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Abstract.

When no discharge record is available for a site, a regional regression

relationship can be used to estimate low-flow quantiles. Problems arise in the derivation of
such models when some at-site quantile estimates are reported as zero. One concern is
that quantile estimates reported as zero may be in the range from zero to the
measurement threshold. A second concern is that a logarithmic transformation cannot be
used with zero quantile estimates, so traditional log linear least squares estimators cannot
be computed. This paper uses visual examples and Monte Carlo simulation to compare
the performance of techniques for estimating the parameters of a regional regression
model when some at-site quantile estimates are zero. Ordinary least squares (OLS)
techniques employed in practice include adding a small constant to all at-site quantile
estimates (denoted OLSC), or neglecting all observation reported as zero (denoted
OLSD). OLSC and OLSD performed poorly compared to the use of a Tobit model, which
is a maximum likelihood estimator (MLE) procedure that represents the below threshold
estimates as a range from zero to the threshold level. For a small amount of censoring,
the OLSD method can be acceptable. A weighted Tobit model that accounts for the
heteroscedasticity of the residuals in the regression model provided relatively little gain

over the ordinary Tobit model.

1. Introduction

Estimates of low-streamflow statistics are needed for plan-
ning hydropower, irrigation and water supply systems, cooling-
plant facilities, waste-load allocations into streams, and recre-
ational uses. When river discharge records are available, low-
streamflow statistics can be obtained by either a frequency
analysis [Riggs, 1968, 1972] or cross-correlation techniques us-
ing a longer record site [Hirsh, 1979, 1982; Vogel and Stedinger,
1985; Stedinger and Thomas, 1985], depending on the length of
record available at the site of interest. When no discharge
record exists for a site, a regional regression model can be used
to estimate low-streamflow statistics.

Relationships between low-flow statistics and geomorphic,
geologic, climatic, and topographic parameters have been de-
veloped for many regions [Thomas and Benson, 1970; Thomas
and Cervione, 1970; Riggs, 1972; Parker, 1977; Bingham, 1986;
Vogel and Kroll, 1992; Dingman and Lawlor, 1995]. These mod-
els often have the form

Oy = e“XPXY - - )

where Q,, is the day (d) year (¢) low-flow statistic, X, are
drainage basin characteristics, and «, 3, and y are model pa-
rameters. Taking the logarithm of both sides of (1) yields a
linear regression problem. The parameters in this model can
be estimated using at-site quantile estimates from gauged river
sites that provide estimators of O, ,. Once a model has been
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developed for a region, low-flow estimates at ungauged sites
can be obtained as a function of drainage basin characteristics.

At some gauged sites, at-site quantile estimates are reported
as zero. Such low-flow estimates occur at stations where the
river discharge is sometimes reported as zero. At times the
flow in the river may actually be zero, while in other instances
flows may be nonzero but too small to be recorded by the
available measuring instrumentation and consequently re-
corded as zero. An analysis of (1) is inconsistent with zero
quantile estimates because zero quantile estimates may repre-
sent a range from zero to the measurement threshold and not
a single value. In addition, zero quantile estimates are incom-
patible with the logarithmic transformation commonly applied
to solve for the parameters in (1). Recognizing that quantiles
below some threshold value cannot be distinguished from zero
also eliminates many problems associated with the estimation
of a lower bound of some fitted frequency distribution [Lawal
and Watt, 1996].

The situation where all data below a fixed value is censored
is called type I censoring, as opposed to type II censoring,
where a fixed number of data points are always censored [Dav-
id, 1981]. Censored low-flow regional regression models should
be an example of type I censoring because the measurement
threshold at a river site is fixed, and all flows less than the
measurement threshold are reported as zero. Two simple
methods have been proposed to deal with type I censoring in
low-flow regional regression models. The first is illustrated by
Hammett [1984] who added a constant to all low-flow estimates
in real space before performing ordinary least squares (OLS)
regression on the translated quantiles in logarithmic space.
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The second is illustrated by Arihood and Glatfelter [1991] who
neglected all observations below 0.05 cfs (1 cfs is 2.8317 X 102
m?/s) and performed OLS regression on the remaining data
set. Ludwig and Tasker [1993] employed a more sophisticated
approach by using logistic regression to model the probability
of zero flows at a site. They then combined this information
with a regional regression model for the mean and variance of
the flows which was developed using only sites with nonzero
at-site quantile estimates.

Nonlinear least squares fit in real space could be used to
estimate the parameters in (1) [McCuen et al., 1990]. Such a
procedure has a number of problems. Unweighted least
squares in real space misrepresents the error structure of the
problem which one should capture to obtain statistically effi-
cient estimators. This is an important issue. In many regions
the at-site quantile estimates, Y;, as well as some drainage
basin characteristics (such as drainage area), X;, vary by sev-
eral orders of magnitude. If one gives the residuals from each
site equal weight, information at sites with smaller quantile
estimates would be lost. A logarithmic transformation appears
to provide a good description of the residual error in hydro-
logic regional regression models and has been applied in prac-
tice for low flows [Thomas and Benson, 1970; Vogel and Kroll,
1992] and flood flows [Jennings et al., 1994]. A similar result
might be obtained by weighted least squares in real space.
However, that approach has other problems, particularly with
censored data. To obtain unbiased parameter estimators, one
needs to account for the asymmetry of the truncated error
distribution, which nonlinear least squares in real space does
not. In addition, zero quantile estimates represent a range
from zero to the measurement threshold. If reported zeros are
treated as zeros, the resulting model may incorrectly describe
the likelihood of low streamflows in small basins. Because of
these problems, a real-space nonlinear least squares model is
not included in this experiment.

Tobin [1958] considered representing the censored popula-
tion as a mixed distribution, where the censored observations
represent an interval of the sample space less than the detec-
tion limit. A maximum likelihood technique is used to estimate
the model parameters. This model has been called a censored
regression model in the statistics literature [Judge et al., 1985]
and a Tobit model in the econometrics literature [Amemiya,
1985]. Recently, Liu et al. [1997] applied a Tobit model to
environmental quality data, and Lu et al. [1998] considered a
bivariate censored model for low-streamflow prediction.

Few studies have compared the performance of different
regional regression techniques for handling censored hydro-
logic data. Kroll and Stedinger [1994] compared a number of
different regression models for censored data using Monte
Carlo simulation. Their work was an extension of Liu and
Stedinger’s [1991] analysis which appears to contain errors in
the parameter estimation procedure for the Tobit model. Kroll
and Stedinger used the combined mean square error (mse) of
all quantile estimators above and below the censoring thresh-
old as a performance criterion to compare estimation tech-
niques. They found the quantile estimator for the Tobit
method to have a smaller mse than the quantile estimators
based on regression after adding a constant or ignoring the
censored observations. In general, quantile estimators based
on a model which ignores the censored observations had a
smaller mse than quantile estimators based on a model which
adds a constant to all at-site quantile estimates, especially
when the model error variance was small.
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The underlying two-parameter regression model in Kroll and
Stedinger’s [1994] and Liu and Stedinger’s [1991] Monte Carlo
experiment had a relatively shallow slope (8 = 0.5 in (1))
compared to many low-flow regional regression models
[Thomas and Benson, 1970]. Of interest here is whether the
same conclusions would be drawn when estimators of only the
above threshold quantile estimators are compared for models
with more realistic slopes. Quantile estimators below the cen-
soring threshold would generally be described as equal to zero,
and how well the estimation techniques fit these values is likely
to be of little practical importance. The gains from implement-
ing a weighted Tobit model which accounts for the heterosce-
dastic nature (nonconstant variance) of the residuals in the
regression model is also investigated.

2. Estimation Techniques

A simple two-parameter regression model is considered in
these experiments. The dependent variable is the 7-day, 10-
year low-flow, O ;,, the most widely used low-flow index in
the United States [Riggs et al., 1980]. Drainage area, a com-
monly used descriptor of low-flow quantiles in regional regres-
sion models, is used as the independent variable in these ex-
periments. Four estimation procedures are analyzed. The first
(OLSC) adds a constant to all at-site quantile estimators be-
fore performing ordinary least squares (OLS) regression. The
second (OLSD) ignores the censored observations and per-
forms OLS regression only with the uncensored observations.
The third is a Tobit model which is a maximum likelihood
estimation (MLE) technique that represents the censored ob-
servations as a range from zero to the measurement threshold.
The fourth is a weighted Tobit model which accounts for the
heteroscedasticity (nonconstant variance) of the residuals in
regional regression analyses.

2.1. OLSC Method

The two-parameter regional regression model in logarithmic
form is

In(Q) =a+ BIn(4) + g (2)

where Q; is an at-site estimator of the O, , at site i, A, is the
drainage area, and ¢, is the residual error. Q; is obtained using
the available discharge record at site i. To employ this model,
all O, estimates must be greater than zero, which is not always
the case [Hammett, 1984; Arihood and Glatfelter, 1991; Ludwig
and Tasker, 1993]. To avoid taking the logarithm of zero, one
could add a constant, c, to all at-site quantile estimates before
performing the regression analysis [Hammett, 1984]. The de-
pendent variable in the regression model becomes

Yi=1In(Q;+c) 3)
so that the regression equation is
Y=at+tBIn(A) + ¢ “4)

If the error terms are assumed to be independent and identi-
cally distributed (iid) with mean zero and constant variance,
the parameters in (4) can be estimated efficiently by OLS
regression [Johnston, 1972]. Once the regression parameters
have been estimated as & and 3 these estimates can be used to
obtain a quantile estimate at site i as

Yi=a+pln(4) )



KROLL AND STEDINGER: DEVELOPMENT OF REGIONAL REGRESSION RELATIONSHIPS

The constant added to all at-site estimates should be sub-
tracted from the quantile estimates produced by this model to
obtain quantile estimates for a particular site:

Oi=exp (V) —c (6)

2.2. OLSD Method

Another approach would be to neglect all sites with zero
quantile estimates in the regression analysis [Arihood and Glat-
felter, 1991]. OLS regression is then performed on the remain-
ing uncensored data. This model can be written

In(Q)=a+BIn(A4) +¢gif Q;>0 7

This procedure reduces the number of data points in the anal-
ysis and thus suffers from some loss of information and possi-
ble bias [see Amemiya, 1985].

2.3. TOBIT Method
The Tobit model can be written

Y=In(Q)=a+BIn(A4) + ¢
Y:=1n (Qy)

where ¢, are assumed to be independent, normally distributed
residual errors with mean zero and constant variance, o2, T is
the censoring threshold value, and Q is some nominal value
=T. For low-flow quantiles, Q, is often considered equal to
zero. The likelihood function for this model is

itQ,>T
®)

otherwise

L=[lFm) 1] f(v) )

i=M+1

where M is the number of sites with at-site quantile estimates
equal tozeroandi = M + 1, ---, N corresponds to the sites
with uncensored observations. F,;(T) is the probability Y; is

below the threshold value and f;(Y;) is the density function of
Y, when Q; is greater than 7

2

) ] dx (10)

(T—a—PBIn(A)/oe 1 —x
F(T) = — —
(T) jw [ \/ﬁ 24Y ( 2

oo L {_g[n—a—ﬁlnwn
flY) = \/72770_2 exp D) o,

The assumed value, QO of Y; when Q, is less than 7" has no
effect upon the likelihood function.

If the error terms in the Tobit model are assumed to be
homoscedastic and independent, the model parameters may be
efficiently estimated using maximum likelihood estimation
techniques [Amemiya, 1985]. By taking the logarithm of (9)
and setting the partial derivative with respect to the model
parameters, «, 3, and o, to zero, one can attempt to solve for
the parameters in the model. Amemiya [1973] proved that the
log-likelihood function of the Tobit model is not globally con-
cave when solved with respect to the parameters in this form;
thus maximization techniques may not converge on a global
maximum. A suggested transformation is to take the partial
derivative of the log-likelihood function with respect to

(11)

(12)
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Olsen [1978] proved that the log-likelihood function of the
Tobit model is globally concave after this transformation. Ol-
sen [1978] provides the first and second partial derivative with
respect to the expression in (12), and thus they are not in-
cluded here. Since the log-likelihood function is globally con-
cave, optimization techniques such as Newton’s method [Cha-
pra and Canale, 1985] can be employed to solve for the model
parameters.

2.4. Weighted Tobit Method

The likelihood function used with the TOBIT method rep-
resents the residual error terms as independent and identically
distributed normal random variables. This condition is often
violated due to variations in the magnitude of the sampling
error associated with the at-site quantile estimators and cross-
correlation among the flows from which the at-site quantile
estimators are computed. The differences in sample error vari-
ance are primarily due to differences in record lengths. Tasker
[1980], Stedinger and Tasker [1985, 1986a, b], and Tasker and
Stedinger [1989] developed regional regression techniques to
handle such situations in the absence of censoring.

Our weighted Tobit method addresses the varying sample
error variance in the at-site quantile estimators. The likelihood
function for the weighted Tobit method, WTOBIT, is the same
as in (9) if o2, the residual error variance, is replaced by y* +
2,; in the equations for the distribution and density function
(equations (10) and (11)). Here y* is the underlying model
error variance corresponding to o2 in the ordinary Tobit
model, and X,; is the sampling error of the at-site quantile
estimators. Parameters vy, «, and B are estimated using the
maximum likelihood approach. Similar to the TOBIT method,
a transformation of the model parameters of the log-likelihood
function was employed:

a* = (13)
Construction of X, to be employed with the WTOBIT estima-
tor is discussed in section 3. In some applications, data sets
yielding y = 0 might be a concern; however, because the model
error variance of low-flow regional regression models tends to
be high [Thomas and Benson, 1970], this situation is unlikely.

3. Experimental Design

The estimation methods discussed in section 2 are compared
in several Monte Carlo experiments. This section describes (1)
the regional model used to generate data in the Monte Carlo
simulation, (2) at-site quantile estimation when some annual
minimum flows are reported as zero, (3) the censoring of
at-site quantile estimates, (4) quantile estimation using the
fitted regression models, (5) construction of the weighting ma-
trix 2 for the WTOBIT method, and (6) the performance
measures used to compare the regression methods.

3.1. Underlying Model

To examine the performance of the quantile estimators as-
sociated with the different estimation methods using a Monte
Carlo experiment, it is necessary to specify a true regional
model. Annual minimum 7-day low flows at a site are assumed
to be well described by a lognormal distribution. Vogel and
Kroll [1989] and Dingman and Lawlor [1995] showed that this
is a reasonable model of annual minimum flows in the north-
eastern United States. Tasker [1987] and Durrans and Tomic
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[1996] both recommended a log-Pearson III distribution to fit
low-streamflow series in Virginia and Alabama, respectively.
The lognormal distribution is a special case of the log-Pearson
III distribution.

Each experiment included 25 sites with the drainage areas
evenly spaced in logarithmic units from 10 to 300 square miles.
At each site, the mean, p;, and standard deviation, o;, of the
annual minimum 7-day low flows in logarithmic space were
calculated as a function of drainage area using the models

(14)
(15)

where ¢, are independent normally distributed random errors
with mean zero and constant variance, o2 It is assumed that
the variance of the error in (15) is relatively small and thus can
be neglected. Kroll and Stedinger [1998] and Stedinger and
Tasker [1985] show that a small error term in (15) results in
very little heteroscedasticity and thus has a negligible impact
on the analysis.

Assuming the annual minimum flows are lognormally dis-
tributed, the underlying quantile model in each experiment is

(16)

where Y, is a quantile with nonexceedence probability p, o =
a, +z,a,, B =B, + z,B,, and z, is the frequency factor
associated with the 100p percentile of a standard normal dis-
tribution. The variance of the residual errors, o2, corresponds
to the model error variance in (16). Parameter o, was assigned
values of 0.3, 0.5, and 0.7 to examine how variations in the
model error variance effect the performance of the quantile
estimators. The values of o, correspond to standard errors of
estimate in real space ranging from 30 to 80%. These values
represent small to large model error variances for realistic
regional low-flow regression models [Thomas and Benson,
1970; Vogel and Kroll, 1990, 1992].

Models with two different slopes are considered in this ex-
periment. In the shallow slope model the coefficients B, B,,,
and «, were set to 0.35, —0.12, and 1.1, respectively; this is
consistent with the model considered by Liu and Stedinger
[1991]. These values correspond to B = 0.504 in (16), which
means that Q, ,, increases linearly with 4°°°*. The parame-
ter «,, was set to four different values to vary the fraction of
data which falls below the threshold. The selected values, o, =
—2.2, 2.5, —2.8, and —3.1, correspond to censoring on aver-
age of 3, 7, 11, and 15 of the 25 observations.

The coefficient B = 0.504 appears to be a small slope for a
two-parameter regional regression model. Using the
Boussinesq equation, Vogel and Kroll [1992] developed a phys-
ical model for low flows based on flow into a fully penetrating
stream channel from an unconfined rectangular aquifer placed
on a horizontal impermeable layer. For this multivariate phys-
ical model, the coefficient for drainage area (3 equals one.
However, with a two-parameter model employing a single ex-
planatory variable as in (16), the explanatory variable becomes
a surrogate for other variables (such as average basin slope,
hydrogeologic properties, precipitation, etc.), and thus the ex-
ponent may take on other values. Thomas and Benson [1970]
developed regional regression models for the 7-day, 2-year and
7-day, 20-year low flows and generally found the coefficient on
drainage area to be in the range from 1 to 2 for models with
drainage area as the only explanatory variable.

wi=oca,+ B,In(4) + ¢

;= Q, + B(r ln (AI)

Yi=a+BIn(4)+s
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In the medium slope model, the coefficients g, B, and «,,
were set to 1.03, —0.08, and 0.37, respectively. These values are
consistent with those found by Thomas and Benson [1970] for
low-flow regional regression models and correspond to B =
1.132 in (16). To vary the amount of censoring, the parameter
a,, was assigned four different values, —4.9, —5.4, —6.1, and
—6.7, which again correspond to censoring on average of 3, 7,
11, and 15 of the 25 observations.

3.2. Data Generation and At-Site Quantile Estimation

To implement the censored regression methods discussed in
section 2, one must first estimate quantiles at each site using
available discharge records. A record of random log annual
minimum 7-day flows of length n; was generated for each site
using a normal distribution with mean and variance given by
(14) and (15), respectively. The record length at 15 sites was 10
years, and the record length at 10 sites was 50 years. The
measurement threshold could vary across sites, as it may in
practice. Here it was set to 0.1 cfs at all sites. If the measure-
ment threshold varied across sites, 7; would replace T in (9)
and (10) for the Tobit method, where T is the measurement
threshold at site i. Otherwise, implementation of this method
would not change.

At each site, a random number, n,, of annual minimum
flows will be below the measurement threshold value. These
values are censored; in practice they would be reported as zero.
Each annual minimum flow above the measurement threshold
was assigned a plotting position calculated as

ne (ni— n> [(j -3)/(8 —n,)

Pi= . n, n,—n,+ 1/4

j=zn.+1 (17)
]

where j is the rank of the jth flow. For the data above the
measurement threshold the logarithm of the annual minimum
flows, y;, are regressed against the corresponding “normal
scores” using the model

Y=yt &i®7l(pj) + g (18)
where [i; and &; are the resulting estimators of the mean and
standard deviation of the logarithm of the annual minimum
7-day flows obtained by ordinary least square regression pro-
cedures and ® ~*(p,) is the standard normal inverse cumula-
tive distribution function evaluated at p,. Equation (17) is the
Blom-based plotting position [Blom, 1958] developed by Hirsch
and Stedinger [1987] for censored data sets. Helsel and Cohn
[1988] showed that the choice of plotting position is not par-
ticularly important when estimating the moments of a normal
distribution using censored data sets by (18). The Blom-based
plotting position was selected since Blom’s plotting position is
an approximation to the unbiased plotting position for the
normal distribution [Cunnane, 1978].

The estimators i, and &, in (18) are often referred to as
log-probability plot regression (LPPR) estimators [Gilliom and
Helsel, 1986; Kroll and Stedinger, 1996] and were originally
suggested by Gupta [1952]. Gilliom and Helsel [1986] compared
LPPR estimators to a variety of other estimators including
maximum likelihood estimators and found LPPR estimators
generally performed well. Kroll and Stedinger [1996] also rec-
ommended LPPR quantile estimators for low to moderate
censoring for data drawn from a lognormal distribution. For
each site, once fi; and &; were estimated, an at-site estimate of
In (Q5.10), Y, was calculated as
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?i =f,; + Zpé'i (19)
If two or fewer uncensored annual minimum flows were
present at a site, the regression analysis indicated by (18) was
not performed and the 10-year low flow quantile at the site was
assumed to be censored.

3.3. Censoring of At-Site Quantile Estimates

One would expect O, at-site estimates below the mea-
surement threshold to be less precise than above threshold
estimates because the former represent an extrapolation below
the range of observed data. Results in Kroll and Stedinger
[1996] illustrate this phenomena. Moreover, censored annual
minimum flows may actually be zero, in which case the real
0,10 may be zero. In this experiment, O ;, estimates below
0.1 cfs were censored, which means they were treated as “ze-

£

ros.

3.4. Regression Model Estimates

Once at-site quantile estimates, Y, have been estimated at
all sites, each of the four regression methods were used to
estimate the parameters in the model

Y=a+BIn(A4) + e (20)
For the OLSD, TOBIT, and WTOBIT methods, the log-space
quantile estimate for site i with drainage area 4, was calcu-
lated as

Vi=a+BIn(4) (21)
For the OLSC method, four values of the constant were ex-
amined: ¢ = 0.01, 0.1, 0.5, and 1.0 cfs. These represent a
range of values less than, equal to, and greater than the cen-
soring threshold of 0.1 cfs. For the OLSC method it is neces-
sary to remove the constant that was added to all the at-site
quantiles from the quantile estimates associated with the fitted
model. The log-space quantile estimate for site i with drainage
area A; for the OLSC method was calculated as

V,=In{exp[a& + B In (A4)] — ¢} (22)

Several papers have addressed the bias in log-transformed
regression models [Bradu and Mundlak, 1970; Miller, 1984;
Koch and Smillie, 1986; Ferguson, 1986; Cohn et al., 1989;
McCuen et al., 1990]. After performing ordinary least square
regression in logarithmic space, a real-space estimator given by
0, = exp (¥,) is “median unbiased,” but the expected value of
0, is a biased estimate of Q,. A mean unbiased estimator is
given by O, = exp [Y; + (¢%/2)], where o2 is the true model
error variance. In low-flow regional regression analyses, which
implement ordinary least squares, the estimate of o7 includes
both the model error variance and the sampling error variance
associated with at-site quantile estimators. One could obtain
an estimate of the model error variance using an estimate of
the average sampling error associated with the at-site quantile
estimators at stations used in the regression and an estimate of
the average interstation correlation coefficient [Hardison,
1969; Stedinger and Tasker, 1986b]. By analyzing the perfor-
mance of log-space estimators, the problem of transformation
bias is avoided for the OLSD, TOBIT, and WTOBIT estima-
tors. To be consistent, the OLSC quantile estimator is trans-
formed back to log space.
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3.5. Estimation of Sampling Error for WTOBIT

Implementation of the WTOBIT model requires an estimate
of the sampling error associated with the at-site quantile esti-
mators, ;. Stedinger and Tasker [1985] estimated the sam-
pling error for complete normal samples as

22
2 COMPLETE = 0',‘2<1 + f)/ni

where n; is the length of record at site i, z,, is the frequency
factor associated with the 100p percentile of a standard nor-
mal distribution, and ¢} is an estimate of the variance of the
log annual minimum flows. Our experiments also require an
estimator for censored samples.

Using Monte Carlo simulation, Kroll and Stedinger [1996]
produced estimates of the sampling variance (2, ppg) associ-
ated with LPPR at-site estimators of In (Q ,,) for data drawn
from a lognormal distribution. Based on those results, our
weighted Tobit model used the approximation

(23)

kp
2 APPROX = ZCOMPLETE EXP <m> (24)
where p is the censoring probability and k is a constant esti-
mated by minimizing

E (EAPPROX - ELPPR) :

ELPPR

(25)

where the summation in (25) is over cases with censoring at the
Oth, 10th, 20th, and 40th percentiles and coefficients of varia-
tion (CV) of 0.25, 0.5, 1.0, and 2.0. An approximation based on
(24) was developed for samples of size n = 10, and another
approximation was developed for samples of size n = 50. For
n =10,k = 3.2, and forn = 50, k = 2.4. In the Monte
Carlo experiments, p was estimated as n./n;, where n; is
the record length at site i/, and #n_ is the number of censored
annual minimum flows at that site. The percent deviations
[100(ZApprox — Zippr)/Zippr] Were always less than 6%
for all censoring percentiles and CVs [see Kroll, 1996]. In
low-flow regional regression models, the model error variance
tends to be larger than the sampling error variance, so the
impact of using the approximation in (24) should be minor.

The WTOBIT method requires an estimate of o; to obtain
an estimate of 2omprere I (23). The use of ¢; from (18)
would produce weights that would be correlated with ¥,. Fol-
lowing the procedures suggested by Tasker and Stedinger
[1989], o, were smoothed by regressing &, from (18) against In
(A,;). These smoothed o; estimates were then used to obtain
the weights required by WTOBIT with (23) and (24).

3.6. Performance Measures

For each set of parameters, experiments were run until 1000
acceptable data sets were generated. Replicates where no
010 values are censored were discarded from the experiment
because our interest is in the performance of the procedures
with censored observations. Instances where no Q5 ,, values
were censored occurred in a maximum of 15 our of 1015
replicates and usually did not occur at all.

The performance of the four regression techniques are de-
scribed by how well the above-threshold quantile estimates
produced by the regression procedures compare to the true
values. The performance parameter used to analyze this rela-
tionship was the log-space mse. A log-space mse weighs per-
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a) Data Set for Shallow Slope Model

1.000F
0.100¢ A
o p s
~ pe o, . Uncensored At-Site
(@] 4%y s Measurement Quantile Estimate
0.010+ \ Threshold
[ Censored At-Site
Quantile Estimate
0.001 e
10 100 1000
Area
c) OLSC-0.01 Estimates
1.0007F
E %
0.1007F Lo
o £ .
": 2 Best Fit
o \ OLSC-0.01
0.010 & Estimates
0.001 ]
10 100 1000
Area
e) OLSC-1.0 Estimates
1.000
E ks
a
0.100
E Best Fit
OLSC-1.0
o i Estimates
0.010¢
0.001 : et .
10 100 1000
Area
Figure 1.

centage over- and under-estimation equally [see Kroll and Ste-
dinger, 1996]. In practice one would mainly be interested in
improving estimators of the above threshold quantiles because
quantile estimators below the censoring threshold are gener-
ally treated as zero. For the 25 sites ranked in ascending order
by drainage area, where the first N of the sites have E[Y;] =
a + BA; < In (T), the mse was calculated as the average over
1000 replicates of

25

> (- EY))?

i=Nc+1

25 — N,

mse = (26)

4. Results

In section 4.1 below, data sets are used to visually examine
how the OLSC, OLSD, and TOBIT techniques are likely to
perform. In section 4.2 the Monte Carlo simulation results
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Visual examination of OLSC, OLSD, and TOBIT fits for shallow slope model.

compare the performance of OLSC, OLSD, TOBIT, and
WTOBIT estimators.

4.1. Visual Examination of OLSC and OLSD Fitting
Procedures

The performance of the OLSC and OLSD methods are first
examined using data generated from the shallow slope model
with o, = —2.8 and a medium model error variance [0? =
(0.5)?]. Annual minimum flows were generated at a number of
sites in the region. At-site quantiles were then estimated using
the generated annual minimum flows, and the regression tech-
niques were employed using the at-site quantile estimates.
With 25 sites in a region, using different random data sets, one
would expect to observe variations in the at-site quantile esti-
mates about the true values of the quantile. To avoid possible
variations in the fitted model, the number of sites in the region
was increased to 100 with drainage areas evenly spaced in
logarithmic units from 10 to 300 square miles.

Figure 1ais a plot of the 100 at-site quantile estimates versus
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Figure 2. Visual examination of OLSC, OLSD, and TOBIT fits for medium slope model.

drainage area for the shallow slope model. The squares rep-
resent the uncensored at-site quantile estimates, and the tri-
angles represent the censored at-site quantile estimates which
were set to zero. If one could measure all flows regardless of
their magnitude, then all annual minimum flows at all sites
would be recorded as nonzero and no censoring would occur;
in this case, one could obtain uncensored at-site quantile esti-
mates at all sites and fit a regression line to these values. That
line is denoted “best fit” in Figure la.

For the OLSC-0.01 method, the constant 0.01 is added to all
at-site quantile estimates in real space. The dark squares in
Figure 1b represent the at-site quantiles in log-space after the
constant was added. The OLSC-0.01 method uses OLS regres-
sion to fit a line to these transformed at-site quantiles. That
line is also plotted in Figure 1b. The light squares and light
triangles in Figure 1b represent the original uncensored and
censored at-site quantiles from Figure la. Quantile estimates
for the OLSC-0.01 regression technique are obtained by sub-
tracting 0.01 in real space from the OLSC-0.01 regression line.
Those estimates are plotted in Figure 1c. The OLSC-0.01
method does not fit the data very well.

For the OLSC-0.1 method, 0.1 is added to all at-site quantile
estimates in real space, and a regression line is fit to the
transformed log-space at-site quantile estimates. The resulting
quantile estimates for the OLSC-0.1 regression method are
found by subtracting 0.1 from the regression line. These esti-
mates are shown in Figure 1d. A similar technique was used for
the OLSC-0.5 (Figure 1d) and OLSC-1.0 (Figure 1le) methods.
All of the OLSC methods fit the below threshold quantiles
poorly. As discussed previously, in practice, one is more con-
cerned with the fit to the above threshold quantiles. For this
data set, the OLSC-0.5 and OLSC-1.0 methods appear to fit
the above threshold quantile reasonably well.

The OLSD method uses only the uncensored at-site quantile
estimates. Figure 1f contains a plot of the OLSD regression fit
to the at-site quantile estimates for data generated from the
shallow slope model. The performance of the OLSD method is
influenced only by at-site quantile estimates which are above
the measurement threshold. Above threshold, at-site quantile
estimates at sites with small drainage areas are more likely to
occur when the slope of the model is shallow and the model
error variance is large because the probability of an uncen-
sored at-site quantile estimate is larger in these cases. When
such estimates are present, the OLSD method overestimates
the intercept term, «, of the regional model. In Figure 1f the

OLSD method provides a poor description of the above
threshold quantiles.

The TOBIT method uses both the censored and uncensored
at-site quantile estimates in fitting a regression line without
adding a constant to the at-site quantile estimates as the OLSC
methods does. Figure 1f also contains a plot of the regression
line for the TOBIT method for data generated from a shallow
slope model. The TOBIT method provides a good fit to both
the above and below threshold quantiles.

Figure 2a is a plot of at-site quantile estimates versus drain-
age area for a 100 site data set using the medium slope model
with @, = —6.1 and o7 = (0.5)*. Many of the censored obser-
vations are plotted as the same value [exp(—4)]. At these sites,
two or fewer annual minimum flows were above the measure-
ment threshold, and thus an at-site quantile estimate was not
computed for these sites. The quantile estimates for the
OLSC-0.01, OLSC-0.1, and OLSC-0.5 methods are plotted in
Figure 2a, with quantile estimates for the OLSC-1.0 method
plotted in Figure 2b. In contrast to the shallow slope model
where OLSC-0.5 and OLSC-1.0 were the best OLSC methods,
for the medium slope model, the OLSC-0.1 method appears to
fit the above threshold quantiles better than the other OLSC
methods. The OLSC-0.01 method is again the worst.

Figure 2b also contains the fit of the OLSD and TOBIT
methods to the medium slope data. Because no at-site quan-
tiles estimates associated with the smallest drainage areas are
above the measurement threshold, the OLSD method fits the
above threshold quantiles much better than it did with the
shallow slope model. The TOBIT method again provides the
best approximation to the best fit model.

4.2. Results of Monte Carlo Simulation

In section 4.1 we examined quantile estimates with two data
sets that included 100 sites. In this section we examine how the
estimation methods perform in a Monte Carlo simulation of a
25-site region. To examine the relative performance of each of
the estimators compared to the best estimator for a particular
statistic and a particular set of experimental parameters, the
efficiency of each estimator was calculated as

MSCpest Estimator

Efficiency =
y MSCEstimator

(27)

where the mses were computed using (26). The performance
ratio of the estimator with the smallest mse will be equal to 1,
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Figure 3. Efficiency of estimators for shallow and medium slope models.

and the performance ratio of the other estimators will be some
value between zero and 1. The closer the performance ratio is
to 1, the better the estimator is performing relative to the best
estimator.

Figure 3a is a plot of the efficiency of the estimators for the
shallow slope model. The results are grouped into four sets of
three columns. The column on the left corresponds to o, = 0.3,
the middle column to o, = 0.5, and the right column to o,
0.7. As expected, the TOBIT and WTOBIT methods clearly
dominate the other techniques. The WTOBIT method some-
times performs slightly better than the TOBIT method, though
this difference is modest.

When viewing the fits of the OLSC and OLSD methods to
the data set from the shallow slope model data in section 4.1,
we saw that the OLSC-0.5 and OLSC-1.0 methods fit the above
threshold quantiles better than the other methods. This result
is also reflected in Figure 3a. The OLSC-0.01 method is the
worst-fitting technique having an efficiency less than 20%.

Figure 3b is a plot of the efficiency of the estimators for the
medium slope model. Again the Tobit methods dominate the
other techniques. The WTOBIT method produced no increase
in mse efficiency over the TOBIT method for the medium
slope model results. In many cases the OLSD method per-
forms better than all the OLSC methods. This is because in the
medium slope model it is relatively unlikely that at-site quan-
tiles associated with small drainage area sites will be above the
measurement threshold when the median value of the quantile
is below the censoring threshold.

5. Conclusions

In this experiment the performance of estimation techniques
for regional regression analyses with censored data were ex-
amined. One technique, OLSC, added a constant to all at-site
quantile estimates in real space before performing a log linear
regression analysis. This method was examined for constants
less than, equal to, and larger than the measurement threshold.
A second method, OLSD, discards all censored at-site quantile
estimates and performs a log linear regression analysis using
the remaining uncensored at-site quantile estimates. The third
method, TOBIT, uses a maximum likelihood technique to es-
timate the model parameters. In the likelihood function the
censored data are represented as a probability of being less
than the censoring threshold. The fourth method, WTOBIT, is
a weighted Tobit method which accounts for the heteroscedas-
tic nature of the residuals due to differences in the sampling
error variance associated with at-site quantile estimators.
These estimation methods are compared using both Monte
Carlo simulation and visual analysis.

The performance criterion used in the Monte Carlo exper-
iment to compare these methods was the log-space mean
square error (mse) of model quantile estimators. In practice,
one would mainly be interested in improving estimators of
quantiles which are greater than the measurement threshold
because quantile estimators below the censoring threshold are
generally treated as zero. In this experiment the estimation
techniques are compared for a region with a shallow slope and
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with a medium slope. In multivariate models one would po-
tentially have some parameters that would be representative of
shallow slopes while others were medium or even high sloped
parameters.

In general, for the estimators considered in this experiment
the following occur:

1. Regardless of the amount of censoring or the slope of
the underlying regional model, the Tobit methods always pro-
duced estimators with substantially smaller mses than the
OLSD and OLSC quantile estimators.

2. The weighted Tobit method, WTOBIT, had little advan-
tage over the TOBIT method. This result was because the
sampling error variances employed with the WTOBIT method
were small compared to the model error variance, and thus the
weights were nearly constant.

3. The performance of the OLSD method depended on
the occurrence of at-site quantile estimates above the measure-
ment threshold at small drainage area sites whose median
quantile value was below the censoring threshold. When these
above threshold estimates occurred, the OLSD method over-
estimated the intercept parameter in the regression equation.
This was more likely with the shallow slope model, especially
for regions with a large model error variance.

4. For the shallow slope model, the OLSC-0.5 and OLSC-
1.0 methods tended to produce quantile estimators with a
smaller average mse than the OLSD and OLSC-0.1 methods.
For the medium slope model, the OLSD and OLSC-0.1 meth-
ods tended to produce quantile estimators with a smaller av-
erage mse than the OLSC-0.5 and OLSC-1.0 methods. The
OLSC-0.01 method performed very poorly in all cases.

Based on these results, we recommend the following:

1. Ideally with censored at-site quantiles, it is best to use a
Tobit model to estimate nonzero quantiles, though this proce-
dure is more computationally intensive than the OLSD and
OLSC methods. The Tobit method is the only technique which
performed well in all cases examined. Computer packages such
as SAS [SAS Institute, 1989] and LIMDEP [Greene, 1995] are
available to estimate the parameters of a Tobit model.

2. While the OLSC method may perform satisfactorily if
the correct constant is employed with this method, it is difficult
to know which constant is best, and thus this method is not
reliable.

3. For a small amount of censoring, the OLSD method can
be satisfactory for cases with a small model error variance.

4. Use of the WTOBIT method is generally not warranted
with low-flow data sets because it is more computationally
intensive than the TOBIT method and little or no reduction in
the mse of the quantile estimators is achieved.
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