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Developing a Watershed Characteristics Database
to Improve Low Streamflow Prediction

Chuck Kroll1; Joana Luz2; Brad Allen3; and Richard M. Vogel4

Abstract: Information regarding topographic, meteorologic, geologic, and geomorphic characteristics is increasingly availab
tially explicit digital formats. Of interest is whether enhanced spatial processing of newly available digital grids can lead to new e
of watershed characteristics which may in turn, improve our ability to predict extreme hydrologic events. Regional hydrologic m
low-flow processes often produce estimators with unacceptably large errors. Using a continuous digital elevation model~DEM! of the
conterminous United States, watershed boundaries were developed for the streamflow gauges of the USGS’s Hydro-Cli
Network. Using these watershed boundaries, many watershed characteristics were developed from digital grids, including: t
DEM, the USDA’s State Soil Geographic grids, and the Spatial Climate Analysis Service’s orographically weighted precipita
temperature grids of varying spatial and temporal resolution. Digital processing of grids leads to improvements in estim
reproducibility of spatial statistics over traditional manual processing approaches. Low-flow regional regression models were
for regions across the conterminous United States. Inclusion of the new watershed characteristics led to improvements
regression models for all regions. The inclusion of hydrogeologic indices, in particular a new smoothed baseflow recessio
estimator, led to dramatic improvements in low-flow prediction.
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Introduction
Understanding the frequency and duration of extreme hydro
events is critical to the efficient management of water resou
throughout the world. Floods and droughts are responsibl
large monetary and human losses every year. While flood
quency analyses have received considerable attention in t
search literature, the estimation of low streamflow statistics
received relatively little attention. Low streamflows are espec
important for water quality management, where they pro
critical dilution of nonpoint source and point source pollut
discharges during dry periods, and water quantity manage
where low streamflows greatly influence water use policy.
example, in every state, estimates of low streamflow statistic

1Associate Professor, Environmental Resources and F
Engineering, SUNY College of Environmental Science and Fore
Syracuse, NY 13210. E-mail: cnkroll@esf.edu

2Research Assistant, Environmental Resources and F
Engineering, SUNY College of Environmental Science and Fore
Syracuse, NY 13210;

Assistant Professor, Instituto de Geocieˆncias, Salvador, Brazil.
3Research Assistant, Environmental Resources and F

Engineering, SUNY College of Environmental Science and Fore
Syracuse, NY 13210.

4Professor, WaterSHED Center, Civil and Environme
Engineering, Tufts Univ., Medford, MA 02155. E-ma
richard.vogel@tufts.edu

Note. Discussion open until August 1, 2004. Separate discus
must be submitted for individual papers. To extend the closing da
one month, a written request must be filed with the ASCE Mana
Editor. The manuscript for this paper was submitted for review and
sible publication on December 27, 2001; approved on June 6, 2003
paper is part of theJournal of Hydrologic Engineering, Vol. 9, No. 2,

March 1, 2004. ©ASCE, ISSN 1084-0699/2004/2-116–125/$18.00.

116 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL
needed for issuing and/or renewing National Pollution Disch
Elimination System permits, as required by provisions in
Clean Water Act of 1977. Low streamflow statistics are also
to plan water supply, hydropower, and irrigation systems, de
cooling-plant facilities, site treatment plants and sanitary land
determine waste-load allocations, and make decisions rega
interbasin transfers of water and allowable basin withdrawa
addition, low streamflow events are often critical periods
aquatic habitats due to potentially low dissolved oxygen con
trations and/or high pollutant concentration.

When a sufficient historic record is available at the river sit
interest, low streamflow statistics may be obtained using a
quency analysis~Riggs 1965, 1968!. When no historic streamflo
record is available, a regional regression model may be d
oped. Regional regression techniques to estimate low strea
statistics at ungauged river sites have been employed with va
degrees of success in a limited number of regions througho
United States~Thomas and Benson 1970; Thomas and Cerv
1970; Parker 1977; Bingham 1986; Vogel and Kroll 1990, 1
Dingman and Lawlor 1995! and elsewhere@see Smakhtin~2001!,
for recent review#. These techniques require a relationship
tween low streamflow statistics and topographic, meteorol
geologic, and geomorphic characteristics of watersheds to b
veloped.

In most instances, the standard errors associated with low
regression models have been relatively high~Vogel and Kroll
1992; Smakhtin 2001!. One reason may be low-flow proces
are too complex to be described with a linear or log-linear mo
Another reason may be that important explanatory variables
been excluded from these models, and/or the watershed c
teristics employed as explanatory variables have not been o

quality. In this study a new database of watershed characteristics
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is developed for stream gauges that are contained within
United States Geological Survey’s Hydro-Climatic Data Netw
or HCDN. The HCDN database contains high quality stream
data at over 1,500 locations spatially distributed across the U
States, and has been employed in numerous watershed s
@for examples see: Vogel et al.~1999!; Kroll and Vogel ~2002!;
Douglas et al.~2000!, and citations therein#.

A new database is developed using spatially explicit di
information regarding the topography, meteorology, geology,
geomorphology within each HCDN watershed. A 1 km dig
elevation model~DEM! is employed to delineate watersh
boundaries for each of the HCDN watersheds. Using these b
aries, summary statistics are estimated using a variety of d
grids including the United States Geological Survey’s~USGS! 30
arc sec (;1 km) Hydro 1 K digital elevation model~DEM!, the 1
km U.S. Department of Agriculture’s~USDA! State Soil Geo
graphic~STATSGO! grids, a 40-year monthly time series of
Spatial Climate Analysis Service’s~PRISM! 0.5° (;49 km) oro-
graphically weighted precipitation and maximum and minim
temperature, and PRISM’s 2.5 arc min (;4 km) average month
and annual precipitation grids.

Our study addresses the following two related questions:
1. Can low-flow regional regression models be improved by

inclusion of digitally derived watershed characteristics?
2. What are the most important hydrogeologic characteristi

include in low-flow regional regression models?
Prior studies of low-flow regional regression models have
with only limited success, yet those studies are mostly limite
eastern regions of the United States. Using the newly de
database of watershed characteristics, low-flow regional re
sion models are developed for USGS water resource re
across the entire conterminous United States, allowing int
gional comparisons between competing models. Of intere
whether new digital spatial information can improve the pre
tive capabilities of regional low-flow models. This is the ini
study in a series that explores improvements in low-flow pre
tion across the United States.

In addition to gridded digital data, our database of water
characteristics includes four hydrogeologic indices: three ver
of the baseflow recession constant~Vogel and Kroll 1996! and the
baseflow index~Institute of Hydrology 1980!. Vogel and Kroll
~1992! showed the importance of including hydrogeologic ind
in low-flow regional regression equations in Massachusetts.
we investigate whether this conclusion can be extended to
regions of the United States, and which indices are most im
tant to include in regional low-flow models. Two new smoot
baseflow recession constant estimators are presented in an a
to reconcile difficulties with the varying precision of the repor
streamflow records.

While some of the methodology employed in this paper is
new, the goal of this paper is to perform a series of low-fl
regional regression analyses across the conterminous U
States with a variety of new explanatory variables. The resu
this study provide practitioners in each water resource regio
merous watershed characteristics which one should consid
potential explanatory variables in a low-flow regional regres
analysis.

This paper is broken into the following sections. The first
second sections are the Abstract and Introduction, respec
The section, ‘‘HCDN Watershed Characteristics and Stream
Records’’ describes the HCDN watersheds examined in this s
the watershed characteristics database included within the H

and the estimation of at-site streamflow statistics. The section
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‘‘Watershed Boundary Delineation’’ explains the method use
delineate watershed boundaries, while the section ‘‘New W
shed Characteristics’’ discusses our methodology for proce
the digital grids and the development of new watershed ch
teristics. The section ‘‘Regression Analysis’’ describes the m
odology employed in developing low-flow regional regres
equations, and the section ‘‘Results’’ presents a compariso
various low-flow models both within and across geographic
gions. The last section contains the paper’s conclusions and
research directions.

HCDN Watershed Characteristics and Streamflow
Records

The USGS’s HCDN consists of streamflow records for s
throughout United States. The HCDN streamflow data mee
tain measurement accuracy criteria as outlined by Slack
Landwehr~1993!. In this study, only sites designated as hav
streamflow suitable on a daily time step were employed, resu
in 1,545 sites. The HCDN contains river flows from 1874 to 19
with an average record length of 44 years.

The daily streamflow records were used to obtain estimat
the 7-day annual minimum streamflow which is on average
ceeded nine out of every ten years,Q7,10. The Q7,10 is the mos
widely used low-flow statistic in the United States~Riggs 1980!.
In general, the USGS uses a log-Pearson type 3~LP3! distribution
to describe annual minimum streamflow series, as evidenc
its use in a variety of USGS studies~Barnes 1986; Wandle a
Randall 1993; Rumenik and Grubbs 1996!. It is important to not
that there is no consensus as to the best methodology to pe
a low-flow frequency analysis at a gauged river site. For insta
there appears to be no consensus as to the best probability
bution ~Condie and Nix 1975; Tasker 1987; Vogel and K
1989; Pearson 1995; Vogel and Wilson 1996; O¨ nöz and Bayazi
1999; Kroll and Vogel 2002!. In addition, if a poor distributiona
fit is present, other methods have been advocated, such
models ~Durrans 1996; Durrans et al. 1999!, nonparametri
kernel-based methods~Tasker 1987!, and graphical techniqu
~Riggs 1972!.

For the sake of this study we assumed that 7-day annual
mum streamflows were adequately described by a LP3 dis
tion. We estimated the parameters of the LP3 distribution b
method of moments~Stedinger et al. 1993!, and theQ7,10 as the
10th percentile of the distribution. At sites with between 0
10% of 7-day annual minimum flows reported as zero, we us
conditional probability adjustment to estimate theQ7,10 ~Jennings
and Benson 1969; Haan 1977!. Any site with more than 10% o
7-day annual minimum flows reported as zero was assign
Q7,10 value of zero. Since we employed a simple log-linear
gression model in this study, sites with aQ7,10 estimated as ze
were removed from the analysis, resulting in the removal of
sites. An alternative approach would be to employ a~Tobit! cen-
sored regression model in regions with at-site quantile estim
of zero ~Kroll and Stedinger 1999!.

The HCDN database contains a small collection of water
characteristics for each of the gauged river sites, including d
age area, main channel slope, main channel length, mean
elevation, mean annual precipitation, 2-year, 24 hour precipit
intensity, and mean January minimum temperature. Many of
watershed characteristics were developed using manual
niques, employing relatively old information, or were develo

from a limited record~Slack et al. 1993!. In many regions these
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watershed characteristics were not reported for all HCDN s
which further complicated the analysis. We removed 180 w
sheds with missing HCDN watershed characteristics becau
considered it more important to keep watershed characterist
opposed to sites in this analysis.

Watershed Boundary Delineation

We used a DEM of the United States to delineate the wate
boundaries for each of the remaining HCDN river sites. A r
tively coarse DEM, GTOPO30, was employed in this analysis
to the computational challenge of delineating a large numb
watersheds. GTOPO30 is a 1-km resolution raster grid of N
America and the U.S. territories produced by the USGS. W
this DEM may not provide an adequate topographic descripti
accurately delineate the boundaries of all watersheds, it
allow for the development of an initial database of waters
characteristics for these sites. It is important to note that D
contain errors as the result of blunders, systematic errors
random errors~USGS 1995!. These errors impact not only t
DEM, but also estimators derived from the DEM. Numerous t
niques, such as stochastic simulation~Goovaerts 1997!, have bee
applied to assess the impact of DEM error on terrain mod
~Holmes et al. 2000!. Such an analysis typically requires a se
variogram of the DEM error, which is difficult to obtain witho
estimates of the ‘‘true’’ elevation at numerous points acro
watershed. With a coarser DEM, such as the GTOPO30,
would generally expect more accurate results for larger w
sheds.

A watershed is defined as the upslope area that drains
specific point on a river. The delineation of a watershed boun
is based on the assumption that water flows downhill. Wi
gridded DEM, there are a number of different approaches to
termine flow pathways within a watershed. Each method, cou
with a flow accumulation algorithm, can be used to produc
estimator of the drainage area. We employed the USGS’s Hy
K flow directions, which are based on applying a single fl
direction algorithm to the GTOPO30 DEM. Use of more com
cated flow routing algorithms such as a multiple direction~Quinn
et al. 1991! or steepest decent~Tarboton 1997! appear to impac
watershed delineation in only relatively small watersheds.
boton ~1997! provides a review of flow direction algorithms a
their impact on flow paths and watershed delineation. Use o
Hydro 1 K flow direction grid avoided the need for ‘‘filling’’ th
GTOPO30 DEM. Filling is often required to remove any dep
sions or flat areas within the DEM, which would adversely imp
the flow accumulation algorithm. All digital grids were projec
into an equal-area lambert projection. This projection main
area across the raster grid, and thus should provide a goo
jection for watershed delineation.

We initially located stream gauges using the quoted lati
and longitude for the gauge reported by the USGS. Unfortuna
the latitude and longitude did not usually correspond to the
mal position of the gauge location within the DEM. This w
most likely due to problems with the DEM not representing
true topography at the gauge location~insufficient resolution o
errors in grid! or inaccuracies in the reported latitude and lo
tude. To determine the ‘‘best’’ location for each gauge, we u
the following search algorithm. All grid positions within a 5 km
radius from the original gauge location were searched to lo
the grid position with a drainage area as close to the drainage

reported by the USGS as possible. If no position within 10% of
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the USGS value was found, all grid positions within radii of
10, and 15 km were sequentially examined. If no location w
a 15 km radius was found to have a drainage area within 10
the USGS cited drainage area, the site was removed from
analysis. This procedure removed 192 sites from our analys

New Watershed Characteristics

After delineating the watershed boundaries, we used num
digital grids to develop a database of watershed characterist
this analysis, we required grids with a continuous coverage o
United States. The digital grids used were the USGS’s GTOP
DEM, the 1 km USDA’s STATSGO soil maps, a 40-year mon
time series of PRISM’s 0.5° orographically weighted precip
tion and maximum and minimum temperature, and PRISM’s
arc min average monthly and annual precipitation grids. We
employed new hydrogeologic characteristics derived from
streamflow records. Table 1 contains a summary of the wate
characteristics used in this study. The development of each w
shed characteristic is discussed below.

Topography: GTOPO30

We used the GTOPO30 DEM coverage of the contermi
United States to derive a number of topographic estimators
HCDN database contains an estimator of main channel slop
developed two new watershed slope estimators: SLOPE2, th
tershed slope from the highest elevation in the watershed t
watershed outlet; and SLOPE3, the watershed average of t
dividual planar slopes calculated on a cell-by-cell basis. The
nar slope for an individual cell was calculated as

SLOPE35S F ~E412E31E2!2~E612E71E8!

~8* cell width! G2

1F ~E412E51E6!2~E212E11E8!

~8* cell width! G2D 1.2

whereEi5elevation of thei th surrounding cell~a total of eigh
surrounding cells!. This slope estimator is presented by B
roughs~1986! and is part of the ArcView Hydrologic Extensi
~ESRI 1998!. In this analysis, the elevation of the gauge loca
on the GTOPO30 DEM was also used as an explanatory var

Soils: STATSGO (MUID)

The soil information was based on the USDA’s STATS
~MUID ! digital grids. This is a 1 kmresolution grid covering th
entire United States. STATSGO, which was developed from
1994 State Soil Geographic Database, was designed to s
regional, multistate, state, and river basin resource planning,
agement, and monitoring~USGS 2001!. For each watershed w
computed the average of the high and low range values fo
following soil parameters: permeability, organic matter con
available water capacity, high water table, total soil thickness
bulk density. It should be noted that STATSGO was develo
using information from individual states, and often there are
continuities across state boundaries in these grids.

Climate: PRISM

Two sets of climate data from the Spatial Climate Analysis

vice’s ~PRISM! project were used in this study. The first set of
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Table 1. Description of Explanatory Variables

Symbol Percent time entering model

Topographic and HCDN variables
DA 93 Drainage a
SLOPE1 9 Main chan
SLOPE2 5 Slope of w
SLOPE3 14 Average o
ELEV1 17 Gauge ele
ELEV2 3 Gauge ele
LENGTH 5 Channel le
PRECIP 29 Average a
INTENS 9 Precipitatio
JANTMIN 9 January m

Hydrogeologic variables
Kb21 3 Baseflow r
Kb22 86 Kb based o

Kb23 0 Kb based o

BFI 31 Baseflow i

Geologic variables
PL 0 Low value
PH 0 High value
OML 2 Low value
OMH 0 High value
AWCL 0 Low value
AWCH 2 High value
WDL 2 Low value
WDH 3 High value
RDL 0 Low value
RDH 7 High value
BDL 2 Low value
BDH 0 High value

Climatic variables
ATMAX 0 90th percen
BTMAX 5 90th perce
CTMAX 2 90th perce
DTMAX 3 90th perce
ATMIN 7 90th perce
BTMIN 0 90th perce
CTMIN 3 90th perce
DTMIN 0 90th perce
APRCP 19 10th perce
BPRCP 2 10th perce
CPRCP 7 10th perc
DPRCP 3 10th perce
PANN 3 Average a
PJAN 0 Average J
PFEB 7 Average F
PMAR 2 Average M
PAPR 7 Average A
PMAY 5 Average M
PJUN 10 Average J
PJUL 5 Average J
PAUG 7 Average A
PSEP 9 Average S
POCT 5 Average O
PNOV 3 Average N
PDEC 0 Average D

Note: HCDN5Hydro-Climatic Data Network; DEM5digital elevatio
Elevation Regressions on Independent Slopes Model.
Variable description Source

rea USGS HCDN
nel slope USGS HCDN
atershed from peak to outlet GTOPO30 D
f cell facet slopes GTOPO30 D
vation USGS HCDN
vation from DEM GTOPO30 DE
ngth USGS HCDN
nnual precipitation USGS HCDN
n intensity USGS HCDN

inimum temperature USGS HCDN

ecession constant~Kb! based on daily streamflow Computed
n three-days moving average Computed
n decreasing flows in three-day moving average Computed

ndex Computed

for the range of permeability STATSGO
for the range of permeability STATSGO

for the range of organic matter content STATSGO
for the range of organic matter content STATSGO
for the range of available water capacity STATSGO
for the range of available water capacity STATSGO
for the range of depth to the high water table STATSGO
for the range of depth to the high water table STATSGO
for the range of the total soil thickness STATSGO
for the range of the total soil thickness STATSGO

for the range of bulk density STATSGO
for the range of bulk density STATSGO

tile for maximum temperature for period Jun–Aug PRISM
ntile for maximum temperature for period Sep–Nov PRISM
ntile for maximum temperature for period Dec–Apr PRISM
ntile for maximum temperature for period Apr–Mar PRISM
ntile for minimum temperature for period Jun–Aug PRISM
ntile for minimum temperature for period Sep–Nov PRISM
ntile for minimum temperature for period Dec–Apr PRISM
ntile for minimum temperature for period Apr–Mar PRISM
ntile for precipitation for period Jun–Aug PRISM
ntile for precipitation for period Sep–Nov PRISM

entile for precipitation for period Dec–Apr PRISM
ntile for precipitation for period Apr–Mar PRISM

nnual precipitation using 2.5 arc min grids PRISM
anuary precipitation using 2.5 arc min grids PRISM
ebruary precipitation using 2.5 arc min grids PRISM
arch precipitation using 2.5 arc min grids PRISM
pril precipitation using 2.5 arc min grids PRISM
ay precipitation using 2.5 arc min grids PRISM
une precipitation using 2.5 arc min grids PRISM
uly precipitation using 2.5 arc min grids PRISM
ugust precipitation using 2.5 arc min grids PRISM
eptember precipitation using 2.5 arc min grids PRISM
ctober precipitation using 2.5 arc min grids PRISM
ovember precipitation using 2.5 arc min grids PRISM
ecember precipitation using 2.5 arc min grids PRISM

n model; STATSGO5State Soil Geographic Grids; and PRISM5Parameter
JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2004 / 119
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grids is interpolated raster data of monthly climate variable
cluding precipitation, and minimum and maximum temperatu
A 40-year monthly time series of grids were employed, resu
in 480 grids for each climatic variable. These grids have a r
lution of 0.5°, which roughly translates into a projected resolu
of 49 km. While these grids have a poor spatial resolution
temporal resolution produces a unique data set.

The average monthly precipitation, and maximum and m
mum temperature were calculated for each of the HCDN w
sheds for each of the 480 months, resulting in a time seri
monthly averages at every site. Since low streamflows are c
by long-term extremes~as opposed to shorter duration eve
such as those impacting floods!, four ‘‘seasonal windows’’ wer
selected: ~1! June–August; ~2! September–November;~3!
December–March; and~4! April–May. These four windows cap
ture either typical months when annual minimum streamflow
curs~late summer and early fall!, or winter and spring condition
which can impact groundwater storage prior to the low-fl
months.

Since extreme climatic conditions such as low precipita
and/or high temperatures are generally responsible for
streamflow events, numerous extreme percentiles for eac
matic time series were calculated and included as explan
variables. Since theQ7,10 is the 10th percentile of the distributi
of 7-day annual minimums, in this analysis the 10th percenti
the distribution of precipitation and the 90th percentile of
distribution of temperature were estimated. This was acc
plished by fitting each temperature series with a generalize
treme value~GEV! distribution with L-moment parameter estim
tors ~Stedinger et al. 1993!, and then estimating the 90
percentiles from the distribution. The GEV distribution has b
used in practice to describe some climatic variables~Schaefe
1990!. For the precipitation series a delta distribution with a p
mass at zero and a two-parameter lognormal~LN2! distribution
describing the nonzero observations was employed~Aitchison
1955!. The parameters of the LN2 distribution were obtained
method of moments~Stedinger et al. 1993!. The 10th percentil
of the delta distribution was then estimated.

For the second climatic data set, PRISM’s 2.5 arc
(;4 km) average monthly and annual precipitation grids w
employed. This consists of 13 grids: 12 grids of monthly a
ages, and 1 grid of annual averages. While the temporal reso
of these grids is poor~averages over 40 years!, the spatial reso
lution is much better than those of the first climatic data set

Hydrogeology

None of the above watershed characteristics capture the h
geologic behavior of the watershed. Since low streamflow is
erally the result of groundwater discharge to the stream d
times of little or no precipitation, we expect hydrogeology to
an important parameter in explaining low streamflow proce
and low streamflow statistics~Vogel and Kroll 1992!. Most of the
information in the MUID data set is near surface soil parame
and is not necessarily representative of a watershed’s unde
aquifers. To address this issue, two hydrogeologic statistics
calculated: the baseflow recession constant (Kb) and the baseflo
index ~BFI!. It should be noted that historic streamflow reco
were required to estimateKb and BFI, and thus these parame
cannot be derived at ungauged sites using the technique
scribed below.

Kb is an estimator of the daily percentage decline in stre

flow during times of no surface or shallow subsurface runoff. We

120 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL
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estimatedKb based on Method 5 outlined in Vogel and Kr
~1996!. This method is derived from the continuity equation w
outflow from a watershed is linearly related to basin groundw
storage

dQ

dt
5aQb5aQ1 (1)

resulting in the least squares estimator

Kb5expH 2expF 1

m (
t51

m H ln~Qt212Qt!2 lnS 1

2
~Qt1Qt21! D J G J

(2)

whereQt5streamflow on Dayt; andm5total number of stream
flow pairs (Qt andQt21). Based on a linear solution to the Bou
inesq equation,Kb is a function of hydraulic conductivity, poro
ity, drainage density, and groundwater slope~Vogel and Kroll
1992!. Vogel and Kroll~1996! compared sixKb estimators’ abili
ties to describe low streamflow statistics in Massachusetts.
found theKb estimator in Eq.~2! to be the preferred estimator d
to both its performance and simplicity.

To determine Kb , only streamflows that occur during
groundwater recession were employed. A streamflow rece
was defined by at least a ten-day drop in a three-day mo
average. The first 30% of the recession was removed to lim
impact of surface and shallow subsurface stormflows. Th
maining days were considered the groundwater recession. T
also the procedure followed in Vogel and Kroll~1992, 1996!.

In this study threeKb estimators were developed. The fi
Kb21 , was developed using Eq.~2!, employing any pairs of tw
consecutive decreasing daily streamflows during a ground
recession period. The other twoKb estimators were developed
smooth errors due to the varying precision of USGS repo
streamflow values. USGS streamflows less than 1 cfs are rep
with two significant digits, all flows between 1 and 10 cfs
reported with one digit after the decimal point, flows betwee
and 1,000 cfs as integers, and flows greater than 1,000 cfs
three significant digits. Thus there are lower bounds on the
of dQ/dt in Eq. ~1! over each of these ranges of streamflow.
instance, the minimum value ofdQ/dt is 0.01 for flows less tha
1 cfs, but is 0.1 for flows between 1 and 10 cfs. Kroll~1989! and
Eng and Brutsaert~1999! examined the issue of varying strea
flow measurements precision on baseflow recession analys
an attempt to smooth the data to reduce the impact of va
precision, we developed a new estimatorKb22 , which employs
consecutive 3-day moving averages for the termsQt21 andQt in
Eq. ~2! ~as opposed to daily streamflows inKb21). The other new
estimatorKb23 , is similar toKb22 , but has the requirement th
over the four days which make up the two consecutive three
moving averages, the streamflow must be decreasing. This r
tion produced a large reduction in the sample size for theKb23

estimator compared to the sample sizes forKb21 andKb22 .
BFI measures the long-term average fraction of annual str

flow that is contributed from groundwater. The BFI estimator
ployed was based on an Institute of Hydrology~1980! study. The
BFI estimator uses a moving window approach to determine
in which the streamflow is comprised solely of groundwater
then linearly interpolates between these days to determin
baseflow contribution to streamflow. The entire streamflow re

was used to estimate the BFI.
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Regression Analysis

When no discharge record exists at a site of interest, a reg
regression model can be used to estimate low streamflow sta
at the ungauged site. Using a region of gauged river sites
method requires a relationship between low streamflow stat
and topographic, meteorologic, geologic, and geomorphic ch
teristics to be developed. These relationships most often hav
following form:

Qd,T5aX1
bX2

g ... (3)

where Qd,T5d-day; T-year low-flow statistic; Xi5drainage
basin characteristics; anda, b, andg5model parameters. Vog
and Kroll ~1992! showed that Eq.~3! has a form consistent wi
the linear solution to the Boussinesq equation for groundw
discharge. The dependent variable in Eq.~3!, Q7,10, was obtaine
using at-site quantile estimates from gauged river sites. By ta
the logarithm of both sides of Eq.~3!, the model parameters c
be estimated using ordinary~OLS!, weighted~WLS!, or general
ized least squares~GLS! regression procedures~Stedinger an
Tasker 1985; Kroll and Stedinger 1998!. Once the model param
eters have been estimated in a region, low-flow estimates a
gauged sites can be obtained using drainage basin characte
for the ungauged site.

Sites with Q7,10 estimated as zero were eliminated from
analysis. Kroll and Stedinger~1999! showed that when only a fe
sites have zero quantile estimates, dropping these sites d
adversely impact the regression model parameter estimator
moderate to high censoring levels~10 to 50% of the sites in
region!, a ~Tobit! model should be employed. In this study, O
regression estimators were employed to estimate the mod
rameters. Because model error variance is typically high in
flow regional regression models, the model error variance ten
overwhelm the time sampling error in the models. Thus we ex
only slight differences in the parameter estimators when WLS
GLS are compared to OLS~Kroll and Stedinger 1998!.

After we removed sites due toQ7,10 values estimated as ze
inaccurate watershed delineation, and missing HCDN wate
characteristics, 930 sites remained. Initially the 18 USGS reg
in the conterminous United States were used to develop low
regression models, but this produced many extremely hete
neous regions~such as Region 3 which spans from Florida
Virginia!. Therefore, for this analysis state boundaries were u
If a state did not have at least 20 sites, it was combined wit
adjacent state with the fewest sites. This approach resulted
regions. While the decision to use state boundaries could be
cized due to the lack of hydrologic homogeneity in many sta
many watershed characteristics are developed independen
states~such as the STATSCO data! and are stored in state-bas
geographic information system~GIS! clearinghouses. In fact, th
last major national study of regional regression models for fl
frequency reported results on a state-by-state basis~Jennings
et al. 1994!.

To develop a regional regression model in a specific regi
stepwise regression procedure was employed using a 5% s
cance level on the entering variables. One major issue is
correlation~multicollinearity! among the explanatory variables
the regression model. Multicollinearity can cause regression
mators to have inflated and correlated errors, which can pro
inaccuracies in subsequent hypothesis tests regarding para
significance~Johnston 1972!. To handle this situation, a varian
inflation factor ~VIF!, which indicates the possible presence

multicollinearity, was employed~Rawlings et al. 1998!. The VIF

JOURNAL OF
s

t
r

r

is a function of the coefficient of determination (R2) obtained by
regressing each individual explanatory variable against al
other explanatory variables. A VIF (VIF51/(12R2)) greate
than ten was used as a threshold to indicate possible mu
linearity problems~Rawlings et al. 1998!. When this occurred
variables with high correlation~such as drainage area and stre
length, orKb21 , Kb22 , andKb23) were entered into the mod
individually. In an ongoing study, we are investigating the im
of using of principal components~Jolliffe 1986! as explanator
variables in our regression models.

Results

The results are broken into three sections. In the first se
models developed using the HCDN watershed character
were compared with models developed by including the new
tershed characteristics. In the second section a comparis
model performance with competing variables~such as the thre
Kb estimators! is made. In the third section, a regional interco
parison of the low-flow models is presented.

Watershed Characteristics Comparison

This section provides an analysis of the impact of the new
sets on low-flow regional regression models. Regression m
were developed in each of the 29 regions for six different se
explanatory variables: the HCDN variables; HCDN plus PRIS
climatic grids; HCDN plus MUID and the new topographic e
mators~TOPO!; HCDN, PRISM and TOPO~ALL3 !; HCDN plus
Hydrogeology; and HCDN, PRISM, TOPO, and Hydrogeol
~ALL4 !. To compare the impact of each of these data sets
performance metrics were calculated: the adjusted coefficie
determination (Adj-R2) ~Devore 1994! and the percent standa
error of prediction~SE%!. SE% was computed as 100@exp(S«

2)
21#1/2, whereS«

2 is an estimate of the variance of the resid
developed using Hardison’s~1971! variance of the ‘‘space
sampling error.’’ Similar conclusions were reached using m
square error of model estimators and a prediction error su
squares statistic, which is a validation-type estimator of e
~Helsel and Hirsch 1992!. This section compares the overall p
formance of these data sets. The section ‘‘Variable Comparis
examines the most important variables from each of these
sets.

Figs. 1 and 2 contain box plots of Adj-R2 and SE%, respe
tively, for each of the data sets across the 29 regions. The
line across each box represents the median, the ends of th
the 25th and 75th percentiles, the ends of the whiskers the
and 90th percentiles, and the circles values outside this r
With just the HCDN variables, the median Adj-R2 was 67.6%
with a maximum of 92.7% and a minimum of 21.1%. The
dian, maximum, and minimum SE% were 124, 617, and 36
respectively. With the addition of the MUID and new topograp
variables (HCDN1TOPO), slight improvements in the mod
were made, with a median Adj-R2 of 70.8, with a maximum o
94.0% and a minimum still of 21.1%~SE% median, maximum
and minimum were 107, 470, and 32.8%, respectively!. PRISM’s
climatic grids produced a greater improvement than TOPO, w
median of 74.6%, a maximum of 92.7%, and a minimum
34.4% ~SE% median, maximum, and minimum were 97.0, 6
and 32.6%, respectively!.

When three databases were included~ALL3 !, the median
2
Adj-R increased to 77.5%, with a maximum of 94.0% and a
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minimum of 34.4%, while the median SE% was 90.1%, wi
maximum of 470% and a minimum of 32.6%. With the inclus
of the new digitally derived spatial statistics, low-flow regio
regression models were improved in every region of the Un
States. Unfortunately, in many regions low-flow regional reg
sion models are still inadequate since they produce estim
with large variances, and thus are not suitable for design
poses.

In this analysis, we also considered the inclusion of three
timators of the baseflow recession constant (Kb) and one estima
tor of the baseflow index~BFI!. These hydrogeologic indic
were estimated from the historic records at each of the
and thus we are currently unable to estimate these indices
rately at ungauged sites. Of interest is whether these indice
prove low-flow regional regression models. With the inclusio
these indices with only the HCDN variables (HCD
1HYDROGEO), the median Adj-R2 rose to 90.8%, with a max
mum of 98.4% and a minimum of 69.2%, while the SE% me
was 55.9%, with a maximum of 166% and a minimum of 13.
When all four data sources~ALL4 ! were included, the media
Adj-R2 was 93.1%, the maximum was 98.5%, and the minim
was 79.5%, while for the SE% the median was 43.3%, the m

Fig. 1. Adjust coefficient of variation (Adj-R2) for models from 29
regions across the conterminous United States using six data s

Fig. 2. Percent standard error of prediction~SE%! for models from
29 regions across conterminous United States using six data s
122 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL
mum 112%, and the minimum 10.4%. These results indicate
the inclusion of hydrogeologic indices in low-flow models p
duces dramatic increases in model performance.

Variable Comparisons

The derived watershed characteristics allow for an intere
comparison between similar watershed characteristics and
impact on low streamflow models. In this section, a numbe
these comparisons are made. To facilitate the discussion, T
contains a column representing the percentage of the tim
explanatory variable entered a final model. For all variables
cept hydrogeology, this includes the 29 models where HC
PRISM, and TOPO~ALL3 ! were included, as well as when H
drogeology~ALL4 ! was included, for a total of 58 models. F
the hydrogeologic variables, only the 29 models from ALL4
considered.

Of the topographic parameters, drainage area entered t
gression models most frequently. When drainage area di
enter a model, main channel length did. Eng and Brutsaert~1999!
showed that channel length and drainage area are typically h
correlated within a region. To avoid multicollinearity programs
most regions drainage area and main channel length were
included in the same model~the VIF was greater than 10!.

All three slope estimators entered some of the final mo
with the average watershed slope~SLOPE3! entering slightly
more often than the other two slope estimators. Gauge elev
from the USGS HCDN entered the model much more often
the gauge elevation from the DEM, indicating potential inacc
cies within the DEM or errors associated with siting the ga
within the DEM.

None of the PRISM precipitation statistics entered the m
more often than the HCDN value of mean annual precipita
Of the PRISM precipitation statistics, the 10th percentile of a
age precipitation over the period from June to August en
most often. This statistic was derived from the 40-years of
resolution monthly precipitation time series grids. Of the hig
resolution monthly average precipitation grids, statistics for
summer and early fall months generally entered the models
often than those for the winter months. Results potentially
cate that spring recharge of groundwater resources is less i
tant to low streamflow processes than summer precipitation
tities.

In general, the PRISM temperature grids did not enter
models frequently. The exception is for the 90th percentile o
maximum and minimum temperature for the period from Sep
ber to November. This result indicates the importance of ev
transpiration to low-flow processes in some regions during
later summer and early fall months, which is when
streamflows primarily occur. The statistics derived from
STATSGO ~MUID ! soils database generally performed poo
with no variable entering more than 5% of the models.

For every region examined, either the baseflow recession
stant estimators or the baseflow index entered the final mod
the baseflow recession constant estimatorsKb22 , which was de
rived using three-day moving averages, was almost always
ferred to the other two baseflow recession constant estim
Kb22 was developed to smooth lower bounds on the chan
streamflow over time (dQ/dt), which occurs due to varying pr
cision of reported streamflow values.Kb23 was probably not pre
ferred due to the reduction in sample size for this estimator.
which attempts to capture groundwater storage characteristic
tered 31% of the final models. Results again emphasize th

portance of hydrogeology in low streamflow prediction.
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Regional Performance

The models developed for each of the regions using the ALL3
ALL4 variable databases are presented in Table 2. ALL3 con
all variables except hydrogeology, and ALL4 contains all v
ables. In general, low-flow regional regression models per
well in the northern United States. Wisconsin and Minnesota
an exception. Snow accumulation and snow melt processe

Table 2. Final Regression Models

States

ALL4: All varia

Number of sites Variables in t

Maine, New Hampshire, and
Vermont

31 DA KB2 PJUN

Connecticut, Rhode Island, and
Massachusetts

20 DA KB2

New York 34 DA ELEV JANMIN
CPRCP

New Jersey 21 DA KB1 APRCP
SLOPE3 RDH

Pennsylvania 30 DA KB2 BFI CPR
Delaware and Maryland 24 DA KB2 PFEB
Virginia 32 DA LENGTH KB2

BTMAX AWCH
Georgia 58 DA ELEV KB2 BF

North Carolina and
South Carolina

46 DA KB2 BFI SLOP

Florida 21 KB2 PSEP
Alabama, Tennessee, and
Kentucky

29 DA SLOPE1 PRE
BFI PAUG ELEV

Ohio and West Virginia 22 DA KB2 BTMAX

Indiana and Michigan 27 DA KB2 BTMAX
Wisconsin and Minnesota 43 DA LENGTH, P

ATMIN
Iowa 27 DA SLOPE1 BFI A

PSEP PFEB
Illinois 23 DA KB2 APRPC P
Missouri 20 DA KB2 PAN

Mississippi 24 DA KB2 PAPR PA
PAN LCV

Arkansas and Louisiana 26 DA PRECIP BF
Texas 26 DA KB2 APRCP
New Mexico and Arizona 26 DA PRECIP KB2
Colorado, Nevada, and Utah 44 DA PRECIP KB
Kansas, Nebraska, and Oklahoma 25 DA KB2 BFI A

DTMAX
Wyoming and South Dakota 36 DA PRECIP KB
Montana and North Dakota 27 DA PRECIP BF
Idaho 54 DA ELEV PRECIP

APRCP CTMIN
Washington 30 DA SLOPE1 PRE

APRCP
Oregon 43 LENGTH KB2 PA

California 61 DA JANMIN KB2
ATMIN
not captured in the databases we developed, and may impact low-

JOURNAL OF
flow processes in Wisconsin and Minnesota. Our results a
with the findings of Vogel and Kroll~1990! and Dingman an
Lawlor ~1995! that low-flow regional regression models perfo
well in the northeastern United States, even without the inclu
of hydrogeologic variables. Models in the southern regions
erally perform worse than those in the northern regions. Addi
ally, model performance along the southeastern coastal regi

ALL3: All variables except
Kb and baseflow index

del Adj-R2 SE% Variables in the model Adj-R2 SE%

95.4 25.0 DA PAN ELEV 92.3 32

94.5 53.1 DA PRECIP POCT OML 93.5 54

97.5 19.5 DA PRECIP JANMIN CPRCP
BTMIN

93.2 32.8

96.9 27.8 DA ELEV CPRCP PJUN PAUG
SLOPE3 BDL WDH WDH

91.3 51.4

94.4 28.9 DA PMAY SLOPE2 WDL 79.2
93.1 35.6 DA RDH WDH 87.3 4

95.2 25.1 DA PAPR PAUG RDH 70.8 80

T 96.2 44.6 DA ELEV1 CPRPC PMAY PJUN
PJUL SLOPE3 OML

90.4 130

90.1 51.3 DA BPRCP PJUN PJUL SLOPE3 79.9

85.1 112 LENGTH DPRECP PAPR 75.2
B2 97.6 22.6 DA PRECIP 55.4 17

95.8 28.7 DA LENGTH BTMAX BPRECIP
SLOPEBR

84.5 44.0

97.2 31.7 DA INTENS 81.0 9
, 70.7 59.9 DA PRECIP ATMIN 67.4 93

C 93.1 34.7 DA INTENS DPRCP PAPR PSEP 90.9 6

NOV 96.6 43.3 DA APRCP PJUN 90.2
97.4 39.9 DA ELEV INTENS POUT

SLOPE2
71.2 107

SEP 98.5 10.4 LENGTH PRECIP 72.2 77

90.8 56.2 JANMIN ATMIN SLOPE3 WDH 60.5
X 88.2 72.4 DA ELEV INTENS CTMAX 80.5 1

87.2 56.2 DA ELEV PNOV RDH 71.7 9
87.6 54.7 DA PRECIP 77.5

91.8 37.2 DA 37.7 47

PE3 83.7 60.0 DA PRECIP 70.2
90.8 58.6 DA ELEV PFEB PJUN 82.2

95.2 45.4 DA ELEV PRECIP CTMIN PJUL 89.8 74

B2 95.6 34.2 DA INTENS SLOPE2 89.8 56

91.8 44.2 LENGTH ELEV INTENS
JANMIN ATMIN SLOPEBR

67.6 109

P 92.2 61.8 DA APRCP 66.6 19
bles

he mo

KB2

PFEB

ECP

BFI

I POU

E2

CIP K

PJUL

RECIP

PRP

SEP P

UG P

I
DTMA

2
PRCP

2 SLO
I

KB2

CIP K

UG

APRC
generally better than the southwestern coastal regions.
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The regions that produce the worst low-flow models are: K
sas, Nebraska, and Oklahoma; Alabama, Tennessee, and
tucky; and Arkansas and Louisiana. One reason for this ma
these regions are relatively large, and thus some of the proc
that impact the regional differences in low-flow processes ar
captured by the databases. Interestingly, when hydrogeo
variables are included in the models, all of these regions pro
Adj-R2 values in excess of 90%, and SE% less than 40%.

Conclusions and Future Directions

Spatial processing of newly available gridded topographic,
teorologic, geologic, and geomorphic data using a geograph
formation system~GIS! can generate spatially representative
tershed based information useful for the development of reg
hydrologic models. This initial study has generated a new s
watershed characteristics for the HCDN watersheds that
then used to develop regional relationships for estimating
flow statistics. This database is publicly available on the inte
at http://www.esf.edu/erfeg/cnkroll/research. Our results ind
the following:
1. In all regions of the conterminous United States, low-fl

regional regression models were improved with the inclu
of watershed characteristics from the newly developed
tially processed digital databases, when compared with
tershed characteristics derived from more traditional ma
approaches.

2. The performance of low-flow regional regression mo
varies widely across the United States. In general, the
models were obtained in northern regions of the Un
States.

3. The inclusion of hydrogeologic variables greatly impro
low-flow regional regression models. This result emphas
the importance of developing new approaches for estim
hydrogeologic variables at ungauged watersheds.

4. The inclusion of climatic variables generally had onl
small impact on the models. This could be due to a lac
resolution of the digital climatic grids employed. Further
vestigation into the impact of climatic grid resolution on
accuracy of regional low-flow models is warranted.

5. The delineation of watershed boundaries using a 1-km D
was not adequate for all of the sites examined. Often e
the incorrect watershed was chosen, or a watershed w
incorrect drainage area was delineated. Future res
should examine the impact of using finer resolution DE
for delineating watershed boundaries.

6. Many other watershed characteristics that may be emp
to model low streamflow statistics are either not availab
digital form, or their coverage does not include the en
conterminous United States. Including information suc
soil surveys, subsurface geology and land use, should le
improvements in modeling low streamflow in some reg
of the United States.

7. While low-flow regional regression models of adequate
cision may be formulated in some regions of the Un
States, initial results indicate that this technique does
perform adequately throughout the entire United States.
further indicates that other techniques, such as baseflow
relation, which requires some discharge measurements
gauged sites~Stedinger and Thomas 1985!, may be neede
in some regions.

8. Our initial results document the enormous challenge as

ated with the estimation of low-flow statistics at ungauged

124 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL
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s

sites for most regions of the United States. Our hope is
this study will inspire future research to explore additio
digitally gridded information that can better characterize
hydrogeology of watersheds, because it is this informa
that should yield the greatest improvements in our abilit
develop regional low-flow models.

9. The results of this paper provide regional water reso
planners an indication of which watershed characteri
may aid in describing the low streamflow processes.
information should aid in the modeling and managemen
low streamflows.

References

Aitchison, J.~1955!. ‘‘On the distribution of a positive random variab
having a discrete probability mass at the origin.’’J. Am. Stat. Assoc
50, 901–908.

Barnes, C. R.~1986!. ‘‘Methods of estimating low-flow statistics for u
gaged streams in the lower Hudson River Basin, NY.’’U.S. Geologi
cal Survey Water Resources Investigations Rep. 85–4070, U.S. Geo
logical Survey, Reston, Va.

Bingham, R. H.~1986!. ‘‘Regionalization of low-flow characteristics
Tennessee streams.’’U.S. Geological Survey Water Resources In
tigations, Rep. 85–4191, U.S. Geological Survey, Reston, Va.

Burroughs, P. A.~1986!. Principles of geographical information syste
for land resources assessment, Oxford University Press, New York

Condie, R., and Nix, G. A.~1975!. ‘‘Modeling of low-flow frequency
distributions and parameter estimation.’’Proc., Int. Water Resourc
Symposium, Water for Arid Lands, Teheran, Iran.

Devore, J. L.~1994!. Probability and statistics for engineering and
sciences, 4th Ed., Duxbury Press, Belmont, Mass.

Dingman, S. L., and Lawlor, S. C.~1995!. ‘‘Estimating low-flow quan
tiles from drainage-basin characteristics in New Hampshire and
mont.’’ Water Resour. Bull.,31~2!, 243–256.

Douglas, E. M., Vogel, R. M., and Kroll, C. N.~2000!. ‘‘Trends in flood
and low flows in the United States: Impact of spatial correlationJ.
Hydrol., 240~1–2!, 90–105.

Durrans, S. R.~1996!. ‘‘Low-flow analysis with a conditional Weibull ta
model.’’ Water Resour. Res.,32~6!, 1749–1760.

Durrans, S. R., Ouarda, T. B. M. J., Rasmussen, P. F., and Bob´e, B.
~1999!. ‘‘Treatment of zeroes in tail modeling of low flows.’’J. Hy-
drologic Eng.,4~1!, 19–27.

Eng, K., and Brutsaert, W.~1999!. ‘‘Generality of drought flow charac
teristics within the Arkansas River Basin.’’J. Geophys. Res., [Atmos
104~19!, 435–441.

Environmental Systems Research Institute~ESRI!. ~1998!. ArcView spa
tial analyst online user guide, Redlands, Calif.

Goovaerts, P.~1997!. Geostatistics for natural resources evaluation, Ox-
ford Univ. Press, New York.

Haan, C. T.~1977!. Statistical methods in hydrology, Iowa State Univ
Press, Ames, Iowa.

Hardison, C. H.~1971!. ‘‘Prediction error of regression estimates
streamflow characteristics at ungaged sites.’’U.S. Geological Surve
Professional Paper, 750–C, C228–C236, U.S. Geological Survey, R
ston, Va.

Helsel, D. R., and Hirsch, R. M.~1992!. Statistical methods in wat
resources, Elsevier, New York.

Holmes, K. W., Chadwick, O. A., and Kyriakidis, P. C.~2000!. ‘‘Error in
a USGS 30-meter digital elevation model and its impact on te
modeling.’’ J. Hydrol.,233, 154–173.

Institute of Hydrology.~1980!. ‘‘Low-flow studies.’’ Rep. No 1, Walling-
ford, Oxon, U.K.

Jennings, M. E., and Benson, M. A.~1969!. ‘‘Frequency curves for an
nual flood series with some zero events or incomplete data.’’Water
Resour. Res.,5~1!, 276–280.
Jennings, M. E., Thomas, W. O., Jr., and Riggs, H. C.~1994!. ‘‘Nation-

2004



qua-
aged
tions

.
sion

es
.
-

f

f

ter-
ep.

w

ling

-

ht

h-
o-

y
.

,

orth-
tion

al

set
88.’’

is
ared.’’

y

w

w

-
-
y,

ta

t 2

n-
ta/

s
n.

y
r.

-
cs.’’

n

l
s.’’

-

-
s of

ima-
Rep.,
wide summary of U.S. Geological Survey regional regression e
tions for estimating magnitude and frequency of floods for ung
sites, 1993.’’U.S. Geological Survey Water-Resources Investiga
Rep., 94–4002, Reston, Va. Va.

Johnston, J.~1972!. Econometric methods, 2nd Ed., McGraw-Hill, New
York.

Jolliffe, I. T. ~1986!. Principal component analysis, Springer, New York
Kroll, C. N. ~1989!. The estimation and usage of baseflow reces

constants, Master’s thesis, Tufts Univ., Medford, Mass.
Kroll, C. N., and Stedinger, J. R.~1998!. ‘‘Generalized least squar

regression procedures revisited.’’Water Resour. Res.,34~1!, 121–128
Kroll, C. N., and Stedinger, J. R.~1999!. ‘‘Development of regional re

gression relationships with censored data.’’Water Resour. Res.,35~3!,
775–784.

Kroll, C. N., and Vogel, R. M.~2002!. ‘‘The probability distribution o
low streamflow series in the United States.’’J. Hydrologic Eng.,7~2!,
137–146.
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