
Abstract
Digital elevation models (DEMs) are representations of topog-
raphy with inherent errors that constitute uncertainty. DEM
data are often used in analyses without quantifying the
effects of these errors. This paper describes a Monte Carlo
methodology for evaluation of the effects of uncertainty
on elevation and derived topographic parameters. Four
methods for representing DEM uncertainty that utilize meta-
data and spatial characteristics of a DEM are presented.
Seven statistics derived from simulation results were used
to quantify the effect of DEM error. When uncertainty was
quantified by the average relative absolute difference, ele-
vation did not deviate. The range of deviation across
the four methods for slope was 5 to 8 percent, 460 to 950
percent for derived catchment areas and 4 to 9 percent for
the topographic index. This research demonstrates how
application of this methodology can address DEM uncer-
tainty, contributing to more responsible use of elevation
and derived topographic parameters, and ultimately results
obtained from their use.

Introduction
Digital elevation models (DEMs) are a valuable and useful
data source for many natural resource related Geographic
Information System (GIS) applications. Representation of
elevation in a grid framework enables neighborhood compu-
tations of parameters, such as slope and flow direction,
which are used to identify ridges and valleys and derive
the topographic index, a statistic that indicates the propen-
sity for surface saturation (Beven and Kirkby, 1979; Quinn
et al., 1991). Although a DEM is a model of the elevation
surface, it is often not treated as a model, but is accepted as
a true representation of the earth’s surface. DEM data, like
other spatial data sets, are subject to error (USGS, 1995;
Monmonier, 1991; Wright, 1942). Many DEM users perceive
that DEM uncertainty affects the outcomes of their applica-
tions. However, the effects of DEM error on elevation and
derived parameters are often not evaluated by DEM users
(Wechsler, 2003), and methods to address DEM error have not
been systematically integrated with GIS software packages.
The methodology presented here integrates DEM uncertainty
simulation with GIS. The impact of uncertainty on elevation
and three derived topographic parameters are investigated:
slope, upslope contributing area and topographic index
(TI). This methodology could also be applied to other topo-
graphic parameters. The intent of this approach is to enable
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DEM users to assess the uncertainty of elevation and derived
parameters, in the absence of higher accuracy elevation data.

Background
Derived Topographic Parameters
The DEM provides a base data set from which topographic
parameters are digitally generated. These surface derivatives
provide the basis for characterization of landform (Evans,
1998) and are used extensively in environmental applica-
tions such as hydrology, geomorphology, and environmental
modeling. Various algorithms exist for calculating topo-
graphic parameters from a DEM, and each method can pro-
duce different results (Ryder and Voyadgis, 1996; Carter,
1990; Skidmore, 1989). The topographic parameters investi-
gated in this paper are dependent on the current capabilities
of ArcView™ GIS. Slope (tan B) is derived using the Horn
method (also referred to as the “Kings Case”) (Horn, 1981;
Burrough and McDonnell, 1998; ESRI, 1998). The upslope
contributing area represents the total area draining into
each grid cell and is derived from flow direction. Many
algorithms exist for computing flow direction (ESRI, 1998;
Tarboton, 1997; Wolock and McCabe, 1995; Costa-Cabral and
Burges, 1994; Quinn et al., 1991; Jenson and Domingue,
1988). ArcView™ incorporates a single flow path method
that computes flow direction based on the direction of
steepest descent in one of eight directions from a center cell
of a 3 � 3 window. TI is computed as: TI � Ac/tan B where
Ac is the drainage area per unit contour length (flow path
width) of a cell, here taken as the cell width. Derivation
of these parameters (particularly upslope area and TI which
are based on flow direction) does not reflect the most recent
methods proposed in the hydrologic literature (Tarboton,
1997; Wolock and McCabe, 1995; Quinn et al., 1991). In
fact, there is little consistency in the hydrologic litera-
ture regarding the most appropriate estimators of many
topographic parameters. The method used to compute
the parameters is not relevant to the present analysis since
the uncertainty of other estimators could be examined in
a similar manner. Of interest in this analysis is assessing
the effect of DEM errors on the uncertainty of derived topo-
graphic parameter estimators.

DEM Error Constitutes Uncertainty
Error is the departure of a measurement from its true value.
In geographic analyses of complex natural systems using
spatial data we often do not know or do not have access
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to a true value. Our lack of knowledge about the reliability
of a measurement in its representation of the true value is
referred to as uncertainty and is a measure of what we don’t
know. Uncertainty exists in spatial data, and in DEMs. DEM
product information concerning data collection, processing
or error distribution is generally unavailable to DEM users
(Holmes et al., 2000). In the United States the U.S. Geologi-
cal Survey (USGS) is one of the most common producers of
DEMs with over 14.5 million 7.5-minute DEMs downloaded
between March 1998 and July 2001 (the last year statistics
were available from the USGS) (USGS, 2004). Approximately
30 percent of DEM users use the USGS 7.5-minute DEM pro-
duct (Wechsler, 2003). Because of the prevalence of USGS
7.5-minute DEMs, a review of the accuracy of this data pro-
duct is warranted. The USGS recognizes that their DEM
products are subject to “blunders,” systematic errors, and
random errors (USGS, 1995; Caruso, 1987). Blunders are
vertical errors associated with the data collection process
and are identified and removed prior to release of the data.
Systematic errors are the result of procedures or systems
used in the DEM generation process and follow fixed patterns
that can cause bias or artifacts in the final DEM product.
When the cause is known, systematic errors are eliminated
or reduced. Random errors remain in the data after blunders
and systematic errors are removed. The processes responsi-
ble for introducing random errors into a DEM are not suffi-
ciently understood thus the exact nature and location of
random error cannot be precisely determined. The major
purpose of this paper is to demonstrate a methodology to
address uncertainty that is due to random DEM errors.

Quantifying Vertical Accuracy in DEMs
The nature and extent of DEM errors are not provided to DEM
users. The USGS provides users of their products with the
Root Mean Square Error (RMSE) statistic, an estimate of the
DEM’s vertical accuracy. The Root Mean Square Error (RMSE)
is expressed as:

(1)

where: yi refers to the i th interpolated elevation, yti refers to
the i th known or measured elevation, and N is the number
of sample points. For its 7.5-minute DEM product the USGS
calculates the RMSE from N � 28 sample points (yti) distrib-
uted throughout the specified area and presumed to be
representative of the terrain. However, these values do not
always reflect actual elevations, rather they are the most
probable elevation (USGS, 1995). While a valuable quality-
control statistic, the RMSE does not provide the DEM user with
an accurate assessment of how well each cell in the DEM
represents the true elevation; it provides only an assessment
of how well the DEM corresponds to the data from which it
was generated. Researchers have used error measured at
discrete points (such as from GPS surveys or data of higher
resolution) to generate DEM error estimates and investigated
the spatial structure of DEM error (Holmes et al., 2000;
Ehlschlaeger, 1998; Ehlschlaeger and Shortridge, 1996). In
the absence of definitive information regarding the spatial
structure of DEM error, the RMSE is the only statistic available.
The purpose of our approach is to quantify uncertainty that
is due to random errors in a DEM and derived parameters
using information available to most DEM users, i.e., the RMSE.
This methodology uses the RMSE as a mechanism for quanti-
fying DEM uncertainty using Monte Carlo simulation. When
additional information about the structure of DEM error
becomes available, error fields could be adjusted accordingly.

RMSE �R a
N

i�1
(yi � yti)

2

N

Monte Carlo Simulation
In a Monte Carlo simulation of DEM uncertainty, the DEM
is recognized as only one possible realization of the true
elevation surface. Multiple simulations can be used to
quantify DEM uncertainty through evaluation of statistics
associated with a distribution of realizations. To create
this distribution a number (N) of random error fields are
generated where each cell represents the possible error at
a co-located elevation. Each random field is added to the
DEM generating a new realization of the elevation surface.
Monte Carlo simulation methods have been used by many
researchers to evaluate error in GIS data, including Lanter
and Veregin (1992), Openshaw et al. (1991), and Heuvelink
et al. (1989) and have been applied to specifically address
DEM uncertainty. For example, Fisher (1991) applied Monte
Carlo simulation techniques to evaluate the impact of DEM
error on viewshed analyses. Lee et al. (1992) determined
that small DEM errors significantly affected floodplain loca-
tions. Liu and Herrington (1993) investigated the impact of
DEM error on a forest harvesting model. Ehlschlaeger and
Shortridge (1996) evaluated the impact of DEM uncertainty
on a least-cost-path application. Hunter and Goodchild
(1997) investigated the effect of simulated changes in ele-
vation at different levels of spatial autocorrelation on slope
and aspect calculations. Holmes et al. (2000) simulated
error in DEMs to evaluate slope failure prediction.

Monckton (1994) recognized that error values such as
the RMSE ignore the spatial structure of error. To understand
the effects of such error, researchers have developed vari-
ous methods for representing DEM error through spatially
autocorrelated random fields. Some of these approaches
require prior knowledge of the spatial structure of DEM error
obtained from a higher accuracy data source such as spot
heights or check points (Holmes et al., 2000, Monkton, 1994;
Östman, 1987) or use of a DEM that is deemed of “higher
accuracy” (Ehlschlaeger, 1998). Other methods use a swap-
ping algorithm (Ehlschlaeger, 2002; Fisher, 1991), spatially
autoregressive random fields (Hunter and Goodchild, 1997)
and covariance functions (Oliver, 1995) to represent spa-
tially autocorrelated error in random fields.

While progress has been made in the development of
error propagation techniques, a consensus regarding appro-
priate technique(s) does not exist. The intent of this research
is not to add new elements in the simulation process. As
the literature attests, there are many ways of representing
DEM error in the simulation process. The approach under-
taken here provides a mechanism for representing error in
the absence of any knowledge of its spatial structure and
provides statistical methods for quantifying and visualizing
the effect of DEM uncertainty not only for elevation, but
also for slope, upslope area, and the topographic index. The
methodology was successfully integrated within a GIS and
provides a comprehensive toolkit for general application and
quantification of DEM uncertainty.

Methodology
The methodology presented in this paper is intended for use
in applications where a ground truth field survey or other
higher accuracy data source is not available and all that
is available to the DEM user is the RMSE. It is assumed that on
average the true elevation is equal to the stated elevation
value, but it could be any value within a specific probability
distribution. Here, it is assumed these errors are normally
distributed with a standard deviation equal to the RMSE. This
provides the theoretical basis for using unfiltered random
fields in the simulation. However, error is not likely to mani-
fest itself in the pattern represented by unfiltered random
fields, and therefore an error model ought to be based on an
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assumption of spatial dependence of error (Hunter and
Goodchild, 1997). Although the assumption is that error is
random, elevation is spatially autocorrelated; hence, elevation
error is spatially autocorrelated (Ehlschlaeger, 1998; Hunter
and Goodchild, 1997; Lopez, 1997; Veregin, 1997; Fisher,
1991). Here spatial autocorrelation in the error field is created
by smoothing or filtering the random error fields with an
averaging filter. Filtering error fields increases the spatial
autocorrelation of the random error fields. Different levels of
spatial autocorrelation (or spatial dependence) are achieved
through this filtering. This research applies a stochastic
approach to representing DEM error through random fields
and Monte Carlo simulation that enables the methodology
to be easily integrated with a commonly used GIS package,
making these simulation techniques and resulting uncertainty
estimators accessible to DEM users. The approach could easily
be extended to other GIS software programs.

Random Field Methods
The results of four representations of DEM error are presented.
Two of these methods assume no, or only slight spatial auto-
correlation. The other two methods depend on the distance
of the spatial autocorrelation of the elevation error, referred
to as the distance of spatial dependence (D). One method for
obtaining a D value is through analysis of the sill of a semi-
variogram of DEM error. This determination can be subjective
and cannot be determined without extensive ground truth.
Holmes et al. (2000) computed a semivariogram of error in a
30 m USGS DEM. A sill appears to occur at 200 to 300 meters.
More thorough analyses of the structure of DEM error in vari-
ous types of topography and physiographic regions are war-
ranted. In the absence of such empirical information, results
from Holmes et al. (2000) were used to guide the present
analyses. A D of 270 m (9 � 9 grid cells) was selected as the
filter neighborhood. Four methods to represent random errors
in DEMs using random fields were used. The methods differ in
how spatial autocorrelation of random error is treated; these
methods are outlined in Table 1.

Unfiltered (U)
Liu and Herrington (1993), Lopez (1997) and Hunter and
Goodchild (1997) investigated the spatial dependence of
elevation and determined that an error model based on
independent random error does not reflect the spatial struc-
ture of error. Due to spatial autocorrelation, positive correla-
tions exist between adjacent errors. Fisher (1991) stated that
independent errors are likely to contribute to only a small
portion of DEM error. The problem, however, is that little is
known about the nature and extent of random DEM errors.
Until DEM producers and vendors provide this information,
assumptions must be made about the spatial relationships of

random errors. Here the first method considered is based
on completely random unfiltered error fields (U) and assumes
no spatial autocorrelation. These random fields were gener-
ated with a mean of zero and a standard deviation equal to
the RMSE for the DEM (Equation 1). The RMSE statistic is based
on an assumption of independent errors (Liu and Herring-
ton, 1993; Caruso, 1987). This simulation provides the largest
errors in the parameters evaluated in this experiment, and
could be considered a worst-case scenario of DEM uncer-
tainty effects.

Neighborhood Autocorrelation (N )
The neighborhood autocorrelation filter method (N) incor-
porates spatial autocorrelation of error by passing a mean-
low-pass 3 � 3 filter (Eastman, 1992) over the surface. Each
cell in the random field is replaced by the mean of the value
of a centered nine-cell window. This method increases the
spatial autocorrelation of each random surface and decreases
the standard deviation of the values. As long as the distance
of spatial dependence (D) is greater than the cell resolution,
this procedure will underestimate D.

Mean Spatial Dependence (S )
The mean spatial dependence filter method (S) incorporates
characteristics inherent in the selected DEM and requires
prior analysis of the DEM to quantify D. The mean spatial
dependence filter passes a D � D window over each cell in
a grid and replaces the center cell with the mean of all cells
in the centered D � D neighborhood.

Weighted Spatial Dependence (W )
The weighted spatial dependence filter (W) further incorpo-
rates spatial autocorrelation specific to a selected DEM. Like
the mean spatial dependence filter, the dimension of the
filter kernel are based on the established D. Unlike the mean
spatial dependence filter, the impact of error from neighbor-
ing cells decreases with distance, which is similar to semi-
variogram trends. The filter passes a D � D kernel over a
grid and calculates a weighted mean of all the cells within
the kernel. Cells farther away from the center cell are
assigned less weight. The filter can be expressed as follows:

(3)

where: �Li is the mean of the values in ring i, and TL is the
total number of rings.

The ring refers to a distance measure from the center
cell. The center cell is ring 1. The rows and columns imme-
diately surrounding the center cell are considered ring 2,
and so on. The weight for each ring is the rank of the ring
(where the ring farthest from the center cell has the lowest
rank) divided by the sum of the rings. While other weight-
ing schemes may also be plausible, here we wish to show
the impact of a distance weighting scheme that produces
autocorrelated errors similar to those observed in practice
(Holmes et al., 2000). Figure 1 depicts semivariograms of
the different filter methods.

Procedure
The methodology presented is based on the assumption
that the DEM on hand is the best representation of the true
elevation available. Therefore, the DEM and derived parame-
ters are used as “truth” surfaces. Errors are added to the orig-
inal DEM because, although a DEM is the best representation

Weighted Grid � a
TL

i�1
±�Li*

TL � i � 1

a
TL

i�1
i

≤
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TABLE 1. DESCRIPTION OF THE FOUR METHODS OF GENERATING

RANDOM FIELDS

Random Field Method Description

(U) Unfiltered Random fields with
M � 0, SD � DEM RMSE.

(N) Neighborhood Mean 3 � 3 low-pass filter applied
Autocorrelation to (U), and rescaled to

M � 0, SD � DEM RMSE.
(S) Mean Spatial Mean D � D filter applied to (U);

Dependence cells replaced with the mean of
surrounding D � D cells and
rescaled to M � 0, SD � DEM RMSE.

(W) Weighted Spatial Filter (U) with a weighted D � D
Dependence kernel; cells farther away are

assigned less weight and rescaled
to M � 0, SD � DEM RMSE.
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of “truth” available, it contains errors and under uncertain
conditions is assumed to be one of an infinite number of
elevation realizations. Error simulation enables us to quantify
uncertainty associated with elevation and derived topo-
graphic parameters. DEM uncertainty can be quantified by
applying one of these filter techniques within a Monte Carlo
simulation. A DEM is selected and a random field (created by
the selected method) is added to the DEM, creating a new
realization of the DEM. Depressions in the DEM (sinks) disrupt
calculation of the upslope contributing area, requiring each
realization to undergo a sink-filling procedure (ESRI, 1998;
Jenson and Domingue, 1988). Four topographic parameter
grids are computed from the new realization: elevation,
slope, upslope contributing area, and the topographic index.
This procedure is repeated N times, resulting in N realiza-
tions of each topographic parameter for each cell in the grid.

Quantification of DEM uncertainty through this method-
ology is based on the residuals of each parameter (i.e.,
the difference between each perturbed parameter and the
original undisturbed parameter). Comparisons of the N
realizations with the true values (from the original undis-
turbed grids) allow for an assessment of topographic uncer-
tainty. The residual grids are produced by subtracting the
original parameter values from each realization to quantify
uncertainty by providing a measure of “forecast error”
(Lettenmaier and Wood, 1993). Figure 2 provides a flow
chart of the methodology employed in this analysis.

The methodology presented here allows the user to
examine seven statistics for assessing the uncertainty in
topographic parameters. These statistics are summarized in
Table 2. Bias and Relative Bias (R-Bias) quantify systematic
error. These statistics measure the degree to which predicted
parameters are, on average, above or below the true parame-
ter at a cell location. R-Bias standardizes bias measurements
to the original true parameter value, providing the average
percent deviation of the predicted value from the true value.
Similar to R-Bias, the Average Relative Absolute Difference
(ARAD) reports the percent absolute deviation of the predicted
value from the true value. ARAD results are reported only as
positive values and are hence more intuitive by indicating
the average percent difference from the true value. Random
errors can be quantified by the Standard Deviation (STD),
which is a measure of the variability of the forecast about its
mean value. The Root Mean Square Error (RMSE), Relative
Root Mean Square Error (R-RMSE) and Log Root Mean Square
Error (L-RMSE) are measures that incorporate both random
error (variance) and systematic error (bias). The RMSE is a

common measure of uncertainty employed in numerous
applications. R-RMSE, like R-Bias and ARAD, standardizes the
RMSE to the true parameter value and represents the percent
variation of the estimator. Relative statistics, such as R-Bias
and R-RMSE are useful when a wide range of true values
is present. The L-RMSE transforms the RMSE into log space,
and assigns more weight to underestimation than overesti-
mation of the parameter. This statistic is useful for bounded
estimators such as slope. L-RMSE and R-RMSE are first-order
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Figure 1. Semivariograms of the random fields applied
as filter methods.

TABLE 2. UNCERTAINTY ESTIMATOR STATISTICS FOR QUANTIFYING

DEM UNCERTAINITY

Estimator Formula

Bias

Relative Bias (RBias)

Average Relative Absolute
Difference (ARAD)

Standard Deviation (STD)

Root Mean Square Error (RMSE)

Relative Root Mean
Square Error (R-RMSE)

Log Root Mean
Square Error (L-RMSE)

Where i refers to the estimator of the parameter Yi and N is the
number of simulations. is the average of the N i values.ŶY

Ŷ

 LRMSE �Q a
N

i�1
aln aŶi

Yi
bb 2

N

 RRMSE �Q a
N

i�1
aŶi � Yi

Yi
b 2

N

 RMSE �Q a
N

i�1
(Ŷi � Yi)

2

N

 STD �Q a
N

i�1
(Ŷi � Y)2

N

 ARAD �
a
N

i�1
a ƒ Ŷi � Yi ƒ

Yi
b

N

 RBias �
a
N

i�1
c (Ŷi � Yi)

Yi
d

N

 Bias �
a
N

i�1
(Ŷi � Yi )

N

Figure 2. Flow Chart of Methodology.
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equivalent for precise estimators (Kroll and Stedinger, 1996).
The effects of DEM uncertainty on elevation and derived
topographic parameters can be assessed by examining all
or some of these seven statistical estimators.

Application of Methodology: Coweeta Hydrologic Watershed
The following analysis investigates how DEM error affects
uncertainty of topographic parameters that are frequently
employed in hydrologic investigations. Simulations were run
for a portion of the Prentiss, North Carolina level-2 DEM that
contains the Coweeta Hydrologic Watershed (Figure 3). This
DEM has a 30 m grid cell resolution with 183 columns and
207 rows. The Coweeta watershed comprises a 2,169 ha
(24,107 grid cells) experimental facility dedicated to forest
hydrology research since its establishment in 1933 and is
administrated by the USDA Forest Service (LTER, 2001).
Numerous hydrologic studies have been conducted at the
Coweeta Hydrologic Watershed (e.g., Bolstad and Swank,
1997; Day and Monk, 1974; Black, 1959).

The reported RMSE for this DEM was 2 m. As mentioned
previously, a D of 270 m was selected for this analysis. A
standard deviation analysis was applied to determine the
appropriate number of simulations, as follows. A number
(e.g., N � 350) of random simulations were performed, and
across all N grids the average and standard deviation of each
cell was computed. The process was repeated for N � 349,

N � 348 etc. The minimum number of needed simulations
(N ) was determined when the percent difference in stan-
dard deviation between subsequent simulations fell below
5 percent, which occurred at N � 135. The four different
methods of random field generation were examined. The
effect of error on topographic parameter estimators for each
random field method was assessed. The methodology was
programmed using the Avenue language as an extension for
ArcView™ Spatial Analyst® GIS software (ESRI, 1998). This
approach could be incorporated into other GIS software
packages.

Uncertainty Statistics for the Coweeta Hydrologic Watershed
For each topographic parameter, statistical grids representing
the seven statistics were computed. Statistics for the 24,107
grid cells in the Coweeta watershed summarize and quantify
uncertainty in the topographic parameter estimators (Table 3).
These summary values are more broadly descriptive than
the RMSE provided with the DEM since they incorporate the
spatial distribution of simulated uncertainty for every cell
location in the watershed.

Figure 4 demonstrates the effect of filter methods on
topographic parameters using simulation results for the
RMSE uncertainty estimator. Elevation was unbiased and
the estimator distribution remained similar between the
filter methods. For elevation, only the U and N filters were
not significantly different from each other (p � 0.64). Slope
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Figure 3. Study area location: Coweeta Hydrologic Watershed, North Carolina.

02-039  8/17/06  12:45 PM  Page 1085



1086 Sep t embe r 2006 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TA
B

LE
3
.

U
N

C
E
R

TA
IN

TY
ES

TI
M

A
TO

R
S

FO
R

TH
E

C
O

W
E
E
TA

H
Y
D

R
O

LO
G

IC
W

A
TE

R
S
H

E
D

E
le

va
ti

on
S

lo
p

e
T

I
U

p
sl

op
e

F
il

te
r

S
ta

t
A

vg
.

S
td

.
5t

h
 %

95
th

 %
A

vg
.

S
td

.
5t

h
 %

95
th

 %
A

vg
.

S
td

.
5t

h
 %

95
th

 %
A

vg
.

S
td

.
5t

h
 %

95
th

 %

U
A

R
A

D
0.

2%
0.

03
%

0.
1%

0.
2%

7%
9%

3%
14

%
9%

7%
1.

2%
22

%
94

9%
11

39
3%

0%
62

3%
N

A
R

A
D

0.
2%

0.
03

%
0.

1%
0.

2%
8%

10
%

3%
16

%
6%

6%
1.

0%
17

%
72

0%
98

77
%

0%
27

5%
W

A
R

A
D

0.
2%

0.
03

%
0.

1%
0.

2%
7%

9%
3%

14
%

6%
6%

0.
9%

17
%

67
8%

92
77

%
0%

27
3%

S
A

R
A

D
0.

2%
0.

03
%

0.
1%

0.
2%

5%
6%

2%
10

%
4%

5%
0.

5%
13

%
46

1%
79

16
%

0%
11

9%
U

B
ia

s
0.

01
0.

2
�

0.
3

0.
3

0.
1

0.
3

�
0.

4
0.

5
�

0.
04

0.
6

�
0.

9
0.

7
3,

46
9

33
5,

40
7

�
10

,5
64

19
,3

64
N

B
ia

s
0.

02
0.

2
�

0.
3

0.
3

0.
1

0.
4

�
0.

4
0.

6
0.

00
0.

5
�

0.
6

0.
6

2,
34

1
32

7,
92

1
�

5,
57

7
8,

85
2

W
B

ia
s

0.
01

0.
2

�
0.

3
0.

3
0.

1
0.

3
�

0.
3

0.
5

�
0.

01
0.

5
�

0.
6

0.
6

1,
88

7
31

6,
98

8
�

5,
91

2
8,

89
3

S
B

ia
s

0.
02

0.
2

�
0.

3
0.

3
0.

0
0.

2
�

0.
3

0.
4

0.
00

0.
4

�
0.

4
0.

4
1,

97
5

26
7,

84
8

�
2,

81
3

3,
51

1
U

R
-B

ia
s

0.
00

2%
0.

02
%

�
0.

03
%

0.
03

%
0.

6%
7%

�
0.

9%
2%

0.
5%

9%
�

13
%

16
%

92
3%

11
39

4%
�

35
%

59
3%

N
R

-B
ia

s
0.

00
2%

0.
02

%
�

0.
03

%
0.

03
%

0.
8%

8%
�

1.
0%

2%
0.

6%
7%

�
9%

12
%

70
3%

98
77

%
�

29
%

26
4%

W
R

-B
ia

s
0.

00
2%

0.
02

%
�

0.
03

%
0.

03
%

0.
6%

7%
�

0.
9%

2%
0.

5%
7%

�
9%

12
%

66
1%

92
77

%
�

29
%

26
1%

S
R

-B
ia

s
0.

00
2%

0.
02

%
�

0.
03

%
0.

03
%

0.
3%

4%
�

0.
7%

1%
0.

4%
6%

�
7%

8%
45

1%
79

16
%

�
22

%
11

3%
U

S
td

2.
0

0.
1

1.
8

2.
2

2.
8

0.
2

2.
5

3.
1

0.
7

0.
6

0.
1

1.
9

74
,2

61
44

2,
84

1
0

17
6,

58
2

N
S

td
2.

0
0.

1
1.

8
2.

2
3.

3
0.

2
2.

9
3.

6
0.

5
0.

5
0.

1
1.

4
60

,6
72

41
9,

24
3

0
79

,6
87

W
S

td
2.

0
0.

1
1.

8
2.

2
2.

8
0.

2
2.

5
3.

1
0.

5
0.

5
0.

1
1.

4
58

,5
22

40
9,

88
5

0
77

,9
67

S
S

td
2.

0
0.

1
1.

8
2.

1
2.

1
0.

1
1.

9
2.

3
0.

3
0.

5
0.

0
1.

0
42

,8
87

36
5,

29
3

0
25

,0
79

U
R

M
S

E
2.

0
0.

1
1.

8
2.

2
2.

9
0.

2
2.

6
3.

2
0.

8
0.

8
0.

1
2.

2
88

,0
18

55
3,

52
1

0
19

5,
01

9
N

R
M

S
E

2.
0

0.
1

1.
8

2.
2

3.
3

0.
2

3.
0

3.
7

0.
6

0.
7

0.
1

1.
7

72
,4

11
53

0,
79

2
0

89
,0

31
W

R
M

S
E

2.
0

0.
1

1.
8

2.
2

2.
8

0.
2

2.
5

3.
1

0.
6

0.
7

0.
1

1.
7

69
,7

84
51

6,
76

5
0

86
,5

47
S

R
M

S
E

2.
0

0.
1

1.
8

2.
2

2.
1

0.
1

1.
9

2.
3

0.
4

0.
6

0.
0

1.
2

50
,8

03
45

2,
15

5
0

27
,1

87
U

R
-R

M
S

E
0.

2%
0.

04
%

0.
1%

0.
3%

9%
11

%
4%

18
%

13
%

10
%

2%
32

%
21

70
%

22
68

0%
0%

16
49

%
N

R
-R

M
S

E
0.

2%
0.

04
%

0.
1%

0.
3%

10
%

13
%

4%
20

%
9%

9%
1%

25
%

17
16

%
20

71
5%

0%
69

0%
W

R
-R

M
S

E
0.

2%
0.

04
%

0.
1%

0.
3%

8%
11

%
4%

17
%

9%
9%

1%
26

%
16

18
%

19
65

4%
0%

65
9%

S
R

-R
M

S
E

0.
2%

0.
04

%
0.

1%
0.

3%
6%

8%
3%

13
%

6%
8%

1%
20

%
10

89
%

16
47

2%
0%

25
7%

U
L

-R
M

S
E

0.
00

2
0.

00
04

0.
00

1
0.

00
3

0.
1

0.
1

0.
04

0.
2

0.
1

0.
1

0.
02

0.
3

0.
8

0.
8

0.
00

2.
2

N
L

-R
M

S
E

0.
00

2
0.

00
04

0.
00

1
0.

00
3

0.
1

0.
1

0.
04

0.
2

0.
1

0.
1

0.
01

0.
2

0.
5

0.
7

0.
00

1.
7

W
L

-R
M

S
E

0.
00

2
0.

00
04

0.
00

1
0.

00
3

0.
1

0.
1

0.
04

0.
2

0.
1

0.
1

0.
01

0.
3

0.
5

0.
7

0.
00

1.
7

S
L

-R
M

S
E

0.
00

2
0.

00
04

0.
00

1
0.

00
3

0.
1

0.
1

0.
03

0.
1

0.
1

0.
1

0.
01

0.
2

0.
3

0.
6

0.
00

1.
2

F
 �

F
il

te
r:

 U
�

U
n

fi
lt

er
ed

 s
im

u
la

ti
on

, 
N

�
N

ei
gh

bo
rh

oo
d

 3
 �

3 
fi

lt
er

, 
W

�
W

ei
gh

te
d

 D
�

D
fi

lt
er

, 
S

�
M

ea
n

 D
�

D
fi

lt
er

. 
D

�
27

0 
m

et
er

s.
 N

�
24

,1
07

; 
th

e 
n

u
m

be
r 

of
 g

ri
d

 c
el

ls
 i

n
th

e 
C

ow
ee

ta
 W

at
er

sh
ed

.

02-039  8/17/06  12:45 PM  Page 1086



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Sep t embe r  2006 1087

Figure 4. Boxplot of the RMSE uncertainty estimator
results by filter method, for topographic parameters.
A box encloses the middle 50 percent of data values
(N � 24,107). Lines (whiskers) extend from each end
to the lower and upper quartile. Outlier points extend
beyond the whiskers. U � Unfiltered, N � Neighborhood
3 � 3 Filter, W � Weighted D � D Filter, S � Mean
D � D Filter.

uncertainty increased under the N filter, indicating that
the U filter does not represent a worst-case scenario when
error is propagated to this derivative. RMSE slope result
grids for the four filter methods were significantly differ-
ent from each other (p � 0.00). The positive skew for
upslope area reflects the impact that uncertainty can have
on this parameter. For upslope area, only the N and W
filters were not significantly different from each other
(p � 0.58). The effect of filter method on TI is also evident.
For TI, the N and W filters were also not significantly dif-
ferent from each other (p � 0.58). It is interesting to note
the asymmetry of the boxplots for upslope area in Figure 4.
This indicates that for some simulations, large errors in
these parameters are found. One would expect this, since
flow accumulation for a particular cell may change dramat-
ically if the topographic valley, where flow accumulation
is the highest, moves slightly. This error is also observed
for TI, which is derived from upslope area.

Table 3 contains simulation results for each method.
Results for simulations based on the N filter are explained
here as an example. On average, elevation in the water-
shed is unbiased (Bias: and R-Bias are not significantly
different than zero). There is a slight upward bias in ele-
vation, although it is not significantly different from zero.
This is due to the sink filling procedure of DEMs required
for drainage area calculations. Elevation can be expected
to deviate from the true value by 0.2 percent (ARAD) and
can be expected to vary by approximately 2 meters (STD
and RMSE) or 0.2 percent (R-RMSE). Errors are likely to be
small since there was no significant difference between
R-RMSE and L-RMSE (p � 0.98).

DEM error appeared to exert a greater influence on per-
cent slope. Slope values, on average, had a positive bias
(0.13) and deviated from the expected value by 0.8 percent
(R-Bias) with an average absolute deviation of 8 percent
(ARAD). Slope can be expected to vary on average by 3 per-
cent (RMSE and STD) with a relative variation of 10 percent
(R-RMSE). R-RMSE and L-RMSE for slope were not significantly
different from each other (p � 0.35).

Upslope contributing area estimators were highly vari-
able as exhibited by the standard deviations of uncertainty
estimators. Although bias values are large, they were not

significantly different from zero and thus upslope area was
unbiased. On average, upslope area can be expected to
deviate from the true value by approximately 700 percent
(R-Bias) with an absolute deviation of 720 percent (ARAD).
Values can be expected to vary by approximately 61,000 m2

(STD) and 72,000 m2 (RMSE). Upslope area can be expected to
exhibit a relative variation of 1,700 percent (R-RMSE). R-RMSE
and L-RMSE were significantly different from each other
(p � 0.00), further indicating a biased estimator. The low
L-RMSE indicates that the upslope area was overestimated
in this simulation.

The average topographic index was unbiased and can
be expected to deviate from the true value by 0.6 percent
(R-Bias) with an absolute deviation of 6 percent (ARAD).
STD and RMSE were significantly different from each other
(p � 0.00) indicating some bias; Mean R-RMSE and L-RMSE
were also significantly different (p � 0.01). TI values for
this example can be expected to vary by 0.5 (STD) or 0.6
(RMSE) with an average variation of 9 percent (R-RMSE).

Although the uncertainty estimators reported in this
section were averaged for the entire watershed, they provide
a comprehensive representation of uncertainty and a signifi-
cant improvement in our ability to represent uncertainty for
elevation and derived parameters. These values are more
descriptive than the non-spatial RMSE provided with the DEM.

Visualization
Statistical grids produced as a result of the simulations
quantify uncertainty on a watershed or on a cell-by-cell
basis and enable visualization of the impacts of random
DEM error. An investigator can obtain estimator values for a
specific location interactively by clicking on a cell in a GIS.
Plate 1 provides an example of slope uncertainty estimators.
Slope estimators are quite sensitive to DEM errors. The lower
elevation valley areas are especially sensitive.

The impact of topographic relationships can be dis-
cerned through visual inspection of the result grids. From
the RMSE result grids (Plate 2), it is evident that higher RMSE
estimates occur in valley areas for upslope area and TI. The
upslope area values are inherently larger in valleys and
these locations incorporate the influence of upslope uncer-
tainty. RMSE is lower in valley areas for elevation and slope.
These findings could have implications for studies located
in areas of lower elevation (such as agricultural watersheds)
that incorporate upslope contributing area and topographic
index parameters generated from a DEM.

Conclusions
Error occurs in spatial data. The traditional response to
error has been to ignore it because easily employed methods
to address error do not exist (Openshaw, 1989). Openshaw
provided the following reasons for the GIS community’s
neglect of errors in spatial data: (a) the severity of the prob-
lem is unknown due to a lack of empirical research; (b) the
effects of uncertainty are application and data specific, so
there is no consensus as to whether it really is a problem;
and (c) there are no established procedures for dealing with
error in many GIS functions or for tracking error propagation
(Openshaw, 1989, p. 264). In more than a decade since these
issues were acknowledged, little progress has been made in
providing methods for GIS users to address DEM errors.

The methodology and its application presented here
demonstrate an easily employed method to assess DEM
error and its impact on derived topographic parameter esti-
mators. Previous research used techniques that require
higher accuracy data sources such as GPS surveys or higher
resolution DEMs. The reality is that most DEM users do
not have such data. In the absence of this data, the only
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information regarding vertical accuracy is the RMSE provided
by the DEM provider (such as the USGS). The methodology
described is one that most users could integrate using the
basic functions of most GIS packages. According to Veregin
(1997), “. . . commercial GIS packages offer few capabili-
ties for documenting and tracking error through sequences
of data processing steps, such that users are often unable
to ascertain the reliability of derived data.” (p. 67). The
methodology presented here was designed to remedy this
issue by providing a methodology that was successfully
implemented within a commercial GIS.

The purpose of this methodology is to provide DEM
users with a suite of tools by which they can evaluate
the effect of uncertainty in DEMs and derived topographic
parameters. DEM users often apply the DEM as a truth surface
rather than as a model (as its name implies). Although
the simulation techniques employed in the demonstrated
methodology are well-established procedures in general,
their application to DEM derivatives is novel. This applica-
tion addresses the sensitivity of DEM derivatives to errors,
which are rarely acknowledged and thus not adjusted for
in subsequent applications.

The need for and use of accurate DEMs is evident
(Mondello et al., 2004). Numerous applications utilize DEMs.
The effects of DEM error will vary by DEM product, applica-
tion, and location. The demonstrated methodology did not
assess uncertainty associated with specific DEM applications
such as hydrologic modeling or hazard analyses. Researchers
can, however, use the uncertainty estimates provided by
the proposed simulation techniques to better assess uncer-
tainty for projects that utilize DEMs and DEM-derived data.
For example, input parameters for hydrologic models (such
as those for non-point source pollutant prediction) might
require elevation and slope values that are frequently
obtained directly from a DEM. A modeler might refine
model inputs based on the calculated uncertainty of these

parameters, and thus be better suited to understand the uncer-
tainty in the output of their models. The methodology can
be applied to investigate relationships between terrain and
uncertainty in elevation and derived parameter. Subsequent
research could also apply the methodology to investigate the
scaling of uncertainty by evaluating impacts of DEM error on
elevation and derived parameters at various grid scales.

It is the responsibility of the DEM user to determine
whether uncertainty in the DEM will affect results from
specific analyses that utilize data derived from a particular
DEM. Use of the demonstrated methodology may result in
a more veridical use of DEM data and reporting of results
derived from their use. Random DEM errors that result in
uncertainty may have little effect on data derived from
DEMs and decisions based on DEM analyses; however, it is
appropriate to make this judgment only after a thorough
evaluation. This research provides tools to assist in such
an evaluation.
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