
to a normal year, whereas the verification data is more representa-
tive of a wet period. Also, the results in Fig. 9 indicate that model
performance at the lower 20% of streamflow is less sensitive to cal-
ibration data length compared to regime characteristic. However,
for larger streamflows the model performance did not change at
all except with dry year data for the kw model which shows a
slightly poorer performance for the lower 50% streamflow.

Fig. 10 presents the predicted average Q7 and Q30, and the Q7,10

and Q30,2 for the 30 year verification period. These results indicate
that all models overestimate Q7,10 over the 30 year period. Overall,
for the 30 year verification period the kw model calibrated using
streamflow from a dry year and both models calibrated using the
wet year data exhibit the best Q7 and Q7,10 estimates, while models
calibrated with five years of streamflow show the best Q30 and
Q30,2 estimates.
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and hsB models calibrated using the lower 20th percentage of streamflow from 5
and 1 year periods.
Though these results represent only the particular case of the
ICL watershed and the selected validation period, the overall per-
formance of the kw model calibrated with one year of streamflow
data for a relatively dry year and the kw and hsB models for a rel-
atively wet year show similar performance as the models cali-
brated with five years of streamflow data. The hsB model,
though, is overestimating streamflow for the verification period.
This may be due to the diffusion term in this model. In general
Q30 and Q30,2 model estimates from 5-year and wet and normal
1-year calibrations are relatively good, differing by less than
0.05 mm/day from the observed values. These results raise impor-
tant questions about the length and characteristics of streamflow
data necessary to calibrate partitioned models intended for low
flow prediction. An important question is whether hydrologic re-
gime characterization based on yearly average is the right ap-
proach for low flow modeling. Further investigation is necessary
to test whether these results are due to this particular simulation
or represents a more general behavior that is likely to occur at
other watersheds with varying hydrogeological characteristics.
6.3. Hydraulic conductivity

In Fig. 11 we compare the box plots of calibrated hillslope sat-
urated hydraulic conductivities for the kw and hsB model simula-
tions at ICL and LRN. These are effective saturated conductivities
that include the effect of macropore flow at a hillslope scale
Fig. 11. Box plots showing the median (horizontal line in the boxes), mean (dark
dots), interquartile, whiskers and outliers of hydraulic conductivity (k) for the nine
hillslopes for the LRN and ICL watersheds with the kw and hsB models calibrated
with 5 years of streamflow data and varying streamflow ranges. Also shown in the
graph are three lines representing average k values from drilled wells at different
depths for valleys and draws (dashed line), slopes (middle dark line), and hills and
ridges (lower gray line) across the study region (Daniel et al., 1997).
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(Brooks et al., 2004). In general the average saturated hydraulic
conductivity at ICL is higher than at LRN with higher rainfall and
steeper slopes. The variability of saturated hydraulic conductivity
for the different calibration ranges is larger for LRN than for ICL, ex-
cept when calibrating at the full range. Unlike at LRN, for the shal-
lower sloped ICL watershed hsB models show lower mean
hydraulic conductivity than the kw models. This indicates the cal-
ibration technique is allowing the kw model to compensate for the
absence of the diffusion term by converging to higher k values in
the shallower sloped watershed. Though for ICL the kw and hsB
models showed relatively close SRMSE values (Fig. 7), Fig. 11 shows
how the kw calibrated with the lower 50% and the full range of
streamflow converged on average to hydraulic conductivity values
that are higher than average values reported in previous studies for
drilled wells in slope areas at this watershed (Daniel et al., 1997).
Higher hillslope saturated hydraulic conductivity than small-scale
ks measurements is not surprising and it is extensively discussed in
Brooks et al. (2004). Though, our calibrated saturated hydraulic
conductivity values are, in general, within the range of measured
values at various locations across this region as reported in Daniel
et al. (1997), this analysis is limited by the fact that drainable
porosity f and the power constant l, which have an impact on hill-
slope-storage baseflow modeling, were both allowed to change
during the calibration process. While, this procedure provides
more flexibility in capturing heterogeneous properties across a wa-
tershed (Harman and Sivapalan, 2009), it makes capturing model
sensitivity to a single parameter (hydraulic conductivity) more
difficult.

A guidance criteria for the kinematic wave validity (Beven,
1981; Fan and Bras, 1998) is the k index, a ratio of rainfall accumu-
lation to soil water drainage (Henderson and Wooding, 1964)

k ¼ 4N cos i

k sin2 i
ð9Þ

where N is the recharge, k is the saturated hydraulic conductivity,
and i is the slope of the impermeable bed, should be less than
0.75. Based on an average total annual precipitation of 1207 mm
with an estimate of 80 1-day events per year and a 4.6o average
slope, for k to be less than or equal to 0.75 the hydraulic conductiv-
ity must be at least 12 m/day. Though this value is very uncertain
and is sensitive to the assumed number of rainfall events per year
and recharge amounts (in our calculations we assumed all precipi-
tation becomes recharge), this hydraulic conductivity value is very
high given the characteristics of the soils at ICL. The results in
Fig. 11 indicate values that are less than the minimum k value re-
quired for the validity of the kinematic model, based on the k index.
Regardless of these results, in our simulations the kw and hsB mod-
els perform similarly for watersheds with different slopes. One
explanation is that the calibration process is flexible enough to al-
low the kw models to converge to parameter values to adequately
model low flow in shallower sloped watersheds.
7. Summary and conclusions

In this paper we present a coupling between the Sacramento
Soil Moisture Accounting model (Sac) and the hillslope-based kw
and hsB models. In addition we apply the Sac model on multiple
hillslopes (Sacm). While SAC-SMA accounts for most basin charac-
teristics and the overall mass balance, the hillslope sub-models re-
place the lower storages in the original Sac model to simulate
baseflow discharge to a stream. Sacm and the new coupled models
(kw and hsB) are run on a hillslope basis on a 6 h time step to gen-
erate daily streamflow discharge at the hillslope outlet. Contribu-
tions from each of nine individual hillslopes are routed along a
channel network to the basin outlet. These coupled models were
applied to two watersheds: the Linville River near Nebo (LRN)
and Indian Creek near Laboratory (ICL), and compared to each
other and the original Sac model as well as to Sacm. While the loca-
tion and size of both watersheds is similar, LRN has an average
slope of 14.8�, while ICL has an average slope of 4.6�. Data from a
5-year period that included wet, normal and dry hydrologic years
were applied to calibrate the models. In addition, models were also
calibrated at the shallower sloped ICL watershed using 1 year of
streamflow data. Models were calibrated to minimize the Root
Mean Square Difference (RMSE) using the full range of streamflow
and the lower 20% and 50% of streamflow. Calibrated models were
then applied to examine their performance over three ranges of
streamflow using a scaled RMSE (SRMSE) and their ability to predict
the lower 20%, 50% and full range of streamflow, and 7-day and 30-
day low flow statistics during a 30 year verification period.

Our results indicate that:

1. The use of hillslope-storage baseflow models improves the SAC-
SMA model’s ability to simulate low flow at a watershed scale.
Except at the full range for the shallower sloped and drier ICL
watershed the lumped Sac model performs poorly for all ranges
of streamflow when compared to partitioned models. This was
expected as the partitioned models increase the number of
model parameters to be calibrated. The performance of all par-
titioned models is similar, with the coupled models being
slightly better in simulating the lower 50% of streamflow when
calibrated with the same range of streamflow.

2. The change in calibration range has little or no effect on Sac per-
formance at a lower range streamflow.

3. The coupled models perform better than Sac and Sacm when
calibrated at a full range for the steeper LRN watershed. Con-
versely, Sac and Sacm perform better at the full range when
applied to ICL watershed. However, it appears that the improve-
ment on the full range of streamflow comes with a decrease in
model performance for streamflow below the 50th percentile
and low flow statistics. As suggested in Staudinger et al.
(2011), this behavior may indicate the need to improve model
structure in order to achieve a better and more balanced model
performance.

4. A comparison between Q7,10 and Q30,2 low flow statistics calcu-
lated from observed and modeled streamflow indicates that
partitioned models calibrated with the lower 20% of streamflow
can better predict low flow statistics. Our results do not show
any evidence of a difference in performance between Sacm,
kw and hsB models. This conclusion was not reached by
Matonse and Kroll (2009) due to the limited data available for
their study. Based on these results it appears that model cali-
bration with the lower 20% of streamflow leads to better Q7,10

predictions. When estimating Q30,2 the results are mixed, indi-
cating that calibration using the lower 20% and 50% streamflow
both have the potential for good prediction.

5. Results from the kw and hsB models were similar for both
watersheds. This was surprising, as we expected at the shal-
lower sloped ICL to observe differences in these models. Unless
we have knowledge to restrict the range of effective hydraulic
conductivity (k) values, the calibration process gives the kw
model enough flexibility to compensate for the absence of the
diffusive term by selecting higher k values, leading to results
that are similar to the hsB model. Another important factor is
that values for parameters such as the hydraulic conductivity
are very sensitive to hillslope depth. It would be of interest to
investigate the validity of the hillslope depth similarity assump-
tion at these watersheds. Also, the impact of fractured bedrock
and regional groundwater systems (Broda et al., 2011a, 2011b)
were not investigated in this study. In theory one would expect
that Sacm exhibit better results because the two calibrated
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recession coefficients should account for both regional and local
groundwater flow. Coupled models potentially have an advan-
tage in representing water table levels at the hillslope, if
necessary.

6. Our results from models calibrated with 1 year of data indicate
the model performance is more sensitive to data characteristics
than to data length. However, it remains unclear what would be
the best indicator to characterize the hydrologic regime (wet,
dry, normal, or a combination) for data intended for modeling
low flow. The coupled kw and hsB models calibrated with 1-year
of streamflow can perform relatively well in predicting low flow
series and statistics. A traditional method to estimate low flow
statistics at partially gauged sites, baseflow correlation, is based
on having a nominal number of observations (measurements)
of low flow at the ungauged site and from a concurrent gauged
site (Reilly and Kroll, 2003; Zhang and Kroll, 2007). Previous
studies have also indicated that the inclusion of baseflow indi-
ces improved predictions of low flow statistics using regression
methods (Riggs, 1961; Vogel and Kroll, 1996; Kroll et al., 2004).
The performance of coupled models with limited streamflow
data is encouraging and can potentially improve the estimation
of low flow statistics at partially gauged sites.

Of interest for further investigation is what length of calibration
data is sufficient to produce ‘‘good’’ estimators of low flow statis-
tics with our coupled models, and whether that data is better em-
ployed with other methods such as baseflow correlation or
regional regression. Given our focus on low flow, of further interest
is the regime characteristic of streamflow employed for model cal-
ibration and the best metrics to guide model calibration intended
to simulate low flow statistics, while preserving good performance
in the full streamflow hydrograph. Combining low flow statistics
with other criteria such as recession (Staudinger et al., 2011) and
soil moisture in future studies involving hillslope-storage models
can be a valuable exercise to improve model structure and evaluate
RR models performance in simulating the full streamflow
hydrograph.
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