
Advances in Water Resources 143 (2020) 103672 

Contents lists available at ScienceDirect 

Advances in Water Resources 

journal homepage: www.elsevier.com/locate/advwatres 

A comparison of estimators of the conditional mean under non-stationary 

conditions 

Richard M. Vogel a , ∗ , Charles N. Kroll b 

a Department of Civil and Environmental Engineering, Tufts University, Medford, MA, United States 
b Environmental Resources Engineering, SUNY ESF, Syracuse, NY, United States 

a r t i c l e i n f o 

Keywords: 

Floods 

Droughts 

Natural hazards 

Hydrologic design 

Urbanization 

Climate change 

Streamflow 

Rivers 

Infrastructure 

Hydraulic 

Efficiency 

Robustness 

Resistance 

Parsimony 

Subset 

Update 

Current mean 

a b s t r a c t 

There is increasing attention to the development of a myriad of complex methods for nonstationary frequency 

analysis (NFA) of floods, droughts and other hydrologic processes. We assume that the need for NFA arises from 

well understood deterministic mechanisms of change. A common assumption in NFA, questioned here, is that 

more accurate estimators of hydrologic statistics result when more realistic, complex and sophisticated models 

are employed. By considering the mean annual flood (drought or other hydrologic event), general conditions 

are derived when the sample mean ( SM ) is a more efficient (lower mean square error, MSE ) estimator than a 

regression estimate of the mean ( RM ). We introduce an optimal fractional mean estimator, FM 

∗ , which is simply 

the SM of the most recent period of record nf ∗ , where f ∗ is the optimal fraction of the full sample n , which leads 

to minimum MSE among all possible values of f . Interestingly, FM 

∗ is generally preferred over RM for attained 

significance levels associated with the fitted regression model in excess of about 0.05. Given the considerable 

attention and uncertainty surrounding potential nonstationary conditions, we demonstrate that a parsimonious 

estimator which exploits an optimal recent subset of the historical record may be more attractive than many of 

the more complex nonstationary approaches commonly advocated. 
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. Introduction 

One of the most common challenges facing hydrologists involves a
etermination of ‘design events’ associated with floods, droughts, rain-
all, sediment and other constituent loads as well as a host of other
mportant hydroclimatic variables. Such ‘design events’ are normally
etermined by developing the relationship between the magnitude and
requency of the hydroclimatic variable of interest. This study applies to
early any type of hydrologic frequency analysis (HFA) however most
f our discussions pertain to flood frequency analysis (FFA) and drought
requency analysis (DFA). Readers are encouraged to envision and ap-
ly the findings of this study to other areas of HFA, such as its most
bvious extension to frequency analysis of rainfall, sediment and other
onstituent loads. Critical to nearly all traditional approaches to HFA
n general, and FFA and DFA in particular, is the assumption of sta-
ionarity, loosely defined as conditions when key population statistics
f the variable of interest, such as their moments or L-moments, and/or
robability distribution function (PDF) parameters, do not systemati-
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ally change over time. We distinguish between stationary and nonsta-
ionary FFA using the notation SFFA and NFFA, respectively. 

Over the past decade, there has been a surge of literature on the topic
f NFFA as evidenced from recent review articles and special journal is-
ues (e.g. Khaliq et al., 2006 ; Petrow and Merz, 2009 ; Kiang et al., 2011 ;
alas et al., 2012 ; Madsen et al., 2013 ; Hall et al., 2014 ; Bayazit, 2015 ;
alas et al., 2018 ; Francois et al., 2019 ). In spite of this recent surge of
iterature on NFFA, Serago and Vogel (2018) describe the current situ-
tion: (1) there is no consensus on the need for NFFA, (2) considerable
ebate exists over whether one should use SFFA or NFFA, in practice,
nd (3) there is no consensus on an appropriate design event to employ
nder nonstationary conditions. Due to the tremendous uncertainty as-
ociated with the impacts of climate change on water resources, this
ack of consensus is to be expected for studies which attempt to capture
he impact of climate change on DFA and FFA (e.g. Koutsoyiannis et al.,
008 ; Hirsch and Ryberg, 2012 ). However, Serago and Vogel (2018) ,
lum et al. (2019) and Hecht and Vogel (2020) cite numerous rea-
ons why the need for NFFA in urbanized or urbanizing watersheds
s paramount. Those three studies argue that when historical trends in
20 
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treamflow series are obvious due to documented changes in historical
and use and/or water infrastructure, it is imperative to provide updated
stimates of design events that reflect current conditions. 

.1. When to consider a nonstationary frequency analysis? 

It is not our goal to provide a comprehensive analysis of the gen-
ral conditions under which a stationary or nonstationary FFA is to
e employed. Even when change is evident in a hydrologic record,
uch changes may not arise from nonstationary processes ( Cohn and
ins, 2005 ; Koutsoyiannis and Montanari, 2015 ). Importantly, one is ill-
dvised to employ NFFA on the basis of information obtained only from
vailable hydrologic records ( Koutsoyiannis, 2016 ; Luke et al., 2017 ;
erinaldi and Kilsby, 2015 ; Serinaldi et al., 2018 ). Given these concerns,
t is only when a very clear physical understanding of the deterministic
auses of nonstationary behavior are present that a nonstationary anal-
sis is warranted, and this is particularly true in any analysis involving
xtrapolation of historical change into the future. Koutsoyiannis and
ontanari (2015) suggest a simple rule to decide if a nonstationary

nalysis is warranted by answering the question: can the change be
redicted in deterministic terms? They argue that only if the answer
s positive is it legitimate to invoke nonstationarity. Examples of such
hysical drivers of nonstationary behavior which could be predicted in
eterministic terms include: changes in climate, numerous forms of land
se change (between forest, agricultural, and urban), increased degree
f artificial drainage (such as tile drainage or ditching), and changing
gricultural practices (including conservation tillage or irrigation). 

A primary assumption inherent in our analysis is that a clear phys-
cal basis and understanding exists concerning the mechanisms which
esult in the nonstationary process under consideration. Thus our study
oes not answer the question of whether or not to employ a stationary
r nonstationary analysis, but rather, we assume that the flood, drought
r other hydrologic series of interest is known to exhibit nonstation-
ry behavior which can be represented in the form of a mathematical
odel. Our analysis then attempts to evaluate a number of different ap-
roaches for estimation of a relatively simple and important statistic,
he “current mean ” (i.e. the conditional mean) of that nonstationary hy-
rologic process. Here we consider a very simple nonstationary model (a
inear regression model) and a very simple statistic (conditional mean),
s opposed to estimating an extreme quantile under more complex non-
tationary conditions. 

Consider the very common problem in which a hydrologic record
f annual maximum (or minimum) streamflow is available which has
een subject to change due to known urbanization processes. In such
ituations the mean annual flood (MAF), along with all other associated
ydrologic statistics, such as the T-year design event, will change over
ime. Thus an important and common question which forms the basis of
his study is how to update the MAF or other hydrologic statistic such
s the T-year design event to reflect current conditions ( Serago and Vo-
el, 2018 ; Blum et al., 2019 ; Hecht and Vogel, 2020 ) when nonstation-
ry processes are known, apriori, to govern hydrologic behavior. Our
entral goal is to examine the level of model and associated estimation
omplexity needed to update the mean of a hydrologic process to reflect
urrent conditions. A natural tradeoff exists between the level of com-
lexity and the reliability of the estimator to be employed. This trade-
ff involves an understanding of the relationship between the sampling
roperties (i.e. bias and mean square error) associated with various es-
imators of the design statistic of interest and the sample size and signif-
cance level (or goodness-of-fit) associated with the fitted nonstationary
odel under consideration. 

The central challenge addressed by this study involves the appropri-
te level of complexity associated with the estimator of a hydrologic de-
ign event when the hydrologic process under consideration is known to
xhibit nonstationary behavior. This question is likely to remain an open
uestion for some time to come, as evidenced from the recent findings of
’Brien and Burn (2014) , Serinaldi and Kilsby (2015) , Luke et al. (2017) ,
u and Stedinger (2018) and Serinaldi et al. (2018) . In a careful compar-
son of the precision (uncertainty) associated with various estimates of
esign flood events using both stationary and nonstationary methods,
uke et al. (2017) found that stationary methods were nearly always
referred over nonstationary approaches. Here we further explore this
ypothesis. 

.2. On the need for parsimonious models 

Serago and Vogel (section 2, 2018 ) review the fundamental virtues
f most widely accepted methods of SFFA which relate to their proven
roperties of robustness, resistance and efficiency, all of which stem
rom the principle of parsimony, and all of which have been given little
r no attention in the area of NFFA. It has long been known that effi-
ient (low MSE ) estimators also tend to be parsimonious ( Box and Jenk-
ns, 1976 ). A parsimonious estimator is one that accomplishes a desired
evel of prediction efficiency with as few model parameters as possible.
erago and Vogel (section 2, 2018 ) document clear evidence of the value
f parsimonious models in both SFFA ( Kuczera, 1982 ; Slack et al., 1975 ;
u and Stedinger, 1992 ; Laio et al., 2009 ; and Di Baldassarre et al., 2009 )
nd NFFA ( Serinaldi and Kilsby, 2015 ; Luke et al., 2017 ; and Yu and
tedinger, 2018 ). Serago and Vogel (2018) and others provide exten-
ive evidence of the value of parsimony in SFFA, and after the three
ecent studies by Serinaldi and Kilsby (2015) , Luke et al. (2017) , and
u and Stedinger (2018) , we expect the principle of parsimony to play
n increasing and equally important role in NFFA. The primary goal of
his study is to contrast the general performance (in terms of robustness
nd efficiency) of various estimators of the conditional mean with an
mphasis on nonstationary conditions. 

.3. Use of a subset of historical record to reflect current watershed 

onditions 

Estimation of streamflow statistics which reflect current watershed
onditions is challenging under nonstationary conditions due to the ever
resent and natural stochastic aspect of streamflow combined with the
act that historical streamflow records may not be representative of
urrent watershed conditions if environmental conditions are chang-
ng. Under nonstationary conditions, multiple anthropogenic impacts
ften occur simultaneously, making it very difficult to attribute and
odel changes in streamflow as a function of climate, land use, water
se and/or other watershed characteristics ( Hirsch, 2011 ; Allaire et al.,
015 ). As an alternative to the development of a predictive model
f streamflow, some authors have suggested using a recent subset of
he streamflow record that better reflects current conditions at a site
han the entire historical record ( Riggs, 1972 ; Gebert et al., 2016 ;
lum et al., 2019 ). For example, in an evaluation of the relationship be-
ween magnitude and frequency of low flows for 15 basins in Wisconsin,
ebert et al. (2016) recommended use of the 1969–2008 period for de-

ermining current streamflow characteristics for design and compliance
urposes, because that period was shown to represent current land use
nd climatic condition, and was generally free of trends and thus could
e considered approximately stationary. Similarly, Riggs (1972) sug-
ests that “[i]f the pattern of regulation of a stream has been consistent
or several years and is expected to continue so, low-flow frequency
urves based on the record for those years may be useful." 

Blum et al. (2019) considered estimation of the 7-day 10-
ear low flow statistic (7Q10) under nonstationary conditions.
lum et al. (2019) performed Monte-Carlo experiments to evaluate the
erformance of a stationary nonparametric quantile estimator applied to
 recent subset of the (nonstationary) annual minimum flow record, in
omparison with using the complete historical flow record. They found
hat a nonparametric stationary quantile estimator fit using the most re-
ent 30 or 50 years of a 75-year record led to improved accuracy and
educed bias of 7Q10 estimators when compared to using the entire
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ow record, under nonstationary conditions. This study takes an anal-
gous approach, with the goal of obtaining more general conclusions
oncerning the value of using the sample mean of a subset of the recent
bserved record (which we term the fractional mean, FM ) as compared
o a more traditional nonstationary regression model estimator of the
ean streamflow (which we term RM ) or employing the entire histori-

al record (which we term SM). 

. Methodology 

.1. Theoretical background and estimators 

To enable us to develop general recommendation regarding the be-
avior of various hydrologic statistics under nonstationary conditions,
n this initial study, we only consider estimation of the current mean, de-
ned as the mean under current conditions. Under stationary conditions
 true mean exists, or in other words, the current mean is always the true
ean. However, the central focus of this work is on nonstationary condi-

ions in which case we define the current mean as the conditional mean
nder ‘current’ watershed conditions. 

Although estimation of the mean may seem trivial compared with
ther statistics, nearly all SFFA and NFFA methods begin with estima-
ion of the mean. Consider the problem of fitting a nonstationary PDF
o a series of annual maximum floods (AMF) denoted by x or its natu-
al logarithm y . Any application of either SFFA or NFFA will typically
nvolve estimation of the mean of either x or y (or both), depending on
hich PDF estimation method is used. Our results are general and apply

o the mean 𝜇z , of any variable z regardless of its PDF. In this section we
ntroduce several estimators of 𝜇z suitable for NFFA. An example of the
mportance of estimation of the mean would be in low flow frequency
nalysis when the annual minimum 7-day low flows follow a lognormal
istribution. In that case the widely used 7-day 2-year low flow statis-
ic is simply the mean of the logarithms of the annual minimum 7-day
ows. 

.2. Conditional mean of a nonstationary hydrologic process 

Most existing approaches to NFFA, summarized in review articles
y Khaliq et al. (2006) , Petrow and Merz (2009) , Kiang et al. (2011) ,
alas et al. (2012) , Madsen et al. (2013) , Ehret et al. (2014) ,
all et al. (2014) , Bayazit (2015) , Salas et al. (2018) , and
rancois et al. (2019) , involve fitting PDFs whose parameters and/or
oments are related to exogenous variables which are in turn are re-

ated to drivers of nonstationary behavior. Here we relate streamflow to
n exogenous variable using a bivariate regression model: 

 = 𝜇𝑧 + 𝛽
(
𝑤 − 𝜇𝑤 

)
+ 𝜀 (1)

here z and 𝜇z represent the streamflow variable of interest and its un-
onditional mean, respectively, w and 𝜇w represent an explanatory vari-
ble and its mean, respectively, 𝛽 is the trend slope coefficient and 𝜀 is
odel error which is assumed to have zero mean and constant variance
ith 𝜎2 

𝜀 
= 𝜎2 

𝑧 
( 1 − 𝜌2 ) where 𝜌 denotes the Pearson correlation coefficient

etween z and w . 
The model in (1) is not limited to linear relationships because a wide

ange of monotonic non-linear functions can be linearized with trans-
ormations, such as Tukey’s ladder-of-powers ( Helsel et al., 2020 ), en-
bling the application of a variety of linear regression methods for fitting
ighly nonlinear relationships. In addition to the ability to model non-
inear trends, there are numerous other advantages of regression meth-
ds outlined by Serago and Vogel, 2018 including: rigorous graphical
isplays, parsimony, prediction intervals associated with trend extrap-
lations, accommodation of complex multivariate relationships, and an
bility to account for missing observations, abrupt changes, and the im-
act of stochastic persistence. 

The streamflow variable z could be a series of streamflows, x , their
atural logarithms, y, or some other suitable transformation. Here we
mphasize that the unconditional mean, 𝜇z , is of little value to NFFA
ecause it does not generally exist for a nonstationary process, though
t can be interpreted as the conditional mean of z when w = 𝜇w 

The model error term 𝜀 in (1) is often treated as an independent and
dentically distributed random variable, in spite of our now widespread
nowledge that some hydrologic processes exhibit heteroscedasticity
 Hecht and Vogel, 2020 ), stochastic persistence and possibly determin-
stic trends ( Cohn and Lins, 2005 ). Ignoring stochastic persistence in (1) ,
hen it exists, would lead to incorrect statistical inference concerning

he variance of the estimators of the model parameters 𝛽 and 𝜇z , issues
entral to this study. Matalas and Sankarasubramanian (2003) provide
pproximations to the inflation in the variance associated with estima-
ors of 𝛽 in (1) when 𝜀 arises from Markov, ARMA(1,1) and Fractional
aussian Noise stochastic processes. However, it is extremely difficult

o identify such higher order stochastic persistence structures in typical
ydrologic records (see examples in Vogel et al . , 1998 ), thus in this ini-
ial study we assume that 𝜀 arises from a serially independent stochastic
rocess and we encourage future investigators to employ the results of
atalas and Sankarasubramanian (2003) to extend the analysis which

ollows. 
The regression coefficient 𝛽 in (1) is defined by 

= 𝜌
𝜎𝑧 

𝜎𝑤 
(2) 

here 𝜎z and 𝜎w denote the standard deviation of z and w , respectively.
The conditional mean is the expected value of z conditioned upon w ,

enoted 𝜇z | w , and is obtained by taking the expectation of (1) to obtain:

𝑧 |𝑤 = 𝜇𝑧 + 𝛽
(
𝑤 − 𝜇𝑤 

)
(3) 

ecause E [ 𝜀 ] = 0. See Serago and Vogel (2018) for the derivation
f other conditional moments of regression in (1) . Numerous au-
hors have employed a regression model of the form given in (3) in
FFA. For example, Vogel et al. (2011) , Prosdocimi et al. (2014) and
rady et al. (2019) found (1) (with z equal to the logarithm of the an-
ual maximum flood (AMF) series and w equal to time) to be useful for
odeling flood series at hundreds of rivers in the U.S. and the U.K., re-

ardless of whether or not trends exist. We highlight the multilevel or
anel version of (1) employed by Brady et al. (2019) which accounts for
nteractions among sites in a region in a Bayesian framework. Hirsch and
yberg (2012) used (1) to relate the natural log of AMF series at 200

ong term rivers in the US to the covariate w equal to carbon dioxide
oncentrations. We emphasize that the form of the regression model in
1) and (2) makes no assumption regarding the PDF of z. 

.3. Regression estimator of conditional mean, RM 

A regression estimator of the conditional mean, 𝜇z | w , termed RM,
ay be obtained using ordinary least squares estimators, in which case:

𝑀 = 𝑧̄ + 𝛽( 𝑤 − 𝑤̄ ) (4)

here 

𝛽 = 𝜌̂
𝜎̂𝑧 

𝜎̂𝑤 
, 𝜌̂ = 𝑟 = 

∑𝑛 

𝑖 =1 
(
𝑤 𝑖 − 𝑤 

)
⋅
(
𝑧 𝑖 − 𝑧 

)√ ∑𝑛 

𝑖 =1 
(
𝑤 𝑖 − 𝑤 

)2 ∑𝑛 

𝑖 =1 
(
𝑧 𝑖 − 𝑧 

)2 
̂𝑧 = 

√ √ √ √ 

1 
𝑛 − 1 

𝑛 ∑
𝑖 =1 

(
𝑧 𝑖 − 𝑧 

)2 
, 𝑧 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑧 𝑖 , 

̂𝑤 = 

√ √ √ √ 

1 
𝑛 − 1 

𝑛 ∑
𝑖 =1 

( 𝑤 𝑖 − 𝑤̄ ) 2 , 𝑤̄ = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑤 𝑖 . 

As is standard practice, hats over greek symbols are used to de-
ote sample estimators. The correlation estimator 𝜌̂ = 𝑟 is the common
earson correlation coefficient estimator (see Barber et al . 2019 ). We
onsider the special case in which the explanatory variable w is time ,
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hich is not a random variable. For this case, with no missing obser-
ations, Prosdocimi et al. (2014 , Appendix A3) derive expressions for
he sample mean and variance of w = time given by 𝑤̄ = ( 𝑛 + 1 )∕2 and
̂ 2 
𝑤 
= 𝑛 ( 𝑛 + 1 )∕12 where w = 1, 2, ..., n . We are interested in estimating

he current mean, defined as the conditional mean when w = n . 

.4. The fractional sample mean, FM, and sample mean, SM 

Suppose a record of streamflow is available over the past n years
hich is known to exhibit nonstationary behavior due to known deter-
inistic effects, and guidance exists for selecting a subset of the entire

ecord which best represents current watershed conditions. Consider as
n alternative to the RM , a fractional mean estimator FM , which is sim-
ly the sample mean of the most recent n • f years of record where f
enotes the fraction of the most recent record of n observations which
epresents current watershed conditions. A fractional mean estimator
M based on a sample z 1 , z 2, ... z n − nf , z n − nf + 1 , ..., z n is defined as 

M = 

1 
𝑛𝑓 

𝑛𝑓 ∑
𝑖 =1 

𝑧 𝑛 − 𝑛𝑓+ 𝑖 (5)

Note that the sample mean of the entire historical record, 𝑧̄ defined
n (4) and referred to hereafter as SM , is a special case of the FM , when
 = 1 . 

We derive an optimal fractional mean estimator FM 

∗ , which employs
5) with an optimal fraction f termed f ∗ , derived in the next section as
hat value of f which leads to a minimum MSE of the FM estimator. For
xample, suppose a sample of length n = 50 is available and one has
nowledge that the last n • f = 30 years are representative of current
atershed conditions. Thus 𝑓 = 30 ∕ 50 = 0 . 6 , and FM in (5) would be

imply the sample mean of the last 30 values of z. 

.5. The attained significance level of a regression model 

In addition to having solid physical evidence corresponding to the
ausative mechanisms for a trend in a hydrologic process, investiga-
ors often augment such physical knowledge with a hypothesis test
ssociated with the estimated regression slope based on hydrologic
easurements. This is in spite of the numerous concerns over null
ypothesis significance testing summarized by Vogel et al. (2013) ,
erinaldi et al. (2018) and others cited therein. Normally a critical signif-
cance level 𝛼 of say 0.05 is assumed, and then an attained significance
evel p is computed from the data, which indicates the smallest level of
ignificance at which the null hypothesis of no trend ( 𝛽 = 0) is rejected.
e assume that one has good physical evidence of the direction of the

rend, if it exists, thus the sign of the alternative hypothesis would be ei-
her 𝛽 < 0 or 𝛽 > 0, in which case, if the attained significance level p < 𝛼,
ne should have enough evidence to reject the null hypothesis and thus
upport the alternative nonstationary analysis. Assuming the regression
odel residuals are normally distributed, the attained significance level
 for such a one-sided test can be computed from (see Helsel et al., 2020 )

 = 1 − 𝑃 

[ 

𝑡 𝑛 −2 ≤ 

𝜌
√
𝑛 − 2 √
1 − 𝜌2 

] 

(6)

here P [] denotes the cumulative probability operator and t n − 2 rep-
esents a Students-t variate with n-2 degrees of freedom. We express
he attained significance level p in (6) as a function of the true correla-
ion 𝜌, rather than a sample estimator as is typical in hypothesis testing.
nstead, we are only employing this relationship for the purpose of in-
egrating the impact of both sample size and correlation on resulting
ttained significance levels. 

Given concerns raised earlier in Section 1.1 , as well as the fact that
he hypothesis test in (6) does not account for the inflation in variance
f the 𝛽 estimator due to possible stochastic persistence associated with
he model errors 𝜀 in (1) , we do not advocate the use of this or other
ypothesis tests to evaluate whether to perform a SFFA or NFFA. In ad-
ition to those concerns, the result of such tests do not provide critical
nformation concerning the robustness or efficiency of the resulting es-
imators, RM and FM in (4) and (5) , respectively. Instead we employ the
ttained significance level p in (6) in later comparisons as a metric which
easures the impact of both sample size n, and correlation coefficient

, thus reducing the dimensionality of our comparative assessments. 

.6. Comparisons among estimators of the condional mean 

If an estimator 𝜃̂1 is more efficient than 𝜃̂2 , the estimator 𝜃̂1 will yield
 “better ” estimate of the statistic 𝜃 than 𝜃̂2 . The notion of a “better ”
stimator of a statistic relies upon the choice of a loss function corre-
ponding to the problem of interest, where a loss function quantifies the
elative economic and other losses associated with estimation errors.
mong statisticians, the most common choice of the form of a loss func-

ion is quadratic, resulting in the mean squared error ( MSE ) criterion of
ptimality (see Everitt, 2002 , page 128). One can define the efficiency
f the estimator 𝜃̂1 relative to the estimator 𝜃̂2 using 

ff
[
𝜃̂1 , ̂𝜃2 

]
= 

𝐸 

[(
𝜃̂2 − 𝜃

)2 ]
𝐸 

[(
𝜃̂1 − 𝜃

)2 ] = 

MSE 
[
𝜃̂2 
]

MSE 
[
𝜃̂1 
] (7) 

here MSE denotes mean square error. In general, when 𝐸𝑓 𝑓 [ ̂𝜃1 , ̂𝜃2 ] >
 , the estimator 𝜃̂1 is said to be more efficient than 𝜃̂2 and is thus pre-
erred over the estimator 𝜃̂2 for estimation of 𝜃

It is well known that the MSE , variance and bias of an estima-

or are related via MSE [ ̂𝜃] = 𝐸[ ( ̂𝜃 − 𝜃) 2 ] = ( 𝐸[ ̂𝜃] − 𝜃) 2 + 𝐸[ ( ̂𝜃 − 𝐸[ ̂𝜃]) 2 ] =
ias [ ̂𝜃] 2 + Var [ ̂𝜃] , so that an unbiased estimator has MSE equal to its
ariance. Thus if both estimators are unbiased, then the efficiency in
7) reduces to the ratio of the variances of both estimators. To enable
omparisons among estimators under both stationary and nonstation-
ry conditions using the concept of efficiency in (7) , we derive analyt-
cal expressions for the bias, variance and MSE of the estimators in the
ollowing sections. 

.7. MSE of estimators under stationary conditions 

Under stationary conditions, the current mean is equal to 𝜇z which
oes not change over time, and both 𝜌 = 0 and 𝛽 = 0 in Eqs. (1) –(3) .
nder stationary conditions, RM, SM and FM are unbiased estimators of

he true mean, regardless of the value of f , thus their MSE is made up
ntirely of their variance, so that for any independent and identically
istributed series of (potentially transformed) streamflows z: 

SE 𝑆 [ FM ] = Var 𝑆 [ FM ] = 

𝜎2 
𝑧 

𝑛 ⋅ 𝑓 
(8)

ith the subscript S denoting stationary conditions.
elsel et al. (2020) report the variance of a regression estimator
f the mean in the current year n , which can be combined with the
ean and standard deviation of w given in (4) to obtain 

SE 𝑆 [ RM ] = Var 𝑆 [ RM ] = 𝜎2 
𝑧 

(
1 − 𝜌2 

)[ 

1 
𝑛 
+ 

(
𝑛 − 𝑤 

)2 
𝑛 ̂𝜎2 

𝑤 

] 

= 𝜎2 
𝑧 

⎡ ⎢ ⎢ ⎢ ⎣ 
1 
𝑛 
+ 

(
𝑛 − 

𝑛 +1 
2 

)2 

𝑛 

(
𝑛 ( 𝑛 +1 ) 
12 

) ⎤ ⎥ ⎥ ⎥ ⎦ (9) 

ince under stationary conditions 𝜌 = 0. 

.8. MSE of estimators under nonstationary conditions 

We focus on the current mean in year n (w = n) which would reflect
urrent conditions at the end of the streamflow record. Under nonsta-
ionary conditions, the current mean is equal to the conditional mean
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under stationary conditions. Note that SM = FM when f = 1. 
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f z in year n denoted 𝜇z | w = n , in which case RM is unbiased, but FM

and thus SM ) will always be biased, regardless of the value of f (un-
ess n • f = 1). One can rewrite the expression for FM in (5) using the
egression model for z given in (1) which leads to the bias of FM under
onstationary conditions: 

ia 𝑠 NS [ FM ] = 𝐸 [ FM ] − 𝜇𝑧 |𝑤 = 𝑛 
= 𝐸 

[ 

1 
nf 

nf ∑
𝑖 =1 

[
𝜇𝑧 + 𝛽

[(
𝑛 − nf + 𝑖 

)
− 

(
𝑛 + 1 
2 

)]
+ 𝜀 𝑖 

]] 

− 

[
𝜇𝑧 + 𝛽

[
𝑛 − 

(
𝑛 + 1 
2 

)]]
= 

𝛽
(
1 − nf 

)
2 

(10) 

here the subscript NS denotes nonstationary conditions. Eq. (10) re-

ults from the fact that 𝐸[ 
𝑛𝑓 ∑
𝑖 =1 

𝑖 ∕ ( 𝑛 ⋅ 𝑓 ) ] = ( 1 + 𝑛𝑓 ) ∕2 and E [ 𝜀 ] = 0. For a

iven sample size n , the bias in FM increases as both 𝛽 and f increase.
nder nonstationary conditions, each observation z is defined in (1) as
 = 𝜇z + 𝛽( w − 𝜇w ) + 𝜀 . Noting that the first two terms are not random
ariables, thus Var ( z ) = Var ( 𝜀 ), so that Var NS [ FM ] = Var S [ FM ] in Eq. (8) ,
o that the MSE of the fractional mean is given by the sum of its bias
quared and its variance: 

SE NS [ FM ] = 

( 

𝛽( 1 − 𝑛𝑓 ) 
2 

) 2 
+ 

𝜎2 
𝑧 

(
1 − 𝜌2 

)
𝑛𝑓 

(11a)

hich can be simplified using the fact that 𝛽 =
𝜎𝑧 ∕ 𝜎𝑤 = 𝜌𝜎𝑧 

√
12 ∕ ( 𝑛 ( 𝑛 + 1 ) ) , resulting in 

SE NS [ FM ] = 𝜎2 
𝑧 

[ 
3 𝜌2 ( 1 − 𝑛𝑓 ) 2 

𝑛 ( 𝑛 + 1 ) 
+ 

1 − 𝜌2 

𝑛𝑓 

] 
(11b) 

Under nonstationary conditions RM in (4) is unbiased, thus its MSE

s equal to its variance. Helsel et. al. (2020) report the variance of RM ,
hich can be combined with the mean and standard deviation of w given

n (4) and taking w = n to obtain 

SE 𝑁𝑆 [ RM ] = Var NS [ RM ] = 𝜎2 
𝑧 

(
1 − 𝜌2 

)[ 

1 
𝑛 
+ 

( 𝑛 − 𝑤̄ ) 2 

𝑛 ̂𝜎2 
𝑤 

] 

= 𝜎2 
𝑧 

(
1 − 𝜌2 

)⎡ ⎢ ⎢ ⎢ ⎣ 
1 
𝑛 
+ 

(
𝑛 − 

𝑛 +1 
2 

)2 

𝑛 

(
𝑛 ( 𝑛 +1 ) 
12 

) ⎤ ⎥ ⎥ ⎥ ⎦ (12) 

.9. The optimal fractional sample mean, FM 

∗ 

Here we introduce an optimal fractional mean denoted FM 

∗ , as that
alue of FM which exhibits minimum MSE under nonstationary condi-
ions. This is accomplished by deriving the optimal fraction f , denoted
 

∗ , for which MSE NS [ FM ] is minimized. The function MSE NS [ FM ] given
n (11) is minimized with respect to f by setting its first derivative equal
o zero ( 𝜕𝑀𝑆 𝐸 𝑁𝑆 [ 𝐹 𝑀 ] ∕ 𝜕𝑓 = 0 ) and solving the resulting expression for
. The resulting optimal value of f , termed f ∗ , can be computed from 

= 

√ 

𝑛 + 1 
6 ( 𝑓 ∗ ) 2 𝑛 ( 𝑓 ∗ 𝑛 − 1 ) + 𝑛 + 1 

(13) 

When the optimal fraction f ∗ is substituted into the estimator FM

iven in (5) we obtain the optimal fractional mean estimator FM 

∗ , given
y 

M 

∗ = 

1 
𝑛 𝑓 ∗ 

𝑛 𝑓 ∗ ∑
𝑖 =1 

𝑧 𝑛 − 𝑛 𝑓 ∗ + 𝑖 (14) 

FM 

∗ has the unique property under nonstationary conditions of yield-
ng an estimator of the sample mean with both minimum MSE as well
s maximum efficiency relative to the regression estimator of the mean
M , as long as the correlation is known. Monte Carlo experiments are
erformed to evaluate the sampling properties of FM 

∗ when the corre-
ation is unknown. 
. Results 

We use the expressions for MSE and efficiency derived in the previous
ection to evaluate the general conditions under which one can expect
M 

∗ to exhibit greater efficiency than either the sample mean ( SM = FM

ith f = 1) or the regression estimator RM , under stationary and non-
tationary conditions. All previous derived theoretical expressions for
ias, MSE and efficiency of the various estimators are a function of the
ample size n and the population correlation 𝜌. All such analytical the-
retical expressions for RM were derived assuming that in practice, an
stimate of 𝜌 is obtained from the Pearson correlation coefficient esti-
ator r given in (4) . Since an estimate of 𝜌 is also needed to implement

M 

∗ and we could not obtain analytical results for its Bias, MSE or ef-
ciency when an estimate of 𝜌 is used, Monte-Carlo experiments are
erformed to consider the additional uncertainty associated with FM 

∗ 

esulting from the necessity to estimate 𝜌. 

.1. Results – stationary conditions 

Unlike nonstationary conditions, under stationary conditions a true
ean exists and a comparison among the estimators, SM, FM, FM 

∗ and
M , is relatively simple because they are all unbiased, so their efficiency
efined in (7) reduces to the ratio of their variances. For example, the
fficiency of the sample mean SM r elative to the fractional mean FM is
qual to 1/ f , which we denote as 𝐸𝑓 𝑓 [ 𝑆𝑀, 𝐹 𝑀 ] = 1∕ 𝑓 , so that under
tationary conditions, SM is always more efficient than FM because if f <
, then Eff[ SM, FM ] > 1 . The efficiency of FM relative to RM , under sta-
ionary conditions, denoted as Eff[ FM, RM ], is obtained by substitution
f Eqs. (8) and (9) into (7) which can be simplified to 

ff [ FM , RM ] = 

𝑓 
(
4 𝑛 2 − 5 𝑛 + 3 

)
𝑛 ( 𝑛 + 1 ) 

(15) 

ecause under stationary conditions, the correlation coefficient 𝜌 = 0.
ig. 1 summarizes the efficiency of FM relative to RM under stationary
onditions and also enables us to make a general efficiency comparison
etween FM, FM 

∗ , RM and SM . Perhaps the most interesting result in
ig. 1 involves the efficiency of SM relative to RM , which corresponds to
he value of Eff[ FM, RM ] when f = 1. The range of efficiencies of SM over
M correspond approximately to 3 < Eff[ SM, RM ] < 4 (for 10 ≤ n ≤ 100),
o under stationary conditions, SM will yield estimators of the mean
ith 3–4 times lower MSE than RM , even though both estimators are
nbiased under those conditions. This result dramatizes the influence
f the added uncertainty associated with RM over SM , resulting from
aving to estimate the regression slope 𝛽. 
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As expected, Fig. 1 also illustrates that under stationary conditions,
M is always preferred over FM (for f < 1), regardless of the value of
 , thus under those conditions, SM is also always preferred over FM 

∗ 

for f < 1). Fig. 1 also illustrates that FM is nearly always preferred
ver RM for values of f in excess of approximately 0.3. As is shown
ater on, the optimal fractional mean FM 

∗ usually employs values of f
ignificantly greater than 0.3, thus FM 

∗ will usually be preferred over
M , under stationary conditions. These findings are analogous to some
arly flood frequency studies which documented the general conditions
nder which an ‘at-site’ estimator is to be preferred over one based on
he use of a regional regression model ( Hebson and Cunanne, 1987 ). 

In summary, under stationary conditions and f < 1, SM is gener-
lly preferred to all other estimators considered, followed by FM (with
 < 1 ), which is generally preferred to RM . Note that the gains in ef-
ciency reported in Fig. 1 of SM over FM and of SM over RM are of-
en rather considerable, and emphasize the need to employ stationary
ethods when stationary behavior cannot be rejected on the basis of a
eterministic analysis as discussed in Section 1.1 . Under nonstationary
onditions, this ranking among the estimators is more complex and very
ifferent, highlighting the need to consider both stationary and nonsta-
ionary conditions in any hydrologic frequency analysis as emphasized
y Vogel et al. (2013) , Rosner et al. (2014) , and Salas et al. (2018) . 

.2. Results - nonstationary conditions - RM, FM and SM 

Under nonstationary conditions, a true mean does not exist, and in-
tead, the mean is changing over time. Unlike the stationary case when
ll the estimators, SM, FM, FM 

∗ and RM , were unbiased; under nonsta-
ionary conditions, only RM is unbiased, and only when the true nonsta-
ionary model in (1) is known, as is assumed here. The bias associated
ith both FM and SM can be evaluated using (10) , noting that when f = 1,

M reduces to SM . In general, the sign of the bias associated with FM

ill depend on the sign of the slope coefficient 𝛽. For positive (negative)
rends, E[FM] will generally be smaller (larger) than its true value, with
hat bias increasing as both f and n increase. 

We begin by exploring Eff[ SM, RM ] as a function of 𝜌 and n in Fig. 2
or nonstationary conditions, which is obtained by combining (7) , with
11, assuming f = 1 ), and (12) . Also shown in Fig. 2 are conditions of
SE equivalence among the two estimators, which occurs when Eff[ SM,

M ] = 1 (i.e. MSE of SM is equal to the MSE of RM ). Fig. 2 illustrates that
or very small values of 𝜌, SM is generally preferred over RM . In contrast,
e note that for larger values of 𝜌, RM exhibits much lower MSE than
M . Clearly, the values of n and 𝜌 are of considerable importance in
nderstanding the advantages of RM over SM , and vice versa. 

To understand the behavior of Eff[ SM, RM ] more fully, Fig. 3 su-
erimposes the relationship between n , 𝜌, and the attained significance
evel p (given in (6) ) over the relationship between Eff[ SM, RM ], n and
given by substitution of (11, with f = 1) and (12) into (7) for the cases
hen Eff[ SM, RM ] = 1 and when Eff[ SM, RM ] = 1/2. Note that the con-
ition Eff[ SM, RM ] = 1/2 in Fig. 3 implies that RM is preferred over SM

ecause under those conditions RM has twice the information content
or half the variance) of SM . Values of p were adjusted, until both of the
uperimposed relationships in Fig. 3 , roughly line up with each other.
he important result in Fig. 3 is that under nonstationary conditions,
SE equivalence between RM and SM ( Eff[ SM, RM ] = 1) occurs when

he attained significance level associated with the fitted regression is
pproximately equal to 17%. This result emphasizes that the estimator
M will have lower MSE than SM when the attained significance level

s below about 17%. It is common practice to choose the regression es-
imator RM over the SM when significance levels are below 5% or 10%.
ig. 3 illustrates that use of a 5% or 10% level test as is common practice,
orresponds to conditions under which RM will have considerably more
nformation than SM thus perhaps a higher significance level (roughly
7%) may be a more appropriate significance threshold, in practice. 

.3. Results – nonstationary conditions – optimal fractional mean, FM 

∗ 

The critical question addressed in this section is whether or not a
ample mean of an optimal subset of the historical record can be used
o improve upon the performance of RM under nonstationary conditions.

e begin by illustrating the peaked nature of the relationship between
ff[ FM, RM ] and f in Fig. 4 (a), which was constructed by combining
7) with (11) and (12) for the cases when 𝜌 = 0.2 and n = 10, 25 and
00, values close to those typically encountered in practice. We note that
or a given information content associated with the historical record,
s evidenced by the combined values of n and 𝜌, there always exists a
aximum value of Eff[ FM, RM ] corresponding to a single optimal value

f f which we term f ∗ . For values of f either greater or less than f ∗ , there
s a decrease in Eff[ FM, RM ]. Fig. 4 a shows that for 𝜌 = 0.2 and n = 25,
ny FM estimator with 0.3 < f < 0.95 is more efficient than RM . The
eneral relationship between the optimal fraction f ∗ and values of n and
, given in (13) , is illustrated in Fig. 4 b. 

Fig. 5 a displays the efficiency of FM 

∗ relative to RM as a function
f 𝜌 and n , under nonstationary conditions, computed by combining
7) with (11) and (12) with the optimal value f ∗ computed from (13) .
ig. 5 a shows that for the cases when n = 10 and n = 100, correlations
n excess of about 0.5 and 0.2 are needed, respectively, for RM to have a
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ower MSE than FM 

∗ . This is an important result because correlations of
rend models for common hydrologic series typically exhibit relatively
ow correlations, often in the range in which FM 

∗ is likely to have lower
SE than RM. Rather than citing examples of typical reported trend

orrelations, this issue is explored further below, using attained signif-
cance levels, which combine the impact of both sample size and the
agnitude of the correlation coefficient. In Section 4.0 we report re-

ults from a study by Douglas et al. (2000) which documents the range
f attained significance levels observed in practice for both flood and
ow streamflows. 

Fig. 5 a also indicates that the efficiency of FM 

∗ relative to RM be-
omes extremely large as 𝜌 approaches zero because under those con-
itions FM 

∗ approaches SM (and f ∗ = 1 as shown in Fig. 4 b) in which
ase SM has a much lower MSE than RM as was shown earlier in Fig. 2 .
ig. 5 a is important, because it shows that even though RM is an unbi-
sed estimator under nonstationary conditions, FM 

∗ (and even SM) both
ave much lower MSE than RM when 𝜌 approaches zero, due to added
ncertainty associated with having to estimate the slope coefficient 𝛽.
e conclude that the values of both 𝜌 and n are central to determining
ow much better FM 

∗ and SM are, compared to RM under nonstation-
ry conditions. Fig. 5 b illustrates the efficiency of FM 

∗ relative to SM as
 function of both 𝜌 and n , which documents the considerable gains in
fficiency of FM 

∗ over SM as both n and 𝜌 increase. We conclude from
ig. 5 b that FM 

∗ is always an improvement over SM under nonstationary
onditions. 

Perhaps our most important practical result is illustrated in Fig. 6 ,
hich is analogous to Fig. 3 , because it was constructed by superimpos-

ng the relationship between n, 𝜌 and p (given in (6) ), over the relation-
hip between Eff[ FM 

∗ , RM ], n and 𝜌 given by substitution of (11 with
 

∗ given in 13) and (12) into (7) . The important result in Fig. 6 is that
SE equivalence between FM 

∗ and RM occurs approximately when the
ttained significance level associated with the fitted regression is equal
o approximately 5%. 

Fig. 6 also reports conditions when Eff[ FM 

∗ , RM ] = 1/2 which im-
lies that RM is preferred over FM 

∗ because under those conditions RM

as twice the information content (or half the variance) of FM 

∗ . Inter-
stingly even though both RM and FM 

∗ are designed to perform well
nder nonstationary conditions, RM is generally dominated by FM 

∗ un-
ess significance levels are below 0.05. This result emphasizes that for
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Fig. 6. Relationship between correlation coefficient 𝜌, record length n and at- 

tained significance level p when the efficiency of FM 

∗ relative to RM, Eff[ FM 

∗ , 

RM ], is equal to 1 and 2 under nonstationary conditions. 
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M to have clear advantages over F M 

∗ , would require attained signifi-
ance levels considerably lower than 5%. 

.4. Impact of uncertainty in estimation of 𝝆 on MSE NS [ FM 

∗ ] 

Until now, we have assumed knowledge of the true correlation 𝜌 .
n this section, we consider the ramifications of having to estimate 𝜌
sing the common Pearson correlation coefficient estimator, denoted
. Barber et al. (2019) provide a recent review of literature on estima-
ion of 𝜌 for skewed hydrologic processes. Our theoretical derivation of
SE NS [ FM 

∗ ] (computed by combining (7) with (11) and (12) with the
ptimal value f ∗ computed from (13) ), ignores uncertainty associated
ith the estimator of 𝜌 needed to estimate f ∗ in FM 

∗ . Monte Carlo ex-
eriments are performed to evaluate the impact of uncertainty in the
estimator, which in turn is needed to compute f ∗ , FM 

∗ and finally
SE NS [ FM 

∗ ]. Simulation of uncertainty associated with an estimate of
(denoted r ) is implemented using an approximation to what is termed

he non-null sampling distribution of r, which describes the distribution
f r when the regression model in (1) governs. Fisher (1915, 1921) first
ntroduced exact expressions for the non-null sampling distribution of r
or large and small samples. Due to their numerical complexity, numer-
us approximations have been introduced over the years. We employ
raemers (1973) approximation who showed that if r is an estimator of

he correlation coefficient based on a sample of n observations drawn
rom a bivariate normal distribution with correlation coefficient 𝜌, then
he statistic 

 = 

( 𝑟 − 𝜌) 
√
𝑛 − 2 √ (

1 − 𝑟 2 
)(
1 − 𝜌2 

) ∼ 𝑡 𝑛 −2 (16)

s approximately distributed as Students-t with n -2 degrees of freedom.
sing (16) we generate 10,000 values of r corresponding to a wide range
f values of 𝜌 for the two cases n = 25 and n = 100. For each true
alue of 𝜌 considered, the 10,000 generated values of r are used to es-
imate 10,000 values of f ∗ , which are then used to compute 10,000 val-
es of Eff[ FM 

∗ , RM ]. Fig. 7 compares the mean (or steady state) value
f Eff[ FM 

∗ , RM ] from those Monte-Carlo experiments with the theoret-
cal value of Eff[ FM 

∗ , RM ] which ignores uncertainty in our estimator
f f ∗ (plotted earlier in Fig. 5 a). Interestingly, for large samples (i.e.
 = 100) the (approximate) analytical and (exact) Monte-Carlo results
re in very good agreement, especially for values of 𝜌 in excess of about
.2. For smaller samples, accounting for uncertainty in the estimator of
 

∗ leads to slightly lower efficiencies, Eff[ FM 

∗ , RM ], than expected on
he basis of our analytical results. Additional Monte-Carlo experiments
re needed to formulate more general conclusions for a wider range of
onditions. 

. Discussion 

We have shown that the decision as to which estimator of the condi-
ional mean to use can be expressed as a function of the attained signif-
cance level p, which in turn is a complex function of the explanatory
ower of the trend and sample size as summarized by the values of 𝜌 and
, respectively. If the Monte-Carlo and analytical results in Fig. 7 were in
xact agreement, our analytical results would yield both exact and gen-
ral decision rules regarding which estimator of the conditional mean
o apply for a given observed value of attained significance level, when
he true nonstationary model is known. However, given the results in
ig. 7 , the resulting decision rules are only approximate, yet still could
e quite useful in practice. Fig. 7 documents that our decision rules are
nly approximate for small values of n and 𝜌, yet are nearly exact for
arger values. The approximate decision rules concerning the applica-
ion of the three estimators of the conditional mean, SM, FM 

∗ , and RM,

an be summarized as follows: 

1. Under stationary conditions all three estimators are unbiased, but
SM is always preferred because it exhibits the lowest variance and
thus the lowest MSE , followed by FM (with f < 1), which is generally
preferred to RM . 

2. Under nonstationary conditions RM is the only unbiased estimator
considered, and the attained significance level p approximates which
estimator is preferred. When p < 0.05 RM is generally preferred, and
when p > 0.05 FM 

∗ is generally preferred over RM . When p < 0.17,
RM is generally preferred to SM . 

Our results indicate that the decision as to whether to employ RM,

M 

∗ or SM under nonstationary conditions depends critically upon the
ttained significance levels associated with the trend in the range of p
 0.17. Such values of attained significance levels are commonplace in

rend assessments concerning hydrologic series. For example, in a na-
ional study of trends in low flow and flood flow discharges at unreg-
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stochastic processes. 
lated watersheds across the U.S. over a 50 year period, Douglas et al.
2000 , Table 2) found attained significance levels for low flow trends
aving a mean of 0.132 and a range from 0.007 to 0.429, and for flood
ow trends a mean of 0.264 and a range from 0.035 to 0.386. 

It is important to note that our results assume full knowledge of
he true underlying structure of the nonstationary model. Naturally in
ractice one would not know a priori the form of the nonstationary
rend model nor the form of any stochastic persistence present in the
treamflow observations. Such knowledge may be critical in practice,
hus future experiments are needed to evaluate the robustness of our
ndings under (1) different nonstationary model structures, (2) possible
eteroscedasticity of the model residuals (see Hecht and Vogel, 2020 ),
nd (3) different forms of stochastic persistence. 

. Conclusions 

There is a constant evolution of the field of hydrologic frequency
nalysis (HFA). Serago and Vogel (2018 , Section 2) reviewed early de-
elopments in HFA in the 1970’s and 1980’s which led to the widespread
ppreciation of the superiority of, and need for parsimonious estima-
ors for use in SFFA, because they generally yield more efficient esti-
ators of design event quantiles than more complex models. In spite

f the tremendous increase in the literature on NFFA, we could only
nd a few studies which have documented the value of parsimonious
stimators such as the FM 

∗ estimator introduced here. The findings
f this study, along with recent work by Serinaldi and Kilsby (2015) ,
uke et al. (2017) , and Yu and Stedinger (2018) , provide substantial
upport for understanding and promoting the value of parsimonious es-
imators in NFFA . 

This study is the first effort to develop a general decision rule con-
erning which estimator of a conditional mean to employ under non-
tationary conditions. We have compared the performance of three esti-
ators of the conditional mean, FM 

∗ , SM and RM . The estimator SM

s the most parsimonious estimator of the mean possible, because it
s nonparametric and requires no parameters. In contrast FM 

∗ and RM

re both parametric estimators because FM 

∗ requires an estimate of f ∗ ,
he optimal fraction of the most recent record to employ, and RM re-
uires an estimate of both 𝜇z and 𝛽, regression model parameters. We
mphasize that we have only considered relatively parsimonious esti-
ators of a conditional mean, in contrast to the much more complex

nd much less parsimonious estimators normally recommended (see re-
iews by Khaliq et al., 2006 ; Petrow and Merz, 2009 ; Kiang et al., 2011 ;
alas et al., 2012 ; Madsen et al., 2013 ; Hall et al., 2014 ; Bayazit, 2015 ;
alas et al., 2018 ; and Francois et al., 2019 ). We outlined numerous ad-
antages of FM 

∗ over both RM and SM , under nonstationary conditions,
nd if we had considered less parsimonious models of the type often
ecommended, we anticipate the advantages of FM 

∗ would appear even
reater than those outlined here. 

This study takes a different approach then most previous studies
hich only use the attained significance level p to decide whether or
ot to perform a nonstationary analysis. The result of a hypothesis test
i.e. attained significance level) does not provide the critical information
eeded, concerning the robustness or efficiency of the estimators under
onsideration. Instead, our approach was to relate the attained signifi-
ance level to the performance of the various estimators in terms of their
ias, variance and mean square error ( MSE ). We have shown that the
ecision whether to employ RM, FM 

∗ or SM under nonstationary condi-
ions depends critically upon the attained significance levels associated
ith the trend in the range of p ≤ 0.17. We have derived analytical ex-
ressions for the MSE of SM, as well as the nonstationary estimators of
he conditional mean, FM 

∗ and RM, and used those expressions to arrive
t the following general conclusions: 

• Under stationary conditions a true fixed mean exists and SM is al-
ways preferred to all other estimators considered, followed by FM
(with f < 1), which is generally preferred to RM . The gains in effi-
ciency of SM over FM and of SM over RM are often rather consider-
able, and emphasize the need to employ stationary methods when
conditions are known to be stationary as determined from a deter-
ministic analysis (see Section 1.1 ). 

• Under nonstationary conditions no fixed or true mean exists, thus
we evaluate estimators of the current or conditional mean at the
end of the historical record. Here the ranking among the estimators
is more complex and very different than under stationary conditions,
highlighting the need to consider both stationary and nonstationary
conditions in any hydrologic frequency analysis as emphasized by
Vogel et al. (2013) , Rosner et al. (2014) , and Salas et al. (2018) . 

• Under nonstationary conditions and very small values of the corre-
lation coefficient, 𝜌, SM is generally preferred over RM, whereas in
contrast for larger values of 𝜌, RM exhibits much lower MSE than SM .
In addition to apriori having a solid physical basis for performing a
nonstationary analysis, the values of sample size, n, and correlation
coefficient, 𝜌, are of considerable importance in deciding which es-
timator to implement. This is because estimator RM will only have
a lower MSE than SM when the attained significance level is below
about 17%, thus use of a 5% level test as is often done in practice
may be misleading. 

• Interestingly, over the range of typical sample sizes n = 10 to n = 100,
correlations in excess of about 0.5 and 0.2 are needed, respectively,
for RM to have lower MSE than FM 

∗ . This is an important result,
because correlations of trend models for common hydrologic series
exhibit relatively low correlations, often in the range in which FM 

∗ 

is likely to have lower MSE than RM. 
• Even though RM is an unbiased estimator under nonstationary con-

ditions when the true model is known, both SM and FM 

∗ have lower
MSE than RM when 𝜌 approaches zero due to added uncertainty as-
sociated with having to estimate the slope parameter 𝛽. In general,
FM 

∗ is always an improvement over SM under nonstationary condi-
tions and is generally an improvement over RM as well, when the
attained significance level is above about 5%. 

• The above conclusions contrasting the behavior of RM and SM are
quite rigorous, general and complete, because our analytical deriva-
tions consider the sampling variability of the estimators of 𝛽. To ac-
count for sampling variability in estimators of 𝜌 needed to estimate
f ∗ in FM 

∗ , it was necessary to resort to a Monte Carlo simulation to
more fully evaluate Eff[ FM 

∗ , RM ]. Those experiments indicated only
slight reductions in Eff[ FM 

∗ , RM ] compared to our analytical results.
Those reductions in efficiency mostly occur for smaller sample sizes
and are due to the need to estimate 𝜌. Additional Monte-Carlo ex-
periments are needed to formulate more general conclusions under
a wider range of conditions. 

• Our theoretical analysis assumes full knowledge of the structure of
the nonstationary model. Monte Carlo robustness experiments are
needed to evaluate the performance of the various estimators con-
sidered, when the true nonstationary model is unknown. 

• Our results are all based on the assumption that the nonstation-
ary regression model in (1) holds with independent, homoscedas-
tic and normally distributed residuals. While this assumption has
been shown to be plausible on the basis of continental analyses of
hundreds of annual maximum flood series ( Vogel et al., 2011 ; and
Prosdocimi et al., 2014 ), there is also good evidence that such series
may also exhibit heteroscedasticity ( Hecht and Vogel, 2020 ) as well
as various forms of both short and long term stochastic persistence
which can easily be confused or interpreted as deterministic trends
( Cohn and Lins, 2005 ; and Koutsoyiannis and Montanari, 2015 ). A
natural extension to this study would consider the impact of short
and long term stochastic persistence within the context of the re-
gression in (1) , by using the results from Matalas and Sankarasubra-
manian (2003) for AR(1), ARMA(1,1) and fractional Gaussian noise
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