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[1] In this study a deterministic approach is applied to estimate low-streamflow series and
statistics at a watershed scale. The kinematic wave hillslope storage (kw) and the hillslope
storage Boussinesq (hsB) models are applied in conjunction with a simple conceptual
framework to a small steep headwater catchment that is part of the Maimai watersheds in
New Zealand. The models are compared on the basis of their ability to reproduce base
flow series and low-streamflow statistics. Variations in the number of hillslope partitions
and the impact of homogeneous and variable model parameters across hillslopes are
explored. Our results confirm findings from previous studies that have indicated that for
steep hillslopes like those at Maimai the kw and hsB models produce similar results. More
partitioning and variable parameters across the watershed can better capture
hydrogeologic heterogeneity, resulting in improved model performance.
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1. Introduction

[2] Allowable pollutant discharge concentrations are typ-
ically based on critical low-streamflow conditions specified
by low-flow statistics [Vogel and Fennessey, 1995]. This
includes the determination of Total Maximum Daily Loads
for the National Pollution Discharge Elimination System
(NPDES) program as defined in the Clean Water Act [Vogel
and Fennessey, 1995; Metcalf and Eddy Inc., 1991]. Low-
flow statistics are also needed in water supply and irrigation
planning, the determination of minimum downstream release
requirements from hydropower, and the design of cooling
plants and other facilities. In the United States, the most
widely used indices of low flow are based on 7-day and
30-day annual minimum flow series, such as the 30-day,
2-year low flow. Parameters such as precipitation, stream-
flow, soil moisture, groundwater levels, moisture content in
the air, and other climatic and hydrological variables have
been used to characterize regional droughts, depending on
the problem to be solved [Shin and Salas, 2000; Eltahir,
1992; Frick et al., 1990; Clausen and Pearson, 1995; Kroll
et al., 2004]. For this study, of interest is the ability of a
deterministic model to reproduce base flow series as well as
the annual minimum 30-day streamflows.
[3] Low streamflows are typically due to a lack of precip-

itation (or immobile precipitation such as snow) and/or high
evaporative losses. During these events, streamflow consists
primarily of groundwater discharge [Brutsaert and Nieber,
1977; Kroll et al., 2004], where this discharge recedes over
time. Determining streamflow recession characteristics is
complex because of the high variability encountered in
recession behavior, both within and between catchments
[Tallaksen, 1995]. While recession parameters are often

estimated by employing historical records, major problems
arise in locations where no or reduced records of streamflow
data are available. Though several methods have been
developed and applied to estimate low-streamflow statistics
at ungauged or partially gauged sites, such as regional
regression and base flow correlation [Stedinger and Thomas,
1985; Kroll et al., 2004; Zhang and Kroll, 2007a, 2007b],
these methods do not provide any information about reces-
sion characteristics, and therefore cannot be used to model
streamflow hydrographs. Despite our limited knowledge of
what goes on underground [Beven, 2001], the modeling of
low-flow characteristics could potentially be better simulated
using physical groundwater flow models that can better
adjust to changing land use and climatic patterns, and
varying hydrogeology experienced in real watersheds.
Low-flow conditions also represent an ideal scenario to
calibrate groundwater submodels in more complex rainfall-
runoff models.
[4] Groundwater models vary greatly in complexity as

well as in data and computational needs. At one end of the
spectrum are models based on a linear reservoir, where
groundwater characteristics across a watershed are integrated
into a single parameter without any consideration of the
heterogeneity of the hydrologic processes involved. A linear
reservoir means that groundwater discharge is modeled as a
linear function of storage, resulting in an exponential decay
of discharge with time. Models such as HEC-1 [Feldman,
1995] (note that HEC-1 is now called HEC-HMS) and
GWLF [Haith et al., 1992] are based on a linear reservoir
approach to model groundwater. Another common technique
is to assume two or more linear reservoirs to account for
slower and quicker groundwater contributions, such as in
SAC-SMA [Burnash, 1995], UBC [Quick, 1995], Tank
[Sugawara, 1995], and HBV [Bergstrom, 1995]. These
techniques, which simplify the complex heterogeneous
nature of hydrogeology, are often found in rainfall-runoff
models where base flow is of minimal interest. At the other
end of the spectrum are fully distributed, three-dimensional
models, such as MODFLOW [McDonald and Harbaugh,
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1988] or FEMWATER [Yeh, 1987]. These models are com-
putationally intensive, requiring extensive data to describe
the heterogeneous hydrogeologic characteristics in a region.
Of interest is the development of a model that is somewhere
in between these two extremes, where data needs are
minimal, yet the model characterizes some of the heteroge-
neity of hydrogeologic processes in the watershed.
[5] This paper describes the application of a deterministic

approach to simulate low streamflows at a watershed scale.
Our approach is based on watershed partitioning into hill-
slopes and applying the kinematic hillslope storage (kw)
[Fan and Bras, 1998; Troch et al., 2002] and the hillslope
storage Boussinesq (hsB) [Troch et al., 2003] models.
Analytical and numerical solutions to the kw and hsB
models have been studied and reported in the literature. We
selected hillslope storage–based models because they are
physics based, are simpler than three-dimensional models,
have been shown to capture the general hydrologic storage
and outflow response of hillslopes with different configu-
rations and recharge scenarios, and are generally in good
agreement with the three-dimensional Richards equation
[Paniconi et al., 2003]. However, an analysis of previous
applications of hillslope storage–based models reveals
many potential limitations and questions. To begin with,
applications of the kw and hsB models have been typically
on synthetic hillslopes of well-defined geometry and slope
profile [Troch et al., 2002, 2003; Hilberts et al., 2004]. In
addition, only the kw model has been applied at a watershed
scale, and this application required many limiting assump-
tions [Fan and Bras, 1998]. Troch et al. [2003] show how
results from the kw model differ from those of the hsB
model for convergent hillslopes, and that these differences
become insignificant for steep, divergent, or fast draining
hillslopes. Of interest here is to what extent these hillslope
differences impact streamflow discharge simulation at a
watershed scale. Also, there are currently no examples of
application of the hsB model at a watershed scale. Here we
compare the kw and hsB models at a watershed scale to
simulate base flow dynamics at Maimai catchment M8 on
the southern island of New Zealand. Our primary objectives
are to (1) develop a model framework, (2) examine how
model performance changes as the range of data employed
for model calibration varies, and (3) analyze how the model
calibration process evolves to better fit the observed stream-

flow data, given the use of kw and hsB models, varying
degrees of watershed partitioning into hillslopes, and the use
of uniform versus variable parameters across the study area.

2. Kinematic Hillslope Storage and the Hillslope
Storage Boussinesq Models

[6] Partially saturated hillslope subsurface drainage can be
described by the Richards equation [Brutsaert and El-Kadi,
1984]. Since the resulting solutions of this equation cannot
easily be parameterized, a hydraulic approach is often taken
[Brutsaert, 1994]. Assuming negligible evapotranspiration
and capillary effect, Boussinesq derived an expression for
one-dimensional flow from an unconfined sloping aquifer
[Childs, 1971]. Combining this with the continuity equation
one obtains the Boussinesq equation:

@h
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f
cos ið Þ @

@x
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where h = h(x,t) is the elevation of the groundwater table
measured orthogonally to an impermeable bed with slope i,
f is the drainable porosity, k is the hydraulic conductivity,
and N represents the rainfall recharge to the groundwater
table. Equation (1) is based on the assumption that k, f, and i
are constant, and can be applied to estimate subsurface flow
along a unit-width hillslope (Figure 1).
[7] Equation (1) is limited to one-dimensional ground-

water flow, and therefore does not account for the three-
dimensional characteristics of the aquifer. In addition, when
dealing with complex hillslopes it does not capture the
effect of hillslope geometry, which may be one of the most
important factors that control subsurface flow [Troch et al.,
2002, 2003; Hilberts et al., 2004]. Fan and Bras [1998]
introduced a new approach based on using a soil moisture
storage capacity function to incorporate topographic and
geometric aspects that control flow processes at a hillslope
scale. By introducing the soil moisture storage capacity
function, Sc(x), which defines the thickness of the pore
space along the hillslope, Fan and Bras [1998] presented a
method to simplify the three-dimensional soil mantle into a
one-dimensional profile. This approach accounts for both
the plan curvature, defined by a hillslope width, w(x), and
profile curvature, defined by an average maximum soil
depth, dm(x):

Sc xð Þ ¼ w xð Þdm xð Þf ð2Þ

At any time at a given location the storage content S(x,t) �
Sc(x). This formulation assumes that the plan shape and the
profile curvature are the dominant topographic factors that
control flow processes along a hillslope. Fan and Bras
[1998] and Troch et al. [2002] combined a kinematic wave
(kw) approximation of Darcy’s law:

Q ¼ �k
S x; tð Þ

f

@z

@x
ð3Þ

where z is the elevation of the bedrock above a base datum,
with the continuity equation:

@S x; tð Þ
@t

þ @Q

@x
¼ N tð Þw xð Þ ð4Þ

Figure 1. Schematic representation of the cross section of
an aquifer overlying bedrock with constant slope angle i.
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to derive a quasi-linear equation solvable by the method of
characteristics. For a given recharge N(t), and constant
hydraulic conductivity k, they derived the following hillslope
storage equation:

a xð Þ @S x; tð Þ
@x

þ @S x; tð Þ
@t

¼ c x; Sð Þ; ð5Þ

where a(x) = �kz0 xð Þ
f
,

c x; Sð Þ ¼ N tð Þw xð Þ þ kz00 xð Þ
f

S x; tð Þ;

and z0(x) and z00(x) are first and second derivatives of the
bedrock profile curvature function z(x), respectively. To
describe the bedrock profile curvature Fan and Bras [1998]
adopted a second-order polynomial function, while in this
study we follow the method of Troch et al. [2002] who used a
power function from Stefano et al. [2000] (as cited by Troch
et al. [2002]) that has the form:

z xð Þ ¼ E þ H
x

L

� �n

þ ey2 ð6Þ

where E is a reference datum (equals zero at the outlet), H is
the elevation above the datum of the bedrock along the
hillslope, L is the slope length, n defines the profile curvature,
e accounts for the plan curvature, and y is the distance from
the slope center perpendicular to the x axis. For n > 1 the
profile is concave, for n < 1 convex, and for n = 1 the profile is
linear. For simplicity in this study e is always set to zero,
meaning that the hillslope is not curved in the y direction.
This formulation, further referred to as the kinematic wave
hillslope storage model (or simply as the kw model), can be
solved numerically by using equation (5) and discretizing the
storage in time and space.
[8] Because of the kinematic wave approximation the

kinematic model is valid only for moderate to steep slopes.
Troch et al. [2003] expanded the hillslope storage equation
to achieve a more general formulation, which could be
applied to a full range of slopes. By adopting a more general
form of Darcy’s law:

Q ¼ � kS x; tð Þ
f
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the new formulation accounts for diffuse and gravity
drainage, and has the form:

f
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In synthetic hillslopes with homogeneous soil characteris-
tics, equation (8) has been shown to produce results similar
to the three-dimensional Richard’s equation [Paniconi et al.,
2003]. In the present analysis this formulation, referred to
here as the hillslope storage Boussinesq (hsB) model, is
applied and compared to the kw model. The hsB model
becomes a kw approximation under relatively steep
impermeable bed slopes where it is assumed that the rate

of groundwater flow is relatively high. As a consequence,
the flow streamlines in a saturated soil mantle are parallel to
the slope of the impermeable layer and the hydraulic
gradient at any point within the saturated zone is equal to
the bed slope [Wooding and Chapman, 1966; Chapman,
1995; Beven, 1981]. Under these assumptions the second-
order diffusive term in equation (7) can be dropped.
equation (8) can be solved numerically by discretizing the
solution space, using an explicit finite difference approx-
imation, and applying an ordinary differential equation
(ODE) solver in time. This solution can accommodate
different boundary conditions, as well as the temporal and
spatial variability of recharge, hydraulic parameters, and
slope angle.
[9] Here the hydraulic conductivity is assumed to vary as

power function of the storage deficit, defined as the total
storage at the beginning of each time step divided by the
total storage capacity. We follow the power function
approach used by Rupp and Selker [2006] with the form:

k zð Þ ¼ kD z=Dð Þm ð9Þ

were D is the depth of the soil mantle, kD is the saturated
hydraulic conductivity at height z = D, and m is a
(calibrated) constant greater or equal to zero. We substituted
(z/D) with the storage deficit. For the finite difference
discretization we selected the size of the space and time
increments (Dx and Dt, respectively) to preserve the von
Neumann conditional stability bound [Huyakorn and
Pinder, 1983; Wang and Anderson, 1982]:

k cos i
Dt

f 2Dx2
� 0:5 ð10Þ

to ensure stability of the numerical solution. The mixed
boundary conditions (a combination of Dirichlet and
Neumann boundary conditions) are set as S = 0 at the
hillslope outlet and @S/@x = 0 at the upslope boundary.
Though the assumption of S = 0 is unrealistic for
groundwater flow on a hillslope where a seepage face is
expected, this assumption creates difficulty in calculating
discharge at the lower boundary from Darcy’s law [Beven,
1981]. Using a numerical solution and estimating the
discharge based on mass conservation, this assumption has
little impact on estimated flow rates [Beven, 1981]. Initial
soil moisture content across the watershed is set by
calibration.

3. Study Site

[10] The Maimai watersheds were established as research
sites in 1974 by the New Zealand Forest Research Institute,
and are part of the Tawhai State Forest, near Reefton, North
Westland, on the South Island of New Zealand. Maimai has
been the subject of several hillslope and catchment-based
hydrological studies, examining subwatersheds ranging in
size from 1.63 to 280 ha [McGlynn et al., 2002, 2004;
Weiler et al., 2003]. Recently Lyons and Troch [2007]
examined the use of a subsurface flow similarity index,
derived from analytical solutions to a linearized version of
hsB, at a number of Maimai subwatersheds. In this study we
employ the 3.8 ha Maimai catchment M8, a well-studied
headwater catchment with relatively homogeneous hydrologic
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characteristics, and a good (albeit short) record of precipita-
tion, temperature, and streamflow.
[11] Average gross annual precipitation in the study area

is approximately 2600 mm, resulting in 1550 mm of runoff
[Rowe, 1979; Freer et al., 1997; McDonnell, 1990]. Soils
are shallow with an average depth of 60 cm, including a
well developed 17 cm organic soil horizon and a very
friable mineral layer of podsolized, stony subsoil, predom-
inantly of silt loam textures [McGlynn et al., 2002]. Soil
depth is highly variable in M8, and is thus calibrated in our
experiment. The organic humus exhibits a mean total
porosity of 86% by volume, 39% macroporosity, and an
average infiltration rate of 6100 mm/h [McGlynn et al.,
2002; McGlynn, 2002; McDonnell, 1990]. The mineral soils
are very permeable with total porosity of 45% by volume,
average bulk densities of 1.5mg/cm3, and saturated hydraulic
conductivities varying between 10 and 300 mm/h [McGlynn,
2002]. The soils in M8 overlay Old Man Gravels, a less
permeable early Pleistocene well-cemented conglomerate of
clasts of sandstone, granite, and schist in a clay-sand matrix
[McGlynn et al., 2004]. Losses to deep groundwater are
estimated to be 100 mm/a [McGlynn et al., 2002]. This value
divided by the average annual precipitation (100/2600 =
3.8%) was used as a precipitation loss ratio to deep
percolation in this study. Annual interception losses over
the study area average 26% of total precipitation for the
undisturbed mixed evergreen forest found in M8 [Rowe,
1979; McGlynn et al., 2002]. The hillslopes are relatively
short in length (less than 300 m) but steep (34�), and
composed of regular spurs and linear hollows. The com-
bined effect of topography and soil characteristics results in
strongly weathered and leached soils, with high moisture
content (within 10% of saturation for most of the hydrologic
year) and low natural fertility. Runoff production over M8 is
extremely rapid via macropores and groundwater dynamics
that dominate the basin response during storm events
[McDonnell, 1990]. The existence of macropores and pref-
erential flow paths could represent a potential problem for
applying Darcy’s law, which is based on a representative
continuum of the porous media where flow takes place
[Freeze and Cherry, 1979; Snow, 1969]. For the purpose of
the present work, we did not emphasize the impact of
macropores. Our assumption was that under low-streamflow
conditions the impact of existing preferential flow paths is
minimal and can be captured by effective values of model
parameters.

4. Going From Hillslope to Watershed Scale:
A Simple Modeling Framework

[12] Fan and Bras [1998] applied the kw model at a
watershed scale. Some disadvantages with their approach

include the appropriateness of the kinematic solution for
only moderate to steep slopes, and the use of rainfall
directly as recharge, neglecting other processes such as
evapotranspiration and interception. In order to address
some of these limitations, we have accounted for evapo-
transpiration and interception in the watershed. Storm
response by saturation excess runoff accounts for a small
amount of streamflow [Mosley, 1979; Pearce et al., 1986]
and since we are primarily interested in reproducing base
flow series and statistics, we also neglected infiltration
excess surface runoff. To estimate recharge to groundwater
across the watershed and preserve the overall mass balance,
the discharge at the outlet of each hillslope was estimated
for each time step as:

QT ¼ ST�1 � ST þ R� L ð11Þ

Where QT is the discharge, ST-1 is the total (volumetric)
storage at the end of the previous time step, ST is the total
storage at the end of the present time step, R is the total
recharge, and L represents losses to deep percolation.
Recharge is estimated from precipitation (P) after subtract-
ing evapotranspiration (ET), and interception (I):

R ¼ P � ET � I ð12Þ

Values for P and ET were available at an hourly and daily
basis, respectively, where ET was obtained by fitting a sine
curve to average monthly potential evapotranspiration
values estimated as the average of monthly estimates from
five different models [Rowe et al., 1994]. Negative R was
allowed to account for losses in soil moisture in the absence
of rainfall. Model simulations were performed at an hourly
time step. While for larger watersheds it is necessary to
route streamflow contributions from individual hillslopes to
the watershed outlet, in a small watershed such as M8 the
time of concentration is less than model time step and
routing is unnecessary.

5. Model Requirements

5.1. Input Data

[13] Available data for the M8 watershed includes hourly
P, Q, and daily ET for 3 years (January 1986 to December
1988). Table 1 represents the observed and estimated annual
totals for these values, as well as the estimated losses to the
deep groundwater system in each year.

5.2. GIS Preprocessing and Hillslope Delineation

[14] GIS preprocessing was employed to partition the
watershed into hillslopes. Here we followed the empirical
approach using the same methodology described by Fan and
Bras [1998]. Hillslopes were classified as straight, convergent,
or divergent, or a combination of these shapes, on the basis of
the general flow line patterns [Paniconi et al., 2002; Troch et
al., 2002; Fan and Bras, 1998]. Areas with similar hillslope
characteristics were aggregated to form larger hillslopes, and
width function parameters were chosen to preserve the
surface area of the hillslopes. Figures 2a and 2b represent
the Maimai M8 DEM with elevation contour lines and the

Table 1. Observed Annual Totals for P and Q and Annual

Estimates for ET and L

Year
Rainfall
(mm)

Discharge (Q)
(mm)

ET
(mm)

Losses to Regional
Groundwater
System (L)

1986 2190 1285 837 84
1987 2246 1311 837 86
1988 2668 1757 837 103
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hillslopes for 3 and 10 partitions, respectively. Higher ele-
vations exhibit a dark color, while low elevations have a
lighter color. Table 2 presents hillslope parameters.

5.3. Model Parameter Estimation (Calibration)
and Model Comparison

[15] The Shuffled Complex Evolution (SCE) [Duan et
al., 1993] algorithm was applied to calibrate hydraulic
conductivity, soil porosity, soil depth, initial soil moisture
content at the beginning of the simulation period, and
constant m from equation (9). Table 3 represents the ranges
set for each parameter during the calibration procedure.
These ranges were defined on the basis of M8 literature
values and enlarged to allow more flexibility during the
calibration procedure. In addition to the use of the full range
of data for model calibration, we also calibrated the models
using only data lower than the 20th and 50th streamflow
percentiles. This was done to evaluate how restricting the
range of calibration data impacts the model’s ability to
simulate low streamflows.
[16] Model calibration was performed at a daily time step

by minimizing a scaled root-mean-square error

SRMSE ¼ n� 1ð Þ
n

Pn
i¼1

Oi � Sið Þ2

Pn
i¼1

Oi � O
� 	2

2
664

3
775

1
2

ð13Þ

where �O is the mean of the observed values, Oi and Si are
the observed and simulated streamflows at time i, respec-
tively, and n is the number of streamflows. SRMSE repre-
sents the RMSE divided by the standard deviation of the

observed streamflows over the calibration range. For a
calibration stopping criteria we applied a method of func-
tion convergence [Sorooshian and Gupta, 1995]:

SRMSEi�1 � SRMSEið Þ=SRMSEi � ef ð14Þ

where SRMSEi-1 and SRMSEi are the best SRMSE values
from the previous and current iteration steps, respectively,
and ef is a defined convergence criterion. During our model
calibration we set ef equal to 10�4.
[17] SRMSE was also applied to evaluate model perfor-

mance at lower ranges of streamflow data. The scaling of
RMSE reduces the impact of different ranges of streamflow
data used during model calibration and produces a better
comparison of the results from different simulations. To
compare models performance over the full streamflow
hydrograph for the different simulations, the Nash-Sutcliffe
efficiency coefficient [Nash and Sutcliffe, 1970] defined as:

Reff ¼ 1�

Pn
i¼1

Oi � Sið Þ2

Pn
i¼1

Oi � O
� 	2 ð15Þ

was applied. While we focus on the simulation of stream-
flows at lower ranges, it is important to know how the
models capture the full hydrograph. Reff measures the
proportion of variance in the observed data accounted for by
the model and is a function of the SRMSE. We use Reff in
the next section to compare our results with those of Seibert
and McDonnell [2002] who employed a three-box model to
M8. We also compare the observed and simulated annual

Figure 2. Maimai M8 catchment DEM with three and ten hillslopes partitions. Dark colors represent
areas with higher elevations, and light colors represent areas with lower elevations.

Table 2. Fixed Hillslope Parameters for One, Three, and Ten Partitions of the M8 Watershed

Hillslope Single Partition Basin

Three Partition Basin Ten Partition Basin

1 2 3 1 2 3 4 5 6 7 8 9 10

Slope (deg) 34 34 34 34 26 34 33 34 34 29 37 35 35 34
Length (m) 216 93 73 135 30 119 77 147 71 19 32 78 109 93
Area (ha) 3.8 0.57 1.00 2.23 0.04 0.52 0.26 1.01 0.49 0.09 0.10 0.39 0.33 0.57
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minimum 30-day statistics (Q30), which is often employed
in low-streamflow analyses.

6. Results and Discussion

6.1. Comparing Kinematic and hsB Models Against
the Three-Box Model

[18] An initial analysis compares our hillslope based
approach to a model previously applied to M8, the three-
box model developed by Seibert and McDonnell [2002].
The three-box model is a site specific model that combines
three reservoirs representing the riparian, hollow, and hill-
slope zones across the M8 catchment. The three-box model
includes a total of 16 parameters when calibrated using
runoff data and groundwater level series (hard data as
referred to by the authors). This number of parameters
increases when additional soft data are used during model
calibration with the objective of guiding the parameter
search process and improving the model’s ability to describe
certain characteristics inside each box. The reason for this
comparison is to determine how our approach of watershed
partitioning into hillslopes compares to a model based on a
series of linear reservoirs. Seibert and McDonnell simulated
daily streamflow discharge for the M8 catchment over a
5-month period between August and December 1987.
Though this period is relatively short, we applied both the
kw and hsB models for the same period with M8 described
as one hillslope (five parameters), partitioned into three
hillslopes with uniform parameters (5 parameters), and
partitioned into three hillslopes with variable parameters
(13 parameters). Table 4 shows the comparison between Reff

for the four models. On the basis of Reff (which was
employed by Seibert and McDonnell), our 1 and three
hillslope models with five uniform parameters produce
Reff = 0.94 and Reff = 0.95, respectively, and perform as
well as the 16 parameter three-box model (Reff = 0.93). The
kw and hsB models with three hillslope partition and
variable parameters exhibit an even higher performance in
simulating daily streamflows with Reff = 0.98 and 0.97,
respectively.
[19] In Figure 3 the hydrographs between the modeled

and observed streamflows for the period between August

and December 1987 are presented. In general the model
with one hillslope overestimates the peak streamflows
during larger storm events when compared with the three
hillslope model, indicating that partitioning allows model
flexibility that resulted in better simulation of streamflows
over all ranges. Both models seem to underestimate low-
flow recession events.
[20] As our interest is low-streamflow simulation, an

analysis of recession slope curves [Rupp and Selker,
2006] is warranted. Brutsaert and Nieber [1977] presented
three different analytical solutions to the Boussinesq equa-
tion for unconfined flow in a homogeneous horizontal
aquifer with a uniform hydraulic conductivity. The two
exact solutions [Boussinesq, 1904; Polubarinova-Kochina,
1962] and one approximation by linearization [Boussinesq,
1903], can be presented in following form:

� dQ

dt
¼ aQb; ð16Þ

were a is a function of physical and hydraulic properties of
the aquifer and b is a constant. Plotting log (-dQ/dt) versus
log (Q), the above recession slope curve results in straight
line with slope b and intercept log(a). For the linear solution
b = 1 [Vogel and Kroll, 1992], while for the exact solutions
b = 3 for early times and b = 1.5 for later times [Brutsaert
and Nieber, 1977].
[21] Rupp and Selker [2006] extended this analysis to

address issues with a sloping aquifer and a varying hydrau-
lic conductivity with depth. For their analysis Rupp and
Selker [2006] applied numerical solutions to the full non-
linear Boussinesq equation and used a power law in
equation (9) to express vertical variations of the hydraulic
conductivity across the soil mantle. For a sloping aquifer,
the analytical solutions to the linearized one-dimensional
Boussinesq equation is inappropriate for recession slope
analysis, while new empirically derived solutions appears to
be more [Rupp and Selker, 2006]. Figure 4 shows the
recession slope curve for M8 streamflow data for the same
period as in the work by Seibert and McDonnell [2002].
The analysis follows the Brutsaert and Nieber [1977]
method assuming a 3-day moving average [Kroll et al.,
2004]. The recession slope analysis estimated b = 1.44,
which is within the range for most studies with sloping
aquifers [Rupp and Selker, 2006] and consistent with a
nonlinear Boussinesq solution [Brutsaert and Nieber,
1977].

6.2. Kinematic Versus hsB Models With a Single
Hillslope

[22] Assuming that a hillslope-based method represents a
valid alternative to simulating low streamflows, our first

Table 3. Upper and Lower Limits for Calibrated Parameters

Parameter Name Lower Limit Upper Limit

Hydraulic conductivity (m/h) 0.0001 10.0
Soil porosity 0.2 0.9
Soil depth (m) 0.07 2.0
Initial soil moisture 0.05 1.0
Power exponent 0.0 15.0

Table 4. Comparison of Model Performance for Daily Streamflows for August Through December 1987

Seibert and
McDonnell [2002]:
Three-Box Model

One Hillslope Partition

Three Hillslope
Partition: Uniform

Parameters

Three Hillslope
Partition: Variable

Parameters

Kinematic
Model

hsB
Model

Kinematic
Model

hsB
Model

Kinematic
Model

hsB
Model

Nash-Sutcliffe coefficient 0.93 0.94 0.94 0.95 0.95 0.98 0.97
Total number of calibration parameters 16 5 5 5 5 13 13
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comparison is between the kw and the hsB models with M8
represented as a single hillslope. During our model simu-
lations the kw and hsB models were run on an hourly time
step while calibrated to fit daily streamflow data. Initially,
we calibrated our models to fit the full range of observed
streamflow data, and results are presented in Table 5. The
kw and hsB models have similar performance when
describing observed data over the full range of streamflow.
When calculating the performance metrics on a daily time
scale as opposed to an hourly time scale, both models
improve drastically as there is a smoothing of the model
response over a longer time scale.
[23] For the estimation of low-streamflow statistics,

though, we are not interested in predicting the full range
of observations but instead only the smaller values. To
address this issue, SRMSE and Reff were also calculated
for the lowest 50th and 20th percentile of the observations

for the models calibrated using the full range of data. These
results are also presented in Table 5, and show an enormous
drop in model performance for both models. This result
raises two important issues. The first is that one needs to be
very sensitive to model objectives, since if the range of data
employed for model calibration has a different magnitude
than the data employed for model performance, results may
be poor. The second issue is the use of Reff for model
performance, which can become inflated when a small
number of large values are present in the data set, as is
common with streamflow data. For simplicity and for the
remainder of this paper, we will use daily streamflow data
and Reff to represent model performance over the full range
of data, and SRMSE to compare model performance over
lower-streamflow ranges. We choose Reff for the full range
because it allows comparison with results from previous
studies at M8 [Seibert and McDonnell, 2002], and selected
SRMSE for evaluating model performance at lower ranges
because with reduced amounts of data at lower ranges Reff

results in low values which are difficult to compare.

Figure 3. Comparison between observed and modeled daily flow hydrographs for M8: August–
December 1987.

Figure 4. Recession slope plot for daily streamflow data:
August–December 1987.

Table 5. Scaled Root-Mean-Square Error and Nash-Sutcliffe

Efficiency for the kw and hsB Models Calibrated Using the Full

Range of Dataa

Data Range Applied for the Performance Metric

Full Range Lower 50% Lower 20%

kw hsB kw hsB kw hsB

Reff daily 0.88 0.89 0 0 0 0
SRMSE hourly 0.8 0.8 3.8 4.1 6.5 7.2
SRMSE daily 0.4 0.3 2.2 2.0 4.0 3.7

aPerformance metrics was calculated for the full range of data, and the
lower 50 and 20%. Abbreviations are as follows: SRMSE, scaled root-
mean-square error; Reff, Nash-Sutcliffe efficiency.
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[24] On the basis of these results, an experiment was
performed to analyze the impact of the calibration range on
model performance. Both models were calibrated using the
lowest 20th, 50th, 70th, and 90th percentiles of streamflow,
and over the full range of observed daily streamflow data,
and performance statistics were calculated for daily esti-
mates employing only data below the 20th, 50th, and 100th
percentiles. Calibration on a lower percentile means that
while the model is run to simulate the full range of data, the
objective function for the calibration process is calculated
using only observed data below the percentile threshold and
their corresponding (same date and time) simulated data.
Lower percentiles for both calibration and performance
statistics were set using observed data. Figure 5a shows
the SRMSE results for the lower 20 and 50% of streamflow
data. The performance between the kw and hsB models is
similar across all calibration ranges. As expected, models
calibrated using the lower 20% of data show the best SRMSE
for the lower 20% range of data, while models calibrated
using the lower 50% of data show the best SRMSE for the
lower 50% range of data. In general SRMSE increases as the
calibration range increases reflecting model difficulty in
simulating a lower range while trying to fit to higher stream-
flow values. Calibration using the lowest 50th percentile of
the data as opposed to the full range has the impact of
removing the largest streamflow observations from the cal-
ibration and results in a large drop in SRMSE, again
indicating an adverse impact of calibrating with large stream-
flow values when one is interested in reproducing low
streamflows. Figure 5b shows the Reff values over all
streamflows when models are calibrated over reduced
ranges of streamflow. Again the kw and hsB models are
similar in performance. Reff values over the entire flow
hydrograph increase with an increase in the calibration
range. When the calibration range is reduced, the ability
of the models to reproduce the entire hydrograph is also
reduced.
[25] In Figure 6 we present how the kw and hsB models

predict the 30-day annual minimum streamflow (Q30) as the
ratio between simulated divided by observed Q30. The kw
and hsB models perform similarly. All models perform well
in predicting Q30 for the relatively wet year (1988) than for
the relatively dry year (1987). Q30 for 1988 is 0.98 mm/d
which is the 41st percentile of streamflow, while Q30 for
1987 is 0.32 mm/d and is the 17th percentile of streamflow.

For the dry year all models overestimate Q30, indicating a
drop in model performance for extremely low streamflows.
Models calibrated with the lower 20 and 50% of streamflow
produce the best simulated values. Results (not presented)
also showed that all models systematically overestimate Q7.
Q7 values are very small, equivalent to the 1st percentile of
streamflow. In addition M8 has a relatively short streamflow
record length and thus has limited data to calibrate to such
small values. Under these circumstances the simulation of
Q7 is difficult, and for these reasons we decided not to
include the results in this paper.
[26] There are two important lessons from this initial

analysis. The first is that because of relatively steep average
slopes in M8 the results for both the kw and hsB models are
similar when M8 is modeled as a single hillslope. This can
be explained not only by the slope characteristic but also
from the complex shape of the overall hillslope, which is
more like a combination of hillslopes of multiple shapes.
The second lesson is that the data employed for calibration
greatly impacts model performance. If one is interested in
simulating streamflow over a narrow range of discharge
(such as in reproducing low streamflows), the data employed
to calibrate the model should also be similar to that range.
The problem is that in doing so, you may considerably
reduce the amount of data available for calibration, as well

Figure 5. SRMSE and Reff with one hillslope kw and hsB models calibrated using varying ranges of
streamflow.

Figure 6. Simulated divided by observed Q30 with one
hillslope kw and hsB models calibrated using varying
ranges of streamflow.
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as impact how your models reproduce other summary
statistics.

6.3. Modeling With Single Versus Multiple Hillslope
Watershed Partitions With Uniform Parameters

[27] In this section we present the model results with M8
partitioned into multiple hillslopes, but the calibrated
parameters are assumed to be uniform (homogeneous)
across hillslopes over the entire watershed. This analysis
allows us to investigate the impact of changing hillslope
configurations as opposed to changing hillslope parameters.
For this and all subsequent analyses, we will calibrate and
calculate performance statistics (SRMSE) using the same
data range; that is, performance statistics for the lowest 20
and 50% of the data are calculated from simulations
calibrated with data below the 20th and 50th percentiles,
respectively.
[28] In addition we provide Reff over the full range of

streamflow for models calibrated over a lower range to gain
a sense of how these models simulate the entire hydrograph
when trying to fit streamflows at a lower range, and thus
these results can be compared to results in section 6.2.
Figure 7a presents the SRMSE for the kw and hsB models
with uniform parameters (nonfilled symbols). The results
indicate that models with multiple hillslopes with uniform
parameters do not perform better than one hillslope models
when simulating data for lower ranges. This may be due to
employing uniform model parameters across hillslopes,
which may limit the flexibility of simulations with multiple
hillslopes.
[29] For the Reff values in Figure 7b all models calibrated

using the lower 20% of data perform similarly in describing
the full hydrograph. Interestingly the ten hillslope models

with uniform parameters calibrated with the lower 50% of
streamflow does much better over the full range, while
performing poorly for simulating the lower range of stream-
flow. This indicates this model provides more flexibility in
describing hydrologic process across the entire range of
streamflow.
[30] Estimates of Q30 for each year are presented in

Figure 8 and show a mixed behavior. In general all models
simulate Q30 well for the wet year (1988), but perform
poorly for the relatively dry year (1987). As with SRMSE,
Q30 shows no advantage for hillslope partitioning with
uniform parameters when compared to one hillslope models.
[31] Advantages associated with multiple hillslopes include

a better representation of surface topography and flow
dynamics, as well as better representations of slope varia-
tions across the watershed. Slopes in M8 are in general steep
but short in length, and soil properties such as the hydraulic
conductivity are also highly variable [McDonnell, 1990];
under these circumstances multiple hillslopes are warranted
but uniform parameters may restrict model flexibility to
adjust to varying watershed properties.

6.4. Variable Versus Uniform Model Parameters
for Multiple Hillslopes

[32] To test the impact of variable versus uniform param-
eters on model performance, model parameters for each
hillslope were allowed to vary. We used Figures 7a, 7b, and
8 to present the resulting SRMSE, Reff, and Q30, respec-
tively, for the models with variable and uniform parameters.
[33] Figure 7a shows that hillslope partitioning associated

with variable parameters leads to better model performance
at both ranges, though this improvement is small for some
situations. When using variable parameters, further parti-
tioning from three to ten hillslopes does not produce
different results, suggesting that the three hillslope models
associated with variable parameters have enough flexibility
to perform as well as models with more hillslopes. This
overall improvement with partitioning and variable param-
eters is also reflected in Reff over the entire streamflow
hydrograph (Figure 7b). Variable parameter models and the
ten hillslope uniform parameter model calibrated using the
lower 50% of streamflow exhibit a much better performance
over the full range of streamflow. Models using variable
parameters better simulate the entire streamflow hydrograph

Figure 7. SRMSE and Reff with kw and hsB models
calibrated using uniform and variable parameters and
varying hillslopes and ranges of streamflow.

Figure 8. Simulated divided by observed Q30 with kw and
hsB models calibrated using uniform and variable para-
meters and varying hillslopes and ranges of streamflow.
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while still having the lowest SRMSE over the 50% calibra-
tion range. Results over the 20% range, which show little
difference between all models, may be affected by the
limited data available for model calibration.
[34] In Figure 8 models with variable parameters do

better in simulating Q30 for the wet year (1988), while
models with uniform parameters do better for the dry year
(1987). As stated before, since Q30 for the dry year
represents a very low streamflow percentile compared with
the upper limits of the calibration range, the models show a
reduced ability to simulate the lower range of streamflow
data.
[35] The overall lower SRMSE combined with relatively

high Reff values and better Q30 for simulations with varying
parameters suggest that even for a relatively small and
homogeneous watershed such as M8, having multiple
partitions and varying watershed characteristics allows hill-
slope models to better simulate lower streamflow values.
[36] Bogaart and Troch [2004] analyzed results from a

simulated watershed and concluded that the composite
hydrograph of a partitioned watershed is more similar to
that of a uniform hillslope, because of the compensating
effect between convergent and divergent hillslopes. With
more hillslopes this is more likely to occur. Also, they
related shallow base flow to drainage of relatively wet
upslope areas, which are often connected to convergent
hillslopes. The implication of this analysis is (1) the kw
model may perform poorly in watersheds with predomi-
nantly convergent hillslopes; (2) watershed partitioning with
multiple hillslopes of varying shape will improve the kw
model because of the compensating effect between conver-
gent and divergent hillslopes in the composite hydrograph;
(3) the hsB model should produce better results for low
streamflows in a predominantly convergent watershed; and
(4) where the impact of diffuse drainage is insignificant, the
performance of both the kw and hsB models should be
similar. Though the present work confirms some of these
conclusions, our results are limited because of the small
amount of data available for this study.

6.5. Model Parameter Behavior:
Hydraulic Conductivity

[37] In this final section we examine how changes in
calibrated hydraulic conductivity (k) vary as the number of

hillslope partitions change, as well as having uniform or
variable parameters when multiple hillslopes are employed.
While other model parameters are also calibrated, k is
particularly of interest because it not only has a large impact
on hillslope drainage, but also has been estimated by other
researchers who have worked at this study site. Because k is
modeled to vary with depth (equation (9)), calibrated values
represent k for full saturation at the surface. These values
are most representative during larger storm events, and less
representative during low streamflows when the groundwa-
ter table is not at the surface. For this reason we choose
instead to analyze average k values which are obtained
through integration of the power function over the minimum
and maximum values of depth. Figure 9 presents the
average hydraulic conductivity in logarithmic space
(Log kave) for models calibrated using the lower 20% of
data. The results include kw and hsB models with one,
three, and ten hillslopes, and uniform and variable param-
eters. The kw and hsB models with uniform parameters
show similar Log kave values with or without partitioning.
When M8 is modeled with more hillslopes with variable
parameters, we observe a wider range of hydraulic conduc-
tivity values, indicating that the models fit observed stream-
flows by varying the contributions from different hillslopes.
The variation among the kave values is within one degree of
magnitude for models with uniform parameters, and most
values are between two to three degrees of magnitude for
models with variable parameters. Most of these variations
are within the range reported in previous studies involving
M8 which estimated saturated hydraulic conductivity values
between 10 and 300 mm/h at this watershed [McGlynn,
2002]. Models with ten hillslopes and variable parameters
show the largest range of parameter variation.
[38] When comparing Log kave values between models

with uniform parameters but calibrated with varying ranges
of data, we observe (as shown in Figure 10) that the values
increase as the calibration range becomes larger. Larger
kave values help the models to simulate larger storm events.
Models with ten hillslope partitions and calibrated with the
lower 50% of streamflows show values that are similar to
models calibrated with the full range. We have seen this
before in Figure 7b when these models showed a Reff value

Figure 9. Average hydraulic conductivity (Kave) for kw
and hsB models calibrated using the lower 20% of
streamflow data.

Figure 10. Average hydraulic conductivity (Kave) for kw
and hsB models with uniform parameters.
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similar to models with variable parameters. This may be an
indication that the effective hydraulic conductivity is in fact
higher than the values calibrated with models with less
partitioning. A further explanation may be that with ten
hillslopes partitioning, combined with the larger storms
below the 50th percentile, the model have enough flexibility
to simulate relatively well over the full range. The param-
eter range applied during model calibration using a lower
percent of streamflows is important because in our experi-
ence if the values are very far off from the conceptually
realistic [Sorooshian et al., 1983] range a model may
perform well at the lower range of data but will do very
poorly to simulate the entire hydrograph.

7. Summary and Conclusions

[39] Most studies in the literature related to hillslope
storage model applications are based on evaluating model
performance on idealized hillslopes and simulated water-
sheds. Watersheds in the real world, however, often present
more complex hillslope and hydrogeologic characteristics
making the modeling of these processes a major challenge
in hydrological research [Montanari and Uhlenbrook, 2004].
One approach to accommodate heterogeneity and varying
topographic characteristics that determine hydrological
response across a watershed is to partition the watershed
into smaller hillslopes. In practical terms the tradeoff
between the number of hillslopes, degree of hillslope sim-
plicity (or complexity), number of parameters and respective
ranges for calibration, available data, and required compu-
tational time continues to be an issue in watershed modeling.
[40] For the present analysis the kinematic wave hillslope

storage (kw) and the hillslope storage Boussinesq (hsB)
models are applied to the Maimai M8 catchment, a rela-
tively small, homogeneous, steep, well studied watershed in
New Zealand. A model framework is developed with M8
partitioned into one, three, and ten hillslopes and the models
applied using uniform and variable parameters across the
watershed. Our results indicate the following:
[41] 1. When simulating the entire streamflow hydrograph

over a limited time period, the five-parameter one hillslope
model and the five-parameter three hillslope model with
uniform parameters performed as well as Seibert and
McDonnell’s [2002] 16-parameter three-box model. The
13-parameter three hillslope model with variable parameters
performed even better than these models.
[42] 2. In general, the kw and hsB models performed

similarly. This result was expected since the kw and hsB
models should perform similarly under steep hillslopes such
as those found at Maimai, where gravity is a major driver
for groundwater flow.
[43] 3. When the watershed is modeled with uniform

parameters, increasing the number of hillslopes from 1 to
multiple produced model improvements in simulating the
entire streamflow hydrograph. However, no significant
improvements were observed in terms of simulating the
lower quantiles. Also, going from three to ten hillslope
partitioning did not lead to different results. This indicates
that for this watershed, even though hydrogeologic proper-
ties are somewhat homogeneous, it is important to allow for
variations in topography across the watershed.
[44] 4. When variable parameters are allowed, the com-

pensating effect of heterogeneous divergent and convergent

hillslopes allowed flexibility for all models to perform
better. The increase in the number of hillslopes with variable
parameters improved model simulations for both the lower
20 and 50% of streamflow. However, variable parameter
models showed similar performance as the ten hillslope
uniform parameter model when simulating the streamflow
hydrograph for the models calibrated using the lower 50%
of streamflow.
[45] 5. Model predictions of the 30-day annual minimum

flow, Q30, were good for a relatively wet year, while all
models overestimated Q30 for a dry year, suggesting that it
is important that the streamflow range for calibration be
similar to the streamflow values being predicted, as the
calibration process is often driven by the largest events.
[46] 6. The hydraulic conductivity, k, for the kw and hsB

models with uniform parameters is similar for models
calibrated over the lower 20% of streamflows, but it
increases as the calibration range becomes larger. For the
models with variable parameters the range of k values
increases with the number of hillslope partitions. This
indicates that the models with multiple hillslopes fit stream-
flows by developing a combination of fast and slow drain-
ing hillslopes, which may not represent actual hillslope
processes. Soft data such as that employed by Seibert and
McDonnell [2002] might improve the model ability to
describe these hydrologic processes.
[47] The results presented here are somewhat limited, as

we applied the kw and hsB models to a relatively small
watershed with a short record length. Our next steps are to
investigate the hsB and kw models in a much larger and
more heterogeneous watershed, with some shallower sloped
hillslopes and a longer record length. This will allow us to
better understand the tradeoffs between hillslope-based
model complexity and performance, and the ability of these
models to predict low-streamflow characteristics in larger
watersheds.

[48] Acknowledgments. The authors would like to acknowledge the
U.S. Environmental Protection Agency’s Science to Achieve Results STAR
Program grant R825888, the U.S. Geological Survey State Water Resources
Research Institute WRRI Program grant 2003NY33G, and the USDA
Cooperative State Research, Education, and Extension Service CSREES
Program grant NYR-2005-03897, which provided financial assistance to
this research. This research has not been subjected to any EPA, USGS, or
USDA review and therefore does not necessarily reflect the views of those
agencies, and no official endorsement should be inferred. The writers would
also like to thank Ted Endreny, Claudio Paniconi, Arno Hilberts, and three
anonymous reviewers who provided useful comments that improved this
manuscript. In addition, the authors would like to thank Jeff McDonnell,
Fabrizio Fenicia, Ross Woods, and the New Zealand Forest Research
Institute for providing the data for this study.

References
Bergstrom, S. (1995), The HBV model, in Computer Models of Watershed
Hydrology, edited by V. P. Singh, pp. 443–476, Water Resour. Publ.,
Highlands Ranch, Colo.

Beven, K. J. (1981), Kinematic subsurface stormflow, Water Resour. Res.,
17(5), 1419–1424.

Beven, K. J. (2001), Towards an alternative blueprint for a physically
based digitally simulated hydrologic response modelling system, Hydrol.
Process., 6, 189–206.

Bogaart, P. W., and P. A. Troch (2004), On the use of soil-landscape
evolution modelling in understanding the hillslope hydrological response,
in Hydrology: Science and Practice for the 21st Century, vol. 1, pp. 251–
259, Br. Hydrol. Soc., London.
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