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Abstract
Low streamflow statistic estimators at ungauged river sites generally have large errors and uncer-

tainties. This can be due to many reasons, including lack of data, complex hydrologic processes,

and the inadequate or improper characterization of watershed hydrogeology. One potential solu-

tion is to take a small number of streamflow measurements at an ungauged site to either estimate

hydrogeologic indices or transfer information from a nearby site using concurrent streamflow

measurements. An analysis of four low streamflow estimation techniques, regional regression,

regional plus hydrogeologic indices, baseflow correlation, and scaling, was performed within the

Apalachicola–Chattahoochee–Flint watershed, a U.S. Geological Survey WaterSMART region in

the south‐eastern United States. The latter three methods employ a nominal number of spot

measurements at the ungauged site to improve low streamflow estimation. Results indicate that

baseflow correlation and scaling methods, which transfer information from a donor site, can

produce improved low streamflow estimators when spot measurements are available. Estimation

of hydrogeologic indices from spot measurements improves regional regression models, with the

baseflow recession constant having more explanatory power than the aquifer time constant, but

these models are generally outperformed by baseflow correlation and scaling.
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1 | INTRODUCTION

Low streamflow estimates are required for a variety of water quality and

water quantity management purposes. Low streamflow estimates are

used to assist water managers in planning for low flow conditions for

river ecology and flowmanagement, wastewater treatment plants, water

withdrawal limitations and discharge permitting, and hydropower opera-

tions (Smakhtin, 2001). Often, these estimates are represented by low

streamflow statistics such as 7Q10, the annual average 7‐day minimum

flow that is not exceeded on average once every 10 years (Riggs,

1980), or a quantile from an annual or monthly flow duration curve, such

as the Q95, the daily average streamflow that is exceeded 95% of the

time (Susquehanna River Basin Commission, 2012). The U.S. Geological

Survey (USGS) has over 20,000 gauged locations across the United

States, and one can relatively easily generate low streamflow statistics

from the data provided at these sites. The question addressed here is

how best to estimate low streamflow statistics at streamflow sites where

only a nominal number of streamflow measurements are available.
d. wileyonlinelibr
A number of techniques are used in practice to estimate flow

statistics at ungauged river sites. The simplest techniques are scaling

methods, such as the drainage area ratio method, which transfers flow

statistics from a donor site using drainage area as a scaling factor

(Hirsch, 1979). Hirsch (1979) explored this method in two small basins

in Virginia and found that this method works relatively well if the

donor site has similar hydrologic characteristics, similar low streamflow

drivers and response, and if the low streamflow statistics are strongly

related to drainage area. Because streamflow characteristics are gener-

ally unknown at the ungauged river site and low streamflow drivers

and response are difficult to determine at gauged or ungauged sites,

there can be high degree of uncertainty in drainage area ratio methods

(Hirsch, 1979). A related method when no streamflow data are

available at a site of interest is regional regression (Kroll, Luz, Allen, &

Vogel, 2004; Thomas & Benson, 1970; Vogel & Kroll, 1992). Regional

regression requires a database of geomorphic, geologic, climatic, and

topographic basin characteristics to develop a model (Thomas &

Benson, 1970). Regional regression models often perform poorly
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estimating low flow quantiles (Kroll et al., 2004). Vogel and Kroll

(1992), Kroll et al. (2004), and Eng and Milly (2007) found that there

is often a lack of hydrogeologic information within the watershed

characteristic database that could potentially improve low streamflow

regional regression models.

Another potential method to estimate low streamflow statistics at

an ungauged river site is to develop a rainfall–runoff model (Broda,

Larocque, & Paniconi, 2014; Matonse & Kroll, 2013). Rainfall–runoff

models typically focus on capturing average flow or flood events and

often provide a simplistic representation of groundwater discharge

processes. Such groundwater discharges (baseflow) typically have a

large impact on low streamflow conditions. However, baseflow

processes are complex, and rainfall–runoff models often do not

accurately capture the physical processes and heterogeneous

subsurface characteristics that are important to low streamflow gener-

ation. In addition, rainfall–runoff models often require a large number

of streamflow measurements to calibrate and verify the model.

Another method to estimate low streamflow statistics utilizes flow

duration curves (FDCs) to transfer information from a gauged river site

to an ungauged river site (Archfield et al., 2009; Archfield & Vogel,

2010; Vogel & Fennessey, 1994). Using an FDC at an ungauged site,

a relationship between the exceedance probability and daily

streamflows at a donor site is formed. This technique is called the

quantile‐probability‐probability‐quantile technique (Fennessey, 1994)

and is used to recreate a sequence of daily streamflows at the

ungauged site, from which low streamflow statistics can then be

derived. Although the quantile‐probability‐probability‐quantile method

often works well to create a streamflow record at the ungauged site, it

also requires a technique to create the FDC at the ungauged site

(typically regional regression) and thus suffers from some of the same

problems as regional regression models used to directly estimate low

streamflow statistics. Previous studies have employed these

techniques with the assumption that there are no data available at

the ungauged site (Archfield et al., 2009; Vogel & Fennessey, 1994).

Laaha and Blöschl (2005) examined a number of methods to

improve low flow estimation with short records (SR) ranging from a

few measurements to multiple years of daily streamflow data. Laaha

and Blöschl used a ratio method between low flow measurements at

an ungauged site and a donor site to determine Q95. They found that

their spot gauging technique was a slight improvement over a simple

regional regression technique but was highly dependent on how the

donor site was chosen. Spatial variability of low flow characteristics

and timing of spot measurements caused large uncertainties with the

method, and they suggested that spot measurements are often not

representative of the Q95 low flow. They suggested that the method

could improve if they expanded the number of spot measurements

and analysed more than one low flow period.

Stedinger and Thomas (1985) developed a baseflow correlation

technique with use of a donor site to predict low flow statistics at

partially gauged sites with a nominal number of streamflow measure-

ments. This technique estimates the log‐space mean and variance of

d‐day annual minimum flows using regression between concurrent

baseflow measurements and performed well in the small Virginia study

area where it was first applied. Potter (2001) followed similar assump-

tions as Stedinger and Thomas (1985), with an additional assumption
that the log‐variances at the gauged and ungauged site are the same,

to estimate the central moments of the daily baseflow record using

four or less discharge measurements. Potter applied the method to

two watershed pairs in Wisconsin and found that the use of a donor

site performed well to estimate the long‐term baseflow mean, median,

and lower decile. Reilly and Kroll (2003) expanded on Stedinger and

Thomas' (1985) method at 1,300 river sites throughout the United

States. They found that the baseflow correlation technique generally

is a good method for estimating low streamflow statistics across the

United States and is an improvement on methods such as regional

regression. Zhang and Kroll (2007a) examined the impact of assump-

tions employed in the baseflow correlation method, whereas Zhang

and Kroll (2007b) expanded this technique by using multiple gauged

river sites. These studies indicated that baseflow correlation should

be further examined for estimating low streamflow statistics in other

study areas.

Eng, Kiang, Chen, Carlisle, and Granato (2011) examined the

bias for estimating the 7Q10 using three index‐streamflow approaches

(i.e., maintenance of variance, baseflow correlation, and a scaling

method) and compared these to regional regression augmented by

hydrogeologic indices. They explored the impact of the range of

streamflow used with the index approaches, the areal density of

gauges, and two donor site selection methods. Eng et al. (2011) found

that baseflow correlation and a maintenance of variance method pro-

duced 7Q10 estimators with a lower bias than regional regression

and that only a small portion of this bias is explained by the areal

density of stream gauges and hydrologic similarity. Eng et al. (2011)

used very large hydrologic regions, which may have adversely

impacted the performance of regional regression. In addition, they only

examined the use of 10 spot measurements at the partial record gauge.

In this experiment, regional regression, regional regression with

added hydrogeological indices, baseflow correlation, and scaling

methods are compared when a nominal number of baseflow measure-

ments are available at the ungauged river site. This experiment

expands on the research of Eng et al. (2011) by studying a smaller

region with a larger density of gauges, examining estimation of a

variety of low streamflow statistics, varying the number of spot

measurements taken at the partial record site, using two different

hydrologic indices with regional regression, and comparing a number

of different donor site selection methods. The study area includes

unregulated gauged streamflow sites within the Apalachicola–Chatta-

hoochee–Flint (ACF) watershed in the south‐eastern United States.

An analysis estimating hydrogeological indices from spot measure-

ments is first performed. This is followed by a comparison of different

methods for estimating low streamflow statistics when spot

measurements are available. An analysis of how best to choose spot

measurements and donor sites is also included, with a focus on

developing a methodology that practitioners could use to measure

streamflows and estimate low streamflow statistics.
2 | METHODS

Four techniques to estimate low flow quantiles at ungauged sites with

spot measurements are explored: regional regression, regional
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regression with estimated hydrogeologic indices, baseflow correlation,

and scaling methods. In the following sections, each of these methods

is briefly described.

2.1 | Regional regression

The first technique is least squares regression (Thomas & Benson,

1970). Regional regression uses the relationship between flow

statistics and geomorphic, geologic, climatic, and topographic parame-

ters to estimate flow statistics at ungauged sites (Thomas & Benson,

1970; Vogel & Kroll, 1992). These models typically have the form

Q ¼ βoX1
β1X2

β2 ; (1)

whereQ is the flow statistic of interest, Xi are basin characteristics, and

βi are parameters obtained from multivariate regression procedures.

Vogel and Kroll (1992) showed that for low streamflow estimation,

the form of this model is consistent with a Boussinesq‐derived ground-

water discharge model based on a linear reservoir hypothesis. The

logarithm of both sides of Equation 1 is taken, resulting in a log‐linear

regression model. Here, ordinary least squares (OLS) regression proce-

dures are used to develop low streamflow regional regression models.

Although weighted least squares or generalized least squares (GLS)

regression procedures could be employed to construct regional regres-

sion equations (Tasker, 1980; Tasker & Stedinger, 1989), when the

model error variance is large, which is typical of low streamflow

models, it overwhelms the time sampling error, and OLS, weighted

least squares, and GLS regression procedures produce similar results

(Kroll & Stedinger, 1998). Because a concurrent record is used at all

sites, the record length and thus the time sampling error of the at‐site

estimators will be less variable across sites. Under these conditions,

OLS should perform similarly to GLS.

2.2 | Regression with estimated hydrogeologic
indices

The second technique again utilizes OLS regression to estimate low flow

statistics at the site of interest, except that baseflow indices from small

samples are included as potential explanatory variables in the model;

these indices are often not included in the database of watershed charac-

teristics. There are many potential hydrogeologic indices that can be

derived from streamflow series, such as the baseflow recession constant

(Kb; Vogel & Kroll, 1996), the aquifer time constant (τ; Eng &Milly, 2007),

and the baseflow index (Insititute of Hydrology, 1980). Here, Kb and τ are

considered, as both have been shown to improve low streamflow

regional regression models (Eng & Milly, 2007; Vogel & Kroll, 1996).

For a review of baseflow recession analysis, seeTallaksen (1995).

Equation 2 defines Kb and τ as an estimator of the daily percent-

age decline in streamflow during times with no surface or shallow

subsurface run‐off (Eng & Milly, 2007; Kroll et al., 2004):

QtþΔt ¼ QtKb
Δt ¼ Qt e

−Δt=τ; (2)

where Qt is the daily streamflow on day t and Qt+Δt is the daily

streamflow Δt days after t. Kb and τ have been shown to be related

to basin hydraulic conductivity and drainable soil porosity (Brutsaert
& Lopez, 1998; Eng & Milly, 2007; Vogel & Kroll, 1996). Vogel and

Kroll (1996) recommended Kb be estimated as

Kb ¼ exp − exp
1
m

∑
m

t¼1
ln

Qt−QtþΔt

Δt

� �
− ln

Qt þ QtþΔt

2

� �� �� �� �
; (3)

where Qt is the first chosen streamflow in the baseflow recession, Δt is

the number of days from the first to the second chosen streamflow in

the baseflow recession, and m is the total number of recession pairs.

This equation is based on assuming that groundwater discharge to a

stream is linearly related to the storage within the aquifer (Brutsaert

& Nieber, 1977; Vogel & Kroll, 1992; Vogel & Kroll, 1996). Eng and

Milly (2007) recommended τ be calculated as

τ ¼ Δt
ln Qtð Þ− ln QtþΔtð Þ; (4)

where τ is estimated for each recession and then averaged across all

recessions at a site. Estimators of Kb and τ require two measurements

from each baseflow recession. Section 4.3 explores estimation of Kb

and τ using a small number of spot measurements, and Section 4.4

examines whether these small‐sample estimators can improve low

streamflow regional regression models.

2.3 | Baseflow correlation

Baseflow correlation also uses spot measurement at the ungauged site

as well as concurrent baseflow measurements at a donor site

(Stedinger & Thomas, 1985). This method assumes that there is a linear

relationship between the logarithm of the annual minimum d‐day

flows at the donor and ungauged sites, the relationship between

annual d‐day minimum flows is similar to the relationship between

instantaneous baseflows measurements, annual minimum flows are

well described by the log Pearson type 3 (LP3) distribution (Barnes,

1986; Rumenik and Grubbs, 1996; Wandle and Randall, 1994), and

the log‐skew of the d‐day flows (and thus the frequency factors) at

the donor and ungauged sites are the same. Zhang and Kroll (2007a)

examined these assumptions in regions across the United States and

generally found them to be valid. Using these assumptions, the log‐

space mean and variance of the d‐day low flows are estimated, and

then, the quantile of interest from the LP3 distribution is estimated

(Reilly & Kroll, 2003; Stedinger & Thomas, 1985). Stedinger and Thomas

(1985) also derived the variance of the logarithm of the quantile estima-

tor. This method was used to estimate 7Q10, 7Q2, 30Q10, and 30Q2;

because Q95 and Q99 are not based on a distributional assumption,

this method could not be used to estimate these statistics.

2.4 | Scaling methods

Laaha and Blöschl (2005) proposed estimating Q95 at SR sites using a

ratio method:

∑Qi;UG

∑Qi;DS
¼ Q95UG

Q95DS
; (5)

where Qi,UG and Qi,DS are concurrent baseflows at the ungauged and

donor sites, and Q95 at the donor site is calculated from the entire

record. This method was used to estimate Q95, Q99, 7Q10, 7Q2,
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30Q10, and 30Q2 using both real‐ and log‐space flows. In addition to

this method, the performance of both real‐ and log‐space drainage

area scaling (Hirsch, 1979) was explored. Because neither of these

methods was better than regional regression without hydrogeologic

indices, these methods were not included in our results.
3 | EXPERIMENTAL DESIGN

3.1 | Study region and streamflow data

This analysis uses streamflow data from a U.S. Department of Interior

WaterSMART (Sustain and Manage America's Resources for

Tomorrow) study area (USGS, 2014). The primary WaterSMART study

areas are the ACF, Colorado, and Delaware River Basins (USGS, 2014).

This study focuses on the ACF Basin, which includes 182 gauged

streamflow sites in the south‐eastern United States that have limited

amounts of regulation.

Eight sites from the original 182 gauged sites have flow quantiles

estimated as zero. Although intermittent streamflow sites have

important information, streamflow and flow quantiles estimated as

zero complicate analyses requiring logarithmic transformations, such
FIGURE 1 Map of gauge locations in the Apalachicola–Chattahoochee–Fl
as log‐linear regional regression models employed here (Kroll &

Stedinger, 1999). Sites with zero quantiles are removed from this

analysis, thus leaving 174 sites. In addition, two streamflow sites with

exceptionally large drainage areas have been removed because of their

lack of hydrologic homogeneity with other sites, leaving a total of 172

sites. To limit the impact of climate from non‐concurrent periods of

record, a common period of record from 1980 to 2010 was employed

at all sites. At least 10 years of continuous record over this period at

each site was required, leaving 152 sites. Farmer et al. (2014) use the

same study region using the same concurrent record, though they filled

in missing streamflows at sites; this analysis does not fill in missing

streamflows and uses only recorded streamflow measurements. In

addition, three sites were removed because of a limited number of

baseflow days within the concurrent record, leaving a total of 149 sites

for our analysis (Figure 1).

At each streamflow site, low streamflow statistics are estimated

using the low flow water years from April 1981 to March 2010. To

estimate the 7Q10, 7Q2, 30Q10, and 30Q2, annual 7‐day or 30‐day

low streamflow series are determined in each water year, and then,

an LP3 distribution is fit using method of moment parameter

estimators (Stedinger, Vogel, & Foufoula‐Georgiou, 1993). The LP3

distribution is generally employed to describe annual low streamflow
int study region



FIGURE 2 Illustration of baseflow definition in daily streamflow
record with recession pairs
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series in the United States (Risley, Stonewall, & Haluska, 2008;

Rossman, 1990). From the fitted LP3 distributions, either the 10th or

50th percentile is used to estimate 7Q10 or 7Q2 (and 30Q10 or

30Q2). To estimate Q95 and Q99, period‐of‐record FDCs are

developed for each site, and the quantiles with either the 95th or

99th exceedance probability is used to estimate Q95 or Q99 by

linearly interpolating between Weibull plotting positions (method 2

of Vogel & Fennessey, 1994).

These “at‐site” low streamflow statistic estimates from historic

records are used as the observations of these low flow statistics; all

methods are assessed by comparing predictions from the other

methods to these estimates. Forty‐nine watershed characteristics that

were selected by Farmer et al. (2014) as the most promising explana-

tory variables in this region were used in the low flow regional

regression analyses. These explanatory variables were provided by

the USGS database developed by Falcone, Carlisle, Wolock, and

Meador (2010) and have been employed in other studies in this region

(see Pugliese, Farmer, Castellarin, Archfield, & Vogel, 2016 and

Croteau, Kroll, Over, & Archfield, 2016 for a description of variables).
3.2 | Spot measurements

This experiment requires spot measurements, instantaneous

streamflow measurements taken at a specific time, from an ungauged

site to calculate low flow statistics. Because such spot measurements

are not readily available, in this experiment, average daily streamflows

are used as a replacement for spot measurements. At a USGS gauge,

daily streamflow data are an average of instantaneous streamflow data

measured at intervals of 5 to 60 min (USGS, 2012) and then averaged

across a day to estimate the daily average streamflow. In practice, a

water manager would obtain spot measurements from an ungauged

site at a specific time, and the instantaneous streamflow at the donor

site at the same time. For this experiment, the assumption is that the

daily average streamflow is similar to instantaneous spot measure-

ments on the same day, which generally should be a valid assumption

during baseflow conditions.
3.3 | Baseflow conditions

To estimate low flow statistics from spot measurements, one needs to

designate baseflow conditions to separate days where streamflow is

primarily from baseflow (baseflow days) and from non‐baseflow days.

Baseflow is defined as the portion of streamflow from groundwater

(Arnold & Allen, 1999). Zhang and Kroll (2007a) found that for the

baseflow correlation method, baseflow measurements should be taken

in the late summer and early fall months (July to October), as far from

run‐off events as possible, and should be nearly independent

from other baseflow measurements. Across all study sites, 92% of all

7‐day annual minimum flows occur from July to October, so this period

was also used here. Following Vogel and Kroll (1992, 1996) and Kroll

and Stedinger (1999), for this experiment, baseflow conditions occurs

after a 3‐day drop from peak streamflow, and the baseflow recession

continues until the streamflow increases (Figure 2). Note that other

non‐climatic methods have been employed for defining baseflow

conditions, including a 5‐day drop (Aksoy & Wittenberg, 2011;
Wittenberg, 2003) and a drop calculated for each site as a function

of watershed area (Bras, 1990; Reilly & Kroll, 2003). Although a

3‐day drop is a relatively short duration, its use substantially increases

the number of pairs of current baseflow conditions at the donor and

ungauged sites. An analysis of precipitation events during baseflow

conditions is explored in Section 4.1.

In addition, baseflow filters are used to reduce the effect of pre-

cipitation and large flows that may remain after a 3‐day drop of

streamflow. To reduce the effect of precipitation, the last day of each

recession could be removed (L), given there is a chance that precipita-

tion may occur on this day because the following day there is an

increase in streamflow. To reduce the effect of recessions that occur

with large streamflows, the FDC at the donor site is utilized. If the

streamflow at the donor site the day before a recession starts is above

a specific FDC threshold (25% exceedance probability = E_0.25 or 50%

exceedance probability = E_0.5), then the entire recession is removed.

This analysis explores these filtering methods as well as a combination

of both methods (L_0.25 and L_0.5). The impact of these filtering

techniques is discussed in Section 4.1.
3.4 | Cross validation of regional regression without
hydrogeology

Here, a repeated sequential delete‐1/3 cross validation procedure is

used to assess performance of low flow regional regression estimators.

In this technique, the data set is randomly divided into thirds. One of

the thirds is removed, the other two‐thirds is used to calibrate the

model, and then, the fitted model is used to estimate flow statistics

at the removed sites. The other thirds are then sequentially removed,

and the process is repeated. Five hundred iterations of this random

selection are performed to reduce the impact of randomly selecting

sites; performance statistics stabilized after 100 iterations.
3.5 | Cross validation of regional regression with
hydrogeologic indices

A similar strategy as presented by Vogel and Kroll (1996) and Eng and

Milly (2007) to select baseflow pairs to estimate hydrogeologic indices

was used in this experiment. This method chooses a random starting

year and a random starting recession within that year. A baseflow

recession requires at least a 6‐day period where the streamflow does

not increase. The 3rd day of the drop is considered the first day of
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the baseflow recession (Qt), and the 6th day of the streamflow drop is

considered as the second baseflowmeasurement (Qt + Δt), where Δt = 3

(Figure 2). The number of total measured flows (two per recession)

examined in this experiment was 4, 6, 8, 10, and 12 days. Eng et al.

(2011) used longer recessions (at least an 8‐day drop) and more

baseflow measurements (20 measurements to estimate 10 values of

τ) for regional regression with τ. A less stringent baseflow criterion

and fewer measurements to reduce the total duration of sampling

needed to obtain low streamflow estimates were used. It was surmised

that sampling protocol could be performed over one or two low flow

seasons. Estimators of Kb and τ from the entire record are used to

develop regression models, and Kb and τ estimators from the measured

flows are used in the leave one third out cross validation procedure

(Section 3.3). SR estimators of Kb and τ are also compared to those

calculated from the entire record to assess the performance of these

estimators.
3.6 | Donor site selection for baseflow correlation
and scaling methods

Baseflow correlation and scaling methods rely on a gauged donor site;

selection of the donor site can have a large influence on the perfor-

mance of low flow estimators (Eng et al., 2011; Laaha & Blöschl,

2005; Zhang & Kroll, 2007a). There are a wide range of techniques that

can be used to select donor sites such as the nearest neighbour (NN),

drainage area within a certain range, annual precipitation within a cer-

tain range, map correlation method, and various other basin character-

istics and spatial methods (Archfield & Vogel, 2010; Clark & Evans,

1954; Laaha & Blöschl, 2005; Ries & Friesz, 2000; Zhang & Kroll,

2007a). For this analysis, the following donor site selection methods

are explored: NN, most similar drainage area across the entire study

area (area), site producing the minimum variance low flow estimator

within 100 km from the ungauged site (100), minimum variance site

within 200 km (200), gauges within 100 km, drainage area within

±50% and minimum estimated variance (100area), and gauges within

200 km, drainage area within ±50%, and minimum estimated variance

(200area). The variance of 7Q10, 7Q2, 30Q10, and 30Q2 baseflow

correlation estimators is estimated using methods presented in

Stedinger and Thomas (1985). For Q95 and Q99, the minimum

estimated variance above was replaced with the maximum correlation

between the logarithm of concurrent baseflows.

A delete‐1 jackknife simulation is performed to assess the perfor-

mance of the baseflow correlation and scaling methods, where one site

is designated as the ungauged basin and all other sites are considered

possible donor sites. The “recession method” defined in Reilly and Kroll

(2003) is used to pick independent baseflow measurements to form a

baseflow segment. This method chooses a random starting year, a

random starting recession, and a random baseflow from the recession

to start the baseflow segment. Random baseflows from consecutive

recessions (one flow per recession) are used until the baseflow

segment reaches a specified length (again 4, 6, 8, 10, or 12 baseflow

measurements). As suggested by Reilly and Kroll (2003), the total

number of baseflow segments examined for an ungauged site is equal

to the total number of baseflow days divided by the segment length.

The filtering methods used previously to define baseflow days were
also implemented for this technique, and the correlation between the

log‐space flows at the donor and ungauged sites needed to be at least

0.7.

3.7 | Performance metrics

Six performance metrics were used to assess each estimation method.

Each performance metric was estimated at each site, and the average

of each metric across all sites is reported. Four of these metrics are bias

and mean square error (MSE) in real‐ and log‐space (where all

streamflows are in units of cubic feet per second). Real‐space metrics

generally are more influenced by an estimator's fit to larger streamflow

values, whereas log‐space metrics are more influenced by an

estimator's fit to smaller streamflows. In addition, two relative metrics

were calculated. The average relative absolute difference (ARAD) was

calculated as

ARAD ¼
∑N
i¼1

bQi−Qobs

Qobs

�����
�����

N
(6)

where cQi is the ith low streamflow estimate (in units of cubic feet per

second), Qobs is the at‐site low flow statistic calculated using the entire

record, and N is the number of estimates of cQi at the site. ARAD is a

measure of the average per cent deviation of predicted values and is

less influenced by the magnitude of the observations, though when

estimating very small Qobs, this metric can increase greatly. The unit

area absolute difference (UAAD) is calculated as

UAAD ¼
∑N
i¼1

bQi−Qobs

Areai

�����
�����

N
; (7)

and is a measure of the absolute difference scaled by drainage area

(km2) and is also less influenced by the magnitude of streamflow

values. UAAD is useful when there is a large range of observed values

within the data set, as it is not strongly influence by exceptionally small

observations such as ARAD.
4 | RESULTS AND DISCUSSION

This section first provides an analysis of how well the proposed

baseflow filters screen precipitation events during baseflow conditions

(Section 4.1). Section 4.2 provides a comparison of possible donor site

selection and baseflow filter methods using a robust rank‐based evalu-

ation (RRBE) and the identification of preferred donor site selection

and baseflow filtering methods. Section 4.3 examines small‐sample

estimators of Kb and τ, including a donor site estimator not previously

explored in the literature. Finally, Section 4.4 compares low streamflow

estimators from regional regression, regression with estimated

hydrogeologic indices, baseflow correlation, and scaling.

4.1 | Precipitation on baseflow days

The techniques examined in this analysis require identification of

streamflow under baseflow conditions. Baseflow is determined using
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hydrologic separation. To assess the impact of small precipitation

events on streamflow recessions, an analysis of precipitation and

streamflow was performed for three watersheds: the French Broad

River near Newport, TN (USGS#03455000), Talladega Creek at Alpine,

AL (USGS#02406500), and the Flint River near Carsonville, GA

(USGS#02347500). Precipitation data were obtained from a National

Weather Service maintained monitoring site, where data were

downloaded from the National Climatic Data Centre (Menne et al.,

2012). All three watersheds exhibited similar results, so here, results

are discussed only for the French Broad River watershed.

Figure 3 contains box plots for the French Broad River watershed

for precipitation events during identified baseflow days for different

baseflow filters. Of the 589 days originally identified as baseflow, 80

had measured precipitation events (14%), and five of these events

were above 0.5 in. (1.27 cm). By dropping the last day identified as

baseflow (L in Figure 3), only 36 of 404 baseflow days (9%) had

precipitation events, with only two events above 0.5 in. By eliminating

recessions where streamflow the day before the recession was larger

than the 25th or 50th percentile (E_0.25 or E_0.50 in Figure 3), 64 of

492 baseflow days (13%) or 49 of 408 baseflow days (12%) had

recorded precipitation events. Both of these methods failed to screen

two precipitation events above 0.5 in. Finally, by both removing the

last baseflow day and eliminating recessions preceded by large

streamflows (L_0.25 or L_0.50 in Figure 3), 30 of 330 baseflow days

(9%) or 22 of 273 baseflow days (8%) had recorded precipitation

events. Both of these filters failed to screen one recorded precipitation

event above 0.5 in. on a baseflow day.

The single precipitation event above 0.5 in. for L_0.25 and L_0.50

was a 1.2‐in. (3.05 cm) event that occurred in the middle of a

baseflow recession without an increase in measured streamflow at

the stream gauge. This could be due to a measurement error at the

precipitation gauge or an isolated storm, where the soil may be

extremely dry, and all precipitation is absorbed with little or no

response at the stream gauge (Faures, Goodrich, Woolhiser, &

Sorooshian, 1995). To confirm this assumption, precipitation data

were obtained on the same day (July 19, 2006) from all precipitation

gauges within 100 km from the precipitation gauge where the 1.2 in.

precipitation event was observed. Of the eight gauges observed, only

one had a precipitation event, also recorded as 1.2 in. This suggests
FIGURE 3 Precipitation events during baseflow for different baseflow
filters at the French Broad River (USGS#03455000 and rain gauge
USC00315356). Number of non‐zero precipitation events in
parentheses
that there was an isolated band of storms in this region at both of

these stations. To confirm this, historic radar data were also observed

(NOAA, 2006), which indicated isolated precipitation events on July

19, 2006 within this region.

Although the proposed filters do not remove all precipitation

events during baseflow conditions, they do reduce the number and

magnitude of these events. Of interest is whether such filters also

help improve the performance of low streamflow estimation

techniques. In Section 4.2, baseflow filters are paired with donor site

selection techniques, and resulting low streamflow estimators are

examined.
4.2 | Donor site selection

Donor sites are required to transfer information to calculate low

streamflow statistics from spot measurements using baseflow correla-

tion and scaling methods. Previously stated donor site selection

methods (Section 3.5) are paired with a baseflow filtering technique

(Section 4.1) and then compared using an RRBE, similarly used in

Farmer et al. (2014). With this technique, each performance metric

(Section 3.7) is calculated for each streamflow gauge for baseflow

correlation (7Q10, 7Q2, 30Q10, and 30Q2) or scaling (Q95 and

Q99), and the mean of each performance metric was calculated across

all sites. Next, each donor site/filter selection method is ranked across

each of the six performance metrics, where 1 is the rank of the best

method. The mean and standard deviation of these six ranks are then

calculated and plotted, creating a cross‐metric RRBE point cloud of

all donor site/filter selection methods (Farmer et al., 2014). This

graphical tool helps identify more optimal donor site/filter selection

methods and the trade‐offs between methods.

Figure 4 shows the RRBE as a point cloud for each low streamflow

statistic with the standard deviation of the ranks on the y axis, and the

mean of the ranks across all performance metrics on the x axis. The

optimal position is the lower left corner of each figure, where the

specific donor site/filter selection method will have the lowest mean

and standard deviation of the ranks.

For 7Q10, 30Q2, and 30Q10, removing the last day of baseflow,

excluding recessions with streamflow the day before the recession

greater than the 50th percentile and using the NN as the donor site

(L_0.5_NN) have the lowest mean rank and standard deviation. For

7Q2, using a donor site with the lowest estimator variance within

100 km was best, and removing the last day of the recession had less

of an impact (E_0.5_100 had the lowest mean rank; E_0.5_100 and

L_0.5_100 had the lowest standard deviation). Q95 and Q99 display

different patterns from the other low streamflow statistics. For Q95,

using NN as the donor site and the 50th percentile, baseflow filter

(E_0.5_NN) had the lowest mean rank and standard deviation. For

Q99, using gauges within 100 km with a drainage area within ±50%

and the minimum estimator variance with the 50th percentile baseflow

filter and removing the last baseflow (L_0.5_100area) had the lowest

average mean rank, whereas E_0.5_NN had the lowest average

standard deviation. Using these results, further analysis of methods

to estimate hydrogeologic indices and low streamflow statistics is

performed in the following sections using L_0.5_NN, L_0.5_100area,

and E_0.5_NN donor site/filtering selection methods.



FIGURE 4 Robust rank‐based evaluation of all donor site selection methods and baseflow filters for each low streamflow statistic
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4.3 | Small‐sample estimation of hydrogeologic
indices

A comparison of Kb and τ estimators from SR with a donor site

(DS) estimators is displayed in Figure 5. The donor site estimator

for Kb is
Kb;DS;UG ¼ Kb;SR;UG Kb;HR;DS=Kb;SR;DS

	 

; (8)

where Kb,SR,UG and Kb,SR,DS are the estimators of Kb from the SR

at the ungauged site and donor site, respectively, and Kb,HR,DS is

the estimator of Kb from the historic record at the donor site. A



FIGURE 5 Kb and τ comparison between methods estimated from

short record (SR) and using the L_0.5_NN donor site (DS)/filtering
selection method
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donor site estimator of τ had a similar form as Equation 8. The

L_0.5_NN donor site/filtering selection method was used to select

baseflows for this analysis on the basis of its good performance for esti-

mating both 7Q10 and Q95. At each site, the real‐space biases of Kb

and τ are estimated by comparing SR and DS estimates to those from

the historic record at the site. Figure 5 contains box plots of these

biases across all sites. Results show that using the NN donor site to

estimate Kb and τ always increased the range of bias in Kb and τ, regard-

less of the number of baseflows used in the analysis. Differences in

hydrogeology at the donor site compared to the ungauged site may

cause this increased bias. On the basis of this result, subsequent analy-

ses of regression plus hydrogeology indices only use SR estimators of

Kb and τ.
4.4 | Comparison of low streamflow estimation
methods

For all low flow regional regression models, the first four entering

explanatory variables were the same. These variables are summarized

in Table 1. These are the same explanatory variables chosen by

Pugliese et al. (2016) and Croteau et al. (2016) in their regional
TABLE 1 Summary of watershed characteristics values that were
used in the models

Characteristics Median Range across all sites

Drainage area (km2) 423 10 to 4,799

Average basin precipitation (mm) 1,460 1,140 to 2,070

Rock depth (m) 1.40 0.48 to 1.52

Slope (%) 8.66 0.419 to 47.8
regression models for Q95 within this region. The adjusted coefficient

of determination (Adj‐R2) of regression models without hydrogeology

ranged from 0.57 for 7Q10 to 0.71 for 30Q2; when Kb from the

historic record was added, Adj‐R2 ranged from 0.88 to 0.91 and with

τ from 0.85 to 0.88.

Figures 6 (for 7Q10) and 7 (for Q95) present the average ARAD,

UAAD, bias, log‐bias, MSE, and log‐MSE across all sites for regression,

regression with hydrogeologic indices, and baseflow correlation and

scaling for 4, 6, 8, 10, and 12 baseflow measurements. For 7Q10 and

Q95, the two best combinations of baseflow filters and donor

selection methods are presented: L_0.5_NN and L_0.5_100area for

7Q10 and E_0.5_NN and L_0.5_NN for Q95. Results for 7Q2,

30Q10, and 30Q2 were similar to those for 7Q10, and results for

Q99 were similar to those for Q95, and thus, results are only shown

for 7Q10 and Q95, both of which are commonly employed in practice.

In Figures 6 and 7, the horizontal lines represent results for OLS

regression without hydrogeology (Reg) and OLS regression with Kb

and τ estimated from the entire historic (Reg + Kb and Reg + τ); these

methods do not use spot measurements. Regression equations with SR

hydrogeologic indices are represented by squares and triangles

(Reg + Est Kb and Reg + Est τ), and baseflow correlation and scaling

methods are represented by circles (BFC and Scaling). MSE is

presented in terms of relative performance, where MSE relative

performancei = MSEReg + Kb/MSEi; this was done to avoid plotting

MSE, which had some large values. When a figure is in terms of relative

performance, greater values (i.e., larger values on the y axis) indicate

methods that are performing better. Biases should be close to zero,

whereas ARAD and UAAD should be as small as possible.

Figure 6 displays the results for 7Q10 for each performance metric

where the donor site/filtering selection method is L_0.5_NN (solid

symbols). For ARAD and log‐MSE, baseflow correlation outperforms

all other methods; for UAAD, baseflow correlation and scaling produce

similar results. For ARAD and UAAD at 6 measurements, baseflow

correlation outperforms regression with hydrogeologic indices

estimated from the entire record. Baseflow correlation had a higher

bias than the other methods, though its bias is similar to that of regres-

sion equations using the entire record. For log‐bias, baseflow correla-

tion performs well at 4 and 6 measurements, but when the number

of measurements increases, the bias of baseflow correlation increases,

which could be due to the decrease in the number of baseflow

segments analysed at larger baseflow segments (8, 10, and 12

measurements). This may also be due to this method performing worse

at sites with smaller at‐site low streamflow statistics. For MSE and log‐

MSE after eight measurements, baseflow correlation outperforms all

regression models.

Figure 6 also displays results for 7Q10 and baseflow correlation

and scaling methods when the donor site/filtering selection method

is L_0.5_100area (open symbols). Because L_0.5_NN and

L_0.5_100area filter baseflows the same way (they only differ in donor

site selection), the results for Reg + Est Kb and Reg + Est τ are the same

for either filter. The results for this filter are identified as BCF_2 and

Scaling_2. The MSE of 7Q10 for BFC and scaling with L_0.5_100area

is less than with L_0.5_NN (higher relative performance), whereas for

log‐bias (and bias for 4 and 6 measurements), the opposite is true. This

appears to indicate that choosing the donor site within 100 km, a



FIGURE 6 Comparison of all methods used to predict 7Q10 for all performance metrics, where baseflow correlation (BFC) and scaling use
L_0.5_NN and BFC_2 and Scaling_2 use L_0.5_100area donor site/filtering selection methods; regression methods that do not employ a donor
site use L_0.5. Reg + Est τ is removed for bias because of large values. Mean square error (MSE) relative performance = MSEReg + Kb/MSEi, where
higher performance is better. ARAD = rage relative absolute difference; UAAD = unit area absolute difference

STAGNITTA ET AL. 489
drainage area ±50% from the site of interest, and the minimum

variance 7Q10 estimator (L_0.5_100area) improves the fit over NN

(L_0.5_NN) at sites with large 7Q10 values, but it performs worse at

sites with smaller 7Q10 values. Baseflow correlation with either filter

performs similarly.

In Figure 6, regression equations with hydrogeologic indices

calculated using the entire record outperform regression equations

without Kb and τ, except for the MSE of τ, which is much larger than

for the other methods (thus decreasing the MSE relative performance).

For 7Q10, across all performance metrics, Reg + Kb and Reg + Est Kb

always outperforms Reg + τ and Reg + Est τ. In addition, even with only

four measurements, Reg + Est Kb is always better than performing
regression with no hydrogeologic indices, an important result for

practitioners.

Figure 7 displays the results for Q95 for each performance metric

where the donor site/filtering selection method is E_0.5_NN. Note

that baseflow correlation is not analysed for Q95. For ARAD, UAAD,

bias, and MSE, the scaling method outperforms or performs as well

as regression equations plus hydrogeologic indices calculated from

the entire record, even when only four measurements are used. Scaling

has a slightly larger negative log‐bias than the regression models

regardless of the number of measurements, though it has a slightly

smaller log‐MSE than regression plus hydrogeologic indices calculated

from the entire record when eight or more measurements are used.



FIGURE 7 Comparison of all methods used to predict Q95 for all performance metrics, where Reg + Est Kb, Reg + Est τ, and scaling use E_0.5_NN;
and Reg + Est Kb_2, Reg + Est τ _2, and Scaling_2 use L_0.5_NN. Reg + Est τ _2 is removed for bias because of large values. Mean square error
(MSE) relative performance = MSEReg + Kb/MSEi, where higher performance is better. ARAD = rage relative absolute difference; BFC = baseflow
correlation; UAAD = unit area absolute difference
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This result indicates that scaling may perform better as sites with larger

flows. Across all performance metrics except for bias, for Q95, Reg + Kb

and Reg + Est Kb always outperforms Reg + τ and Reg + Est τ. Reg + Est

Kb performs better than regression without hydrogeologic indices for

all performance metrics except log‐bias when six or more measure-

ments are available.

Also included in Figure 7 are the results for the L_0.5_NN donor

site/filtering selection method (all results with this filter are indicated

as “_2” and have open symbols). Because this method filters baseflows

differently than E_0.5_NN, results are presented for all methods.

Across all performance metrics, all methods that use the L_0.5_NN

donor site/filtering method are outperformed by methods that use

E_0.5_NN, except for bias.
The results presented in Figures 6 and 7 are averages across all

study sites. Figure 8 contains box plots of UAAD for 4, 8, and 12

measurements at individual sites for each estimation method with

the L_0.5_NN donor site/filtering method; note that the scale on the

y axis is in log‐space. These plots are used to assess if any sites are

performing exceptionally poorly and thus have a large influence on

the average results in Figures 6 and 7. Again, horizontal lines represent

regional regression; ideally, box plots would be below these lines.

Across all measured flows and all methods, there are some sites that

perform poorly (worse than regression), but baseflow correlation and

scaling methods have fewer of these sites. For regression methods,

this could be due to the variability of small‐sample estimators of

hydrogeologic indices, whereas for baseflow correlation and scaling



FIGURE 8 Comparison of box plots of unit area absolute difference
(UAAD) for all estimation methods using spot measurements with
L_0.5_NN donor site/filtering method. Y axis is log‐scale
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methods, this could be due to poor donor site selection or unusual

baseflow observations (such as when small precipitation events occur).

All methods that use spot measurements improve estimators of low

streamflow statistics as the number of baseflow measurements is

increased.
5 | CONCLUSIONS

This experiment examined estimators of low streamflow statistics at

ungauged river sites when a nominal number of streamflow measure-

ments are available at the ungauged site. Four estimation techniques

were examined: regional regression, regional regression plus estimated

hydrogeologic indices, baseflow correlation, and scaling (that latter two

use a donor site to improve estimation). These techniques were used

to predict the six different streamflow statistics, and results were

presented for 7Q10 and Q95. The following conclusions can be made

from this analysis:

• With eight measurements (and sometimes as few as four),

baseflow correlation and scaling methods always outperform

regional regression even when at‐site estimators of hydrogeologic

indices are available. The good performance of scaling compared

to regional regression contradicts the findings of other

researchers.

• The best donor site/baseflow filtering selection method is for the

streamflow the day before the first measured streamflow to be
smaller than the median daily streamflow at the donor site, for

the nearest gauged streamflow site to be used as the donor site.

• Adding hydrogeologic indices improves low streamflow regional

regression models, with baseflow recession constants, Kb, always

produced better regression models than the aquifer time constant,

τ.

• Use of a small‐sample estimator of Kb improved low streamflow

regional regression models even when only four measurements

are taken; this was generally not true for τ.

These results reaffirm the importance of hydrogeology in low

streamflow prediction. Results from this experiment overwhelmingly

indicate that using a donor site to transfer information with concurrent

streamflow measurements during baseflow conditions, such as

baseflow correlation and scaling, is preferred to regional regression

for estimation of low streamflow statistics.

ACKNOWLEDGMENTS

The authors would like to thank the Department of Environmental

Resources Engineering at SUNY ESF for providing financial support

for this experiment. In addition, we would like to recognize Charity

Nyelele who helped developed Figure 1.

ORCID

Timothy J. Stagnitta http://orcid.org/0000-0001-8903-428X

Charles N. Kroll http://orcid.org/0000-0003-1157-8353

REFERENCES

Aksoy, H., & Wittenberg, W. (2011). Nonlinear baseflow recession analysis
in watersheds with intermittent streamflow. Hydrological Sciences
Journal, 56(2), 226–237.

Archfield, S. A., & Vogel, R. M. (2010). Map correlation method: Selection of
a reference streamgage to estimate daily streamflow at ungaged catch-
ments. Water Resources Research, 46, 1–15.

Archfield, S. A., Vogel, R. M., Steeves, P. A., Brandt, S. L., Weiskel, P. K., &
Garabedian, S. P. (2009). The Massachusetts sustainable‐yield
estimator: A decision‐support tool to assess water availability at
ungaged stream locations in Massachusetts. U.S. Geological Scientific
Investigations Report 2009–5227.

Arnold, J. G., & Allen, P. M. (1999). Automated methods for estimating
baseflow and ground water recharge from streamflow records.
American Water Resources Association, 35, 411–424.

Barnes, C. R. (1986). Method for estimating low‐flow statistics for ungaged
streams in the lower Hudson River Basin. New York. U.S. Geological
Survey Water Resorces Investigations Report 85–4070.

Bras, R. L. (1990). Hydrology: An introduction to hydrologic science,
Addison‐Wesley‐Longman, Reading, Massachusetts.

Broda, S., Larocque, M., & Paniconi, C. (2014). Simulation of distributed
base flow contributions to streamflow using a hillslope‐based catch-
ment model coupled to a regional‐scale groundwater model. Journal of
Hydrologic Engineering, https://doi.org/10.1061/(ASCE)HE.1943‐
5584.0000877, 907–917.

Brutsaert, W., & Lopez, J. P. (1998). Basin‐scale geohydrologic drought flow
features of riparian aquifers in the southern Great Plains. Water
Resources Research, 34, 233–240.

Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow
hydrographs from a mature glaciated plateau. Water Resources
Research, 13, 637.

http://orcid.org/0000-0001-8903-428X
http://orcid.org/0000-0003-1157-8353
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000877
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000877


492 STAGNITTA ET AL.
Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure
of spatial relationships in populations. Ecological Society of America, 35,
445–453.

Croteau, K. E., Kroll, C. N., Over, T. M., & Archfield, S. A. (2016). Estimation
of flow duration curve quantiles in ungauged river sites. Journal of
Hydrology, submitted March 2016.

Eng, K., Kiang, J. E., Chen, Y. Y., Carlisle, D. M., & Granato, G. E. (2011).
Causes of systematic over‐ or underestimation of low streamflows by
use of index‐streamgage approaches in the United States. Hydrological
Processes, 25, 2211–2220.

Eng, K., & Milly, P. C. D. (2007). Relating low‐flow characteristics to the
base flow recession time constant at partial record stream gauges.
Water Resources Research, 43, 1–8.

Falcone, J. A., Carlisle, D. M., Wolock, D. M., & Meador, M. R. (2010).
GAGES: A stream gage database for evaluating natural and altered flow
conditions in the conterminous United States: Ecological archives
E091‐045. Ecology, 91, 621.

Farmer, W., Archfield, S., Over, T., Hay, L., Jacob, L., & Kiang, J. (2014). A
comparison of methods to predict historical daily streamflow time
series in the southeastern United States. U.S. Geological Survey
Scientfic Investigations Report 2014–5231.

Faures, J.‐M., Goodrich, D. C., Woolhiser, D. A., & Sorooshian, S. (1995).
Impact of small‐scale spatial rainfall variability on runoff modeling.
Journal of Hydrology, 173, 309–326.

Fennessey, N. M. (1994). A hydro‐climatological model of daily streamflow
for the northeast United States. Ph.D Dissertation Tufts Univeristy.

Hirsch, R. M. (1979). An evaluation of some record reconstruction
techniques. Water Resources Research, 15, 1781–1790.

Institute of Hydrology (1980). Low flow studies. Wallingford, U.K: Institute
of Hydrology.

Kroll, C., Luz, J., Allen, B., & Vogel, R. M. (2004). Developing a watershed
characteristics database to improve low streamflow prediction. Journal
of Hydrologic Engineering, 9, 116–125.

Kroll, C. N., & Stedinger, J. R. (1998). Regional hydrologic analysis: Ordinary
and generalized least squares revisited. Water Resources Research, 34,
121–128.

Kroll, C. N., & Stedinger, J. R. (1999). Development of regional regression
relationships with censored data. Water Resources Research, 35,
775–784.

Laaha, G., & Blöschl, G. (2005). Low flow estimates from short stream
flow records – A comparison of methods. Journal of Hydrology, 306,
264–286.

Matonse, A. H., & Kroll, C. N. (2013). Applying hillslope‐storage models to
improve low flow estimates with limited streamflow data at a water-
shed scale. Journal of Hydrology, 494, 20–31.

Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X.,
Anthony, S., … Houston, T. G. (2012). Global Historical Climatology
Network – Daily (GHCN‐Daily), Version 3. Subset used: October
1980 – September 2010. NOAA National Climatic Data Center.

NOAA National Weather Service (NWS) (2006). Radar operations center
(1991): NOAA Next Generation Radar (NEXRAD) level II base data.
(Knoxville,). NOAA National Centers for Environmental Information.

Potter, K. (2001). A simple method for estimating baseflow at ungages loca-
tions. American Water Resources Association, 37, 177–184.

Pugliese, A., Farmer, W. H., Castellarin, A., Archfield, S. A., & Vogel, R. M.
(2016). Regional flow duration curves: Geostatistical techniques versus
multivariate regression. Advances in Water Resources, 96, 11–22
https://doi.org/10.1016/j.advwatres.2016.06.008.

Reilly, C. F., & Kroll, C. N. (2003). Estimation of 7‐day, 10‐year low
streamflow statistics using baseflow correlation. Water Resources
Research, 39. https://doi.org/10.1029/2002WR001740.

Ries, K., & Friesz, P. (2000). Methods for estimating low‐flow statistics for
Massachusetts streams. U.S. Geological Survey Water‐Resources
Investigations Report 00–4135.
Riggs, H. C. (1980). Characteristics of low flows. Journal of the Hydraulics
Division, 106, 717–731.

Risley, J., Stonewall, A., & Haluska, T. (2008). Estimating flow‐duration and
low‐flow frequency statistics for unregulated streams in Oregon. U.S.
Geological Survey Scientific Investigations Report 2008–5126.

Rossman, L. A. (1990). DFLOW user's manual. US EPA risk reduction
Engineering Laboratory, Office of Research and Development,
Cincinnati, OH, 31 pp.

Rumenik, R. P., & Grubbs, J. W. (1996). Methods for estimating low‐flow
characteristics of ungaged streams in selected areas, Northern Florida.
U.S. Geological Survey Water Resorces Investigations Report 96–4124.

Smakhtin, V. U. (2001). Low flow hydrology: A review. Journal of Hydrology,
240, 147–186.

Susquehanna River Basin Commission (2012). Technical guidance for low
flow protection related to withdrawal approvals, Harrisburg,
Pennsylvania.

Stedinger, J. R., & Thomas, W. (1985). Low‐flow frequency estimation using
base‐flow measurements. U.S. Geological Survey Open‐File Report
85–95.

Stedinger, J. R., Vogel, R. M., & Foufoula‐Georgiou, E. (1993). Frequency
analysis of extreme events. Chapter 18 in handbook of hydrology,
edited by DR Maidment.

Tallaksen, L. M. (1995). A review of baseflow recession analysis. Journal
of Hydrology, 165, 349–370. https://doi.org/10.1016/0022‐
1694(94)02540‐R.

Tasker, G. D. (1980). Hydrologic regression with weighted least squares.
Water Resources Research, 16, 1107–1113.

Tasker, G. D., & Stedinger, J. R. (1989). An operational GLS model for
hydrologic regression. Journal of Hydrology, 111, 361–375.

Thomas, D. M., Benson, M. A. (1970). Generalization of streamflow charac-
teristics from drainage‐basin characteristics. U.S. Geological Survey
Water‐Supply Paper 1975 55.

USGS (2012). Instantaneous Data Archive – IDA. Available from: http://ida.
water.usgs.gov/ida/index_usgs.cfm

USGS (2014). WaterSMART. Available from: http://water.usgs.gov/
watercensus/WaterSMART.html

Vogel, R. M., & Fennessey, N. M. (1994). Flow‐duration curves. I: New
interpretation and confidence intervals. Journal of Water Resources
Planning and Management, 120(4), 485–504.

Vogel, R. M., & Kroll, C. N. (1992). Regional geohydrologic‐geomorphic
relationships for the estimation of low‐flow statistics. Water Resources
Research, 28, 2451–2458.

Vogel, R. M., & Kroll, C. N. (1996). Estimation of baseflow recession
constants. Water Resources Management, 10, 303–320.

Wandle, Jr, S. W., & Randall, A. D. (1994). Effects of surficial geology, lakes
and swamps, and annual water availability on low flows of streams in
Central New England, and their use of low‐flow estimation. U.S.
Geological Survey Water‐Resources Investigations Report 93–4092.

Wittenberg, H. (2003). Effects of season and man‐made changes on
baseflow and flow recession: Case studies. Hydrological Processes, 17,
2113–2123.

Zhang, Z., & Kroll, C. (2007a). Closer look at the baseflow correlation
method. Journal of Hydrologic Engineering, 12, 190–196.

Zhang, Z., & Kroll, C. (2007b). The baseflow correlation method with
multiple gauged sites. Journal of Hydrology, 347, 371–380.
How to cite this article: Stagnitta TJ, Kroll CN, Zhang Z. A

comparison of methods for low streamflow estimation from

spot measurements. Hydrological Processes. 2018;32:480–492.

https://doi.org/10.1002/hyp.11426

https://doi.org/10.1016/j.advwatres.2016.06.008
https://doi.org/10.1029/2002WR001740
https://doi.org/10.1016/0022-1694(94)02540-R
https://doi.org/10.1016/0022-1694(94)02540-R
http://ida.water.usgs.gov/ida/index_usgs.cfm
http://ida.water.usgs.gov/ida/index_usgs.cfm
http://water.usgs.gov/watercensus/WaterSMART.html
http://water.usgs.gov/watercensus/WaterSMART.html
https://doi.org/10.1002/hyp.11426

