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Abstract. Hydrograph recession constants are required in rainfall-runoff models, base flow augmen-
tation studies, geohydrologic investigations and in regional low-flow studies. The recession portion
of a streamflow hydrograph is shown to be either an autoregressive process or an integrated moving
average process, depending upon the structure of the assumed model errors. Six different estimators
of the base flow recession constant are derived and tested using thousands of hydrograph recessions
available at twenty-three sites in Massachusetts, U.S. When hydrograph recessions are treated as an
autoregressive process, unconditional least squares or maximum likelihood estimators of the base-
flow recession constant are shown to exhibit significant downward bias due to the short lengths of
hydrograph recessions. The precision of estimates of hydrograph recession constants is shown to
depend heavily upon assumptions regarding the structure of the model errors. In general, regression
procedures for estimating hydrograph recession parameters are generally preferred to the time-series
alternatives. An evaluation of the physical significance of estimates of the baseflow recession con-
stant is provided by comparing regional regression models which relate low-flow statistics to three
independent variables: drainage area, basin slope and the baseflow recession constant. As anticipated,
approximately unbiased estimators of the baseflow recession constant provide significant information
regarding the geohydrologic response of watersheds.

! Key words: baseflow recession constant, hydrograph, low flows, recession analysis. hydrogeology,
streamflow.

1. Introduction

Tallaksen (1995) reviews the application of baseflow recession constants for fore-
casting low flows, hydrograph analysis, low-flow frequency analysis, and for

',.,-- describing aquifer characteristics. Estimates of hydro graph recession constants are
,!,~:,( required for the calibration of rainfall-runoff models and in some cases for fitting
'.":Jj stochastic streamflow models (Kelman, 1980). Hydrograph separation procedures
&:.i.:; and associated baseflow recession constants are used routinely for modeling surface
"('101 runoff (Bates and Davies, 1988) and for constructing unit hydrographs by separat-
. ing the baseflow component of streamflow from the total streamflow to obtain direct
'~j runoff. With increasing attention focused on the quality and quantity of groundwa-
", ter, understanding the contribution of groundwater to streamflow (baseflow) is often
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.: - the focus of applied groundwater studies. Ponce and Lindquist (1990) review man- I

. agement strategies for eight general types of baseflow augmentation applications,
all of which require characterization of baseflow recessions.

Riggs (1961), Bingham (1986), Vogel and Kroll (1992), Demuth and Hage-
. mann (1994), this study, and others show that regional models which relate low-

flow statistics to basin characteristics, can be significantly improved by using the
baseflow recession constant as one of the independent basin parameters. Vogel and
Kroll (1992) show that the baseflow recession constant is related to both the basin
hydraulic conductivity and drainable soil porosity. Regional models for estimating
low-flow statistics are used routinely at ungaged sites for the purposes of both
water quality and water quantity management (see Vogel and Kroll, 1990, 1992, ;
for discussions).

Since the introduction of graphical hydrograph separation procedures by Barnes
";~~ '.~4. ,~ (1939), a variety of approaches have been developed for separating baseflow from

:i~~~;;;;~c'~~-";~z the total streamflow hydro graph. Barnes (1939) graphical hydro graph separation
~~~1~~;~~d~~];!~ Procedures are still included in most introductory hydrology textbooks in Spite
c"'..c ""c~"-C'"

.h~j~};f;c'f:'~~-;::;:::}i~~1~ of the serious criticisms voiced by Kulandaiswamy and Seetharaman (1969) and
~'.,' c c .,.c' ""C;"'?(C"',C

.,,~;:~': :;I;-~c:?r:;,~ Anderson and Burt (1980). Knisel (1963), Singh and Stall (1971) and Brutsaert
,,-,"' -",;,c "i'>". '. ~t'".c:~' and Nieber (1977) introduced alternative graphical procedures for hydrograph sep-

,:. "':'c aration which contain fewer subjective judgements then the graphical procedures
:~-~ '. introduced by Barnes. A variety of analytic procedures have also been advanced to

,: provide a more objective approach to hydrograph separation (James and Thomp-
son (1970), Jones and McGilchrist (1978), Birtles (1978) and others). A review of
studies relating to baseflow recession was performed by Hall (1968) and Tallaksen

(1995).
Recession constants must be estimated from an individual or an ensemble of

hydrographs; but in either case, derived estimates are random variables whose phys-
ical significance should only be determined after an evaluation of their statistical
significance. To our knowledge, there are no studies which evaluate the statistical
properties of estimated values of baseflow recession constants. One could per-
form bootstrap experiments with actual streamflow data, however still, one never
knows the true values of the baseflow recession constant, hence such experiments
cannot be definitive. Alternatively, one could perform Monte-Carlo experiments,

- making certain assumptions regarding the true underlying structure of hydrograph
.. recessions. Again, such experiments are not completely definitive because one

never knows the true structure of hydro graph recessions. Thus, it is very difficult
to discern whether any of the available graphical or analytical estimation proce-
dures provide, for example, minimum variance and/or unbiased estimates of the
true baseflow recession constant. Our approach is to focus on both the physical
and statistical significance of the resulting estimators. After presenting the theory
of hydrograph recessions and six plausible estimators of the baseflow recession
constant, experiments are performed to evaluate the alternative estimators in terms

1 of their ability to explain the geohydrologic or groundwater outflow response of

;
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i .;; . 23 watersheds in Massachusetts. These experiments are no more or less definitive
! than Monte-Carlo or Bootstrap experiments would be, yet they do allow us to

discriminate among the alternate estimators.

.
2. Hydrograph Recessions

Barnes (1939) found that hydro graph recessions seem to follow the basic rela-

tions

~c. Bt+I = KbBt, (la)
;

Ot+I = KoOt, (lb)

where Bt and Ot are the baseflow and other (or remaining) component of stream-
flow, respectively, on day t and Kb and Ko are the base flow and other recession
constant, respectively. These two components of the recession streamflow sum to
produce the total streamflow, thus

Qt = Bt + at, (2)

where Qt is the average daily streamflow on day t. Interestingly, Equation (la) is
an approximate linear solution to the nonlinear differential equation which governs
the unsteady flow from a large unconfined aquifer to a stream channel (Boussinesq,
1877; Singh, 1968; Singh and Stall, 1971; Brutsaert and Nieber, 1977; Vogel and
Kroll, 1992, etc.). Boussinesq (1904) obtained an equation similar to (2) using the
principle of superposition of linear solutions. Brutsaert and Nieber (1977), Vogel
and Kroll (1992) and others show how (1 a) or (1 b) can be derived by treating the

watershed as a linear reservoir.
Equations (1) and (2) .may be expressed in a variety of different forms (Hall,

1968; Tallaksen, 1995), each of which leads to different estimation procedures.
In the following sections we derive six different estimators of the baseflow reces-
sion constant, Kb, using the model described by (1) and (2). Using thousands of
streamflow hydro graphs at 23 basins in Massachusetts, we compare both the phys-
ical and statistical properties of the four baseflow recession constant estimation

procedures.

3. A Hydrograph Recession is a Time Series

In the following sections, Equations (1) and (2) are rearranged to show that hydro-
graph recessions arise from an autoregressive process.

3.1. BASEFLOW RECESSION AS AN AR(I) PROCESS

Equations (1) and (2) describe a streamflow hydrograph without accounting for the
inherent model error introduced by Boussinesq's linear approximation, measure-
ment errors associated with all streamflow measurements or sampling error arising

I
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.: ; from the fact that all streamflow records are of finite and often small duration. Due

II . to these naturally occurring errors Equation (la) is more realistically

Bt+l = KbBt + E:t+l (3)

. where the E:t are independent normally distributed errors with zero mean and
constant variance. The random errors are a result of both measurement and model
errors. Equation (3) provides a reasonable approximation to the baseflow portion \
of a streamflow hydrograph recession because the other component(s) will have I

decayed to zero. Equation (3) is a first-order autoregressive process, AR(I), where
IKb is the autoregressive parameter. Using the notation introduced by Box and .Jenkins (1976) for an AR(I) process, Kb = cPl. James and Thompson (1970) derive I'

the baseflow recession curve as an ARMA(I, 1) process with Kb = cPl = (}l. Of course I

- James and Thompson did not call their model an ARMA(I,I) process because in [

~', '.. 1970, the Box and Jenkins notation was unavailable. An ARMA(I,I) process with
.', ;, cPl = (}l contains parameter redundancy (see Box and Jenkins, 1976, pp. 248-250),

thus the process reduces to white noise, making their analysis questionable.

;; 3.2. BASEFLOW AS AN INTEGRATED MOVING AVERAGE PROCESS

C:i' Rewriting (3), assuming additive errors in log space, one obtains

:' Bt = KbBt-leEt. (4)

Experiments performed later on indicate that the error structure imposed in (4) is
more representative of actual streamflow records. Equation (4) can be rewritten
using Box and Jenkins (1976) notation by taking logarithms and rearranging to

I obtain

Yt - Yt-l = In(Kb) + E:t = \7Yt, (5)
i i

f where Yt = In(Bt) and Yt-l = In(Bt-l), again the residuals are independent, with [
! zero mean and constant variance. Box and Jenkins (1976) term (5) an integrat-

ed moving average model IMA(O,I,O) with constant drift parameter In(Kb). Box
and Jenkins (1976) provide a discussion of the properties of nonstationary IMA

models.

3.3. THE HYDROGRAPH RECESSION AS AN AR(2) PROCESS

If the baseflow and other component of a hydro graph are considered, then Equa-

tions (1) and (2) may be rewritten as

Qt+I = KbBt + KoOt + E:t+l, (6)

where the residuals E:t are independent and identically distributed random errors
with zero mean and constant variance. Using (la) and (lb), (6) may be rearranged

as follows:

\ . ~
~".Jt.j"", """"""~~
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. " Qt+1 = Kb(Bt + at) - KbOt + Ko(Ot + Bt) - KoBt + E: t+1

'; ",

. = (Kb + Ko)(Bt + at) - KbKoOt-1 - KoKbBt-1 + E:t+1

. = (Kb + Ko)Qt - KbKoQt-1 + E:t+l. (7)

Equation (7) may be rewritten as an AR(2) process using the notation introduced
by Box and Jenkins (1976)

Qt+1 = 4>IQt + cf>2Qt-1 + E:t+l. (8)

If the model errors are assumed to be additive in log space, similar to the IMA(O, 1 ,0)
model, then (8) can be rewritten as

Qt+1 = (4>1 Qt + 4>2 Qt-l)eEt+I, (9)

Combining the relationships between 4>1, cf>2, Ko, and Kb implied by Equations (7)
and (8) yields relationships between Ko and Kb and the parameters of the autore-

gressive process

1 2 I
Kb = 2[4>1 + (4>1 + 4cf>2)2], (10)

1 2 I
Ko = 2[4>1 - (4>1 + 4cf>2)2]. (11)

The discriminant (4>12 + 4~2) must be nonnegative, otherwise Ko and Kb are
complex numbers which have no physical meaning. A nonnegative discriminant
implies that (Kb - Ko)2 ~ 0, thus the discriminant is zero when Ko = Kb = t ~1.
Box and Jenkins (1976) show that for (8) to be a stationary process, the parameters
~1 and ~2 must also satisfy

4>1 + 4>2 < 1, (12a)

4>2 - 4>1 < 1, (12b)

-1 < 4>2 < 1. (12c)

These stationarity conditions are always satisfied and the discriminant in (10) and
(11) is always nonnegative when one considers the more restrictive conditions

0 ~ Ko ~ Kb ~ 1 (13)

which are normally imposed to obtain physically reasonable recessions.
The use of ARMA models for the generation of the complete streamflow hydro-

graph is not new, for example Spolia and Chander (1974, 1979) showed that if a
watershed is conceptualized as a cascade of n equal or unequal linear reservoirs,
then the streamflow process is equivalent to an ARMA(n,n - 2) model. In this

-~,
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. . ; TABLE I. Description of U.S. geological survey sites used in this study. .

Site USGS Record Drainage Basin Slope
No. gage No. length area, A S = 2Hd Q7,2 Q7,lO

yrs mf cfs cfs

1 01180500 73 52.70 1.24 1.412 4.38. 2 01096000 34 63.69 0.95 4.489 10.16
3 01106000 37 8.01 0.17 0.047 0.18 i
4 01170100 16 41.39 0.99 4.488 7.54 I
5 01174000 34 3.39 0.40 0.021 0.11 I
6 01175670 23 8.68 0.17 0.227 0.50 I

f7 01198000 19 51.00 0.66 3.275 5.42
8 01171800 II 5.46 0.33 0.468 0.90 I
9 01174900 22 2.85 0.46 0.093 0.18

10 01101000 38 21.30 0.15 0.207 0.80
11 01187400 31 7.35 0.54 0.227 0.50
12 01169000 44 89.00 1.23 7.836 13.85
13 01111300 20 16.02 0.25 0.207 0.84
14 01169900 17 24.09 1.08 3.449 5.44
15 01181000 48 94.00 1.11 5.580 10.81
16 01332000 52 40.90 1.07 5.014 7.83
17 01097300 20 12.31 0.13 0.152 0.58
18 01333000 34 42.60 1.67 4.330 8.26
19 01165500 65 12.10 0.55 0.602 1.23
20 01171500 45 54.00 1.11 6.135 10.08
21 01176000 71 150.00 0.53 15.517 31.34
22 01162500 47 19.30 0.41 0.438 1.40
23 01180000 28 1.73 0.30 0.057 0.11 !

Note: Basin average slope is estimated using S = 2Hd, (dimensionless) where His

basin relief and d is drainage density (see Vogel and Kroll, 1992; for a discussion
of this estimator of S).

instance the hydrograph recession is considered to have two components (n = 2),

which results in an ARMA(2,0) or more simply an AR(2) model. It is comforting
to realize that Equation (8) can be derived from two rather different yet realistic
physical interpretations of a watershed. For this two component recession, James

I and Thompson (1970) derived an ARMA(2,2) process with 4>1 = (}1 and 4>2 = (}2
j which again contains parameter redundancy and the derived process reduces to

white noise.

I 3.4. ESTIMATION OF BASEFLOW RECESSION CONSTANTS - AN EXPERIMENT

I
Previous studies which sought to develop estimation procedures for hydrograph
recession constants used a relatively small number of individual hydrographs at
each site, hence it is difficult to evaluate either the statistical or physical significance

"
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i . of the derived estimates. In this study, we test our estimators using 23 unregulated
, j .,';. basins in Massac~usetts with long-term U.S. Geological ~urvey streamflow r~cor~s.
, . The U.S. Geological Survey gage numbers are shown m Table I along with site

numbers chosen for this and other studies (Vogel and Kroll, 1989, 1990 and 1992),
the length of each gaged record, drainage area A, average basin slope S, and
estimates of the 7-day 2-year and 7-day 10-year low-flow statistics Q7,Z, and Q7,10
respectively. The simple estimator of basin slope S = 2Hd used here, where H
is basin relief and d is drainage density, compares favorably with more complex
estimators (Zecharias and Brutsaert, 1985). See Vogel and Kroll (1992) for a more
detailed discussion of the basin characteristics reported in Table I. These basin
descriptors are employed later on to test the physical significance of the derived
estimates of Kb.

3.5. EXPERIMENTAL DESIGN

An automatic hydro graph recession selection algorithm was developed so that the
complete database of gaged streamflows described in Table I could be used to
estimate values of Kb at each site. Table I describes 23 gaged basins with a total of
845 site-years of average daily streamflow, or a total of 308,425 daily flow values
among all 23 sites. An automatic hydro graph recession algorithm is employed to
search the daily flow record at each site to define a set of hydrograph recessions.
A recession begins when a 3-day moving average begins to decrease and ends
when a 3-day moving average begins to increase. Only recessions of 10 or more
consecutive days are accepted as candidates. If the total length of a candidate
recession is A then some initial portion of that recession contains predominantly

. surfaceflow or stormflow. In this study the first 0.3A days were removed from

. each hydrograph recession, however that choice is somewhat arbitrary because

Vogel and Kroll (1992) found that almost any value of A in the interval [0,0.8] is
a reasonable choice to assure that the linear reservoir hypothesis (AR(l) model)
provides an adequate approximation to the low-flow behavior of watersheds in this

region.

4. Estimation Methods

4.1. TIME-SERIES ESTIMATORS

Estimation of Kb in (3), (5), (8) or (9) using time-series methods would result in
m estimates of Kb at each site, corresponding to the m recessions obtained from
the automatic hydrograph recession selection algorithm. If each estimate were
unbiased, then the ensemble average of the m individual estimates of Kb would
be a reasonably precise estimate of the true value of Kb since many sites have
hundreds (m > 100) of individual recessions. However, each of the individual m
estimates of Kb are based on very short recessions, leading to hundreds of biased

estimates.
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Fig. I. Estimates of Kb for 125 hydrograph recessions at site 16 using unconditional least
squares (ULS) estimators of </>, and </>2 in Equation (8).

Box and Jenkins (1976, pp. 212-236) recommend the use of unconditional
least squares (ULS) estimators for fitting ARMA models. For very large samples,
perhaps 500 or more observations, the ULS estimates are approximately equal
to the maximum likelihood estimates. While ULS estimates of the parameters of
an ARMA model are asymptotically unbiased and have minimum variance, they
contain substantial downward bias for the small samples encountered here. Typical
hydrograph recessions encountered in this study ranged from about 6-35 days.
For example, Figure 1 contains m = 125 independent estimates of Kb at site 16
obtained by application of ULS estimators for the AR(2) model parameters ~i and
~2 in (8). Clearly the value of the estimates depend significantly upon the recession
length, which is not the case for the estimators which follow. For example, two
estimators of Kb described later on reveal that for this site, Kb is in the range [0.90-
0.94]. Clearly each of the m = 125 independent ULS estimates of Kb illustrated in
Figure 1 are downward biased, and the bias does not disappear completely, even

for the longer hydrograph recessions.
For the AR(1) model in (3) a method-of-moments estimate of the parameter

Kb is equal to an estimate of the first-order serial correlation coefficient PI, which
is also significantly downward biased for the samples encountered in this study
(see Wallis and O'Connell, 1972). Furthermore, the unbiased estimators of Pi
recommended by Wallis and O'Connell (1972) are significantly downward biased
when Pi > 0.9 and n < 30 as is usually the case in this study. Since the small sample
properties of even the most efficient estimators of PI, ~l, and ~2 (and, hence, Kb)

,~,;;~:.~
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! contain substantial downward bias for the short and highly autocorrelated samples
',- . encountered here, we elected to treat Equations (3), (4); (8) and (9) as regression

equations instead of as time-series.

. 4.2. REGRESSION ESTIMATORS FOR THE AR(l), IMA(O,l,O) AND AR(2) MODELS
- Kbl, Kb2, Kb3 AND Kb4

If Equations (3), (5), (8) and (9) are treated as regression equations, then one need
not estimate Kb for each of the m individual recessions at a site. Instead, all the
sequences of flows Qt+ 1, Qt and Qt-l chosen by the automatic hydrograph reces-
sion selection algorithm may be combined and fit to (3), (5), (8) and (9) to produce
a single estimate of Kb for a site. Since such an estimate is based on hundreds of
observations, the resulting estimates are sure to be statistically significant as long
as the model residuals have constant variance and are approximately normally dis-
tributed. For the AR(l) model in (3), an ordinary least squares regression estimate
of Kb is

K = L:::~;;;! Qt+l Qt
( 14)bI ~n-1 Q 2 '

L,.,t=l t

where n is the total number of consecutive observations obtained for a site using
the automatic hydrograph recession selection algorithm. Equation (14) is related
to Knisels (1963) procedure which estimates Kb by plotting consecutive values of
Qt+l versus Qt and taking Kb as the maximum slope.

Treating the IMA(O,l ,0) model in (5) as a regression problem one obtains the
ordinary least squares estimator

Kb2 = exp [~~(Yt - Yt-l)] , (15)

where again Yt = In(BJ and Yt-l = In(Bt-l). Equation (15) provides one of the
simplest possible approaches to estimation of the baseflow recession constant.

For the AR(2) model multivariate ordinary least squares regression may be
employed to estimate </Jl and </J2 in (8), however it was found that the resulting
model residuals were heteroscedastic. We found that Var(E:J was proportional to
the flows. To account for this heteroscedasticity, Equation (8) was rewritten as

~ = </Jl + </>2~ + 1]t, (16)
Qt Qt

where now Var(1]t) = Var(E:JIQ2 hence the residuals 1]t are approximately homosce-
dastic, and simple ordinary least squares regression procedures may be employed to
estimate </JI and </>2 in (16). Substitution of those estimates of </Jl and </J2 into (8) and
(10) leads to an AR(2) model estimate of Kb which we term Kb3. This procedure

'j is essentially a weighted least squares approach to estimating the residuals in (8)

~ where the weights are proportional to the streamflows.

(

-
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I ' ;

.; ., " When model errors for the AR(2) model are assumed to be additive in log space,

as in (9), then an iterative least squares approach is required (see Kroll, 1989) which

we term Kb4 in this study.
In summary, the estimators Kbl and Kb3 are the estimators for the AR(I) and.. AR(2) models, respectively, when the residuals are assumed to be additive in

real space. The estimators Kb2 and Kb4 correspond to the IMA(O,I,O) and AR(2)
models, when the residuals are additive in log space.

"'{~~;"; c
~~"c; :~.,; 4.3. THE ESTIMATOR Kb5 OBTAINED BY TREATING THE WATERSHED AS A LINEAR

~"C " -c

,c""",,' :;" RESERVOIR

:':;:;,.:c",-
3 A steady-state solution to the difference equation in (1 a) is

" ~"'E\;;4~:l~;!:*~~);;:~;:f~lit;;~
,'2"",00." ;",;..:,:;:,-.."",";1 Q - Q (K )tegt (17)

t -. 0 ~..' .

-"",~i'~,~~;:'1:,(::;:,;" where Qo IS the lDlual baseflow and Qt IS the baseflow after t days, and t are
independent errors with zero mean and constant variance. Brutsaert and Nieber
(1977) and Vogel and Kroll (1992) show that (3) is a solution to the continuity

C:,ji""~... ;,c~"""",i1'" ,..,'-;: equation d Vldt = I - Q, when the outflow Q from the watershed is linearly related
to the basin storage V, so that Q = - V In(Kb) when inflow I to the watershed is

,~:,cC:j;;j"~1~1".::;~:'"...1 zero (under low-flow conditions) resulting in the differential equation
!; i\~~;~q?,,~:~;';~;i"':1;~:,;;;1

..~;."; -; ,,".':t,)C"'~~"" dQ/dt I (K ) Q gt (18)=-n b e.

Equation (18) can be applied to observed streamflows by taking logarithms to
obtain

f!fj~*~:':'?ft(~'~;@;:: - ~ In[-dQ/dt] = In[-ln[Kb]] + In[Q] + tt, (19)

; f~i?:;~~'~c~~~~r f,;:~ 'f, {-"i cC

where the tt are normally distributed errors with zero mean and constant variance.
';';;.g-;"';-"~;[;:~~':_'f::c", Vogel and Kroll (1992) use the numerical approximations dQldt ~ Qt - Qt-l and

,. ~ '" ;. c ,:

,~~~,~;~,:,,;;,f;:,{.~-':;;ii Q ~ (Qt + Qt-l)/2 to derive the least squares estimator{ [1 m 1 ]}:ic:,4fJ;~i;;~'t~~ Kb5 = exp -exp - L {In[Qt-l - Qt] - In[2(Qt + Qt+l)]} , (20)
'~~~5:~\"::'";:""~';:.: m t= 1

i:!(";:ic'o. ':'~ where m is the total number of pairs of consecutive daily streamflows Qt and Qt-l
:0,-;' ;'; at each site. Essentially Kb5 is an ordinary least squares regression estimator of Kb

, in (19).

4.4. THE TRADmONAL BASEFLOW RECESSION CONSTANT ESTIMATOR Kb5

Taking natural logarithms (17) becomes

In(Qt) = In(Qo) + In(Kb) t + tt (21)

hence one would anticipate the natural logarithms of baseflow to be linearly related
to time, with additive errors in log space. Most introductory textbooks on hydrology

.,

'r ~~"'J. .;- ~
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. TABLE II. Summary of estimators

0; ': 0' Estimator Explanation Equations Model error structure

Kbl AR(I) Model (3) (14) Additive in real space
Kb2 IMA(O, I ,0) (5) (IS) Additive in log space
Kb3 AR(2) Model (8) (16) Additive in real space
Kb4 AR(2) Model (9) Additive in log space. Kb5 Linear reservoir (19) (20) Additive in log space

Kb6 Traditional (21) Additive in log space

advocate fitting (21) by plotting In(Qt) versus t and taking In(Kb) as the minimum
slope corresponding to the baseflow portion of the hydro graph. Such graphical
procedures are often rather arbitrary, hence Singh and Stall (1971) introduced a
more objective approach which selects Kb such that the other component of the
recession (Equation (1 b» is also linear on semi-log graph paper.

In this study, the m candidate hydro graph recessions at each site, selected by
the automatic hydro graph recession selection algorithm are fit to (21) using simple
ordinary least squares regression. This leads to m estimates of Kb for a given site.
Since ordinary least squares regression produces unbiased estimates of In(Kb) in
(21), an estimate of the mean of the m estimates ofKb should be a nearly unbiased
estimate of the true value of Kb at a site as long as m is large. The average value of
m regression estimates of Kb at a site is denoted by Kb6. The six estimators of Kb
described in the above section are summarized in Table II.

5. Results

5.1. STAnsnCAL COMPARISONS OF ESTIMATORS

Figure 2 contains the m individual estimates of Kb obtained at sites 4, 8, 13 and
15 using ordinary least squares estimates of In(Kb) in (21). These four sites are
representative of the range of drainage areas listed in Table I. In addition, the average
of the m individual estimates which we term K b6 are depicted by a solid line at each
site. Essentially, each circle in Figure 2 represents a single estimate of Kb obtained
using the traditional estimator which is roughly equivalent to passing a straight line
through the flow versus time relationship on semi-log graph paper. In contrast with
Figure 1, the estimator of Kb appears to be an approximately unbiased estimator
of the average value as evidenced by the fact that the estimates appear to form a
cone with longer recession lengths giving rise to estimates of Kb which are closer
to the mean value. Figure 2 dramatizes the variability of individual estimates of Kb

I derived from individual hydro graph recessions. Apparently, individual estimates
of Kb derived from a single hydro graph are very poor estimates of the true value
of Kb even for fairly long hydrograph recessions.
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I Fig. 2. Estimates of Kb for individual hydrograph recessions at sites 4, 8, 13 and 15 using

the traditional approach described by Equation (24).

Table III and Figure 3 compare the six estimators Kbl, Kb2, Kb3, Kb4, KbS
and Kb6 summarized in Table II for the 23 U.S. Geological Survey gaged basins
summarized in Table I. These six estimators lead, uniformly, to rather different
estimates of Kb at each site. It appears that the estimators exhibit some bias relative
to one another, however it is difficult to evaluate that bias since the true values are
unknown here. All four estimators have relatively low variance because of the large

samples used.
The model residuals associated with the estimators Kb2, Kb4, KbS, and Kb6

based on (4), (9), (18) and (21), respectively, were homoscedastic and approxi-
mately normally distributed. These four estimators assume that the model errors
are additive in log space. The model residuals were tested for normality using the
probability plot correlation coefficient test (Vogel, 1986) with a 5% significance
level. Interestingly, the model residuals associated with the estimators Kbl and
Kb3, based on (3) and (8), respectively, were not homoscedastic and were not nor-
mally distributed. Recall that we attempted to correct for this heteroscedasticity
associated with the estimator Kb3 by using a weighted least squares estimator. We
conclude that hydro graph recession model errors are additive in log space. There-
fore hydrograph recessions are not really autoregressive processes as shown in (3)
and (6), instead they more closely resemble an IMA(Q,I,Q) process as in (5) or the

.
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Fig. 3. Comparison of estimates of Kb at 23 unregulated U.S. Geological Survey sites in

Massachusetts.

more complex higher order process given in (9) which is no longer a AR(2) process
because the error structure is multiplicative rather than additive in real space.

5.2. PHYSICAL SIGNIFICANCE OF ESTIMATES OF Kb

The baseflow recession constant, K b, is a nondimensional parameter which describes
the rate at which streamflow decreases when the stream channel is recharged by
groundwater. Kunkle (1962), Knisel (1963), Bingham (1986), Vogel and Kroll
(1992), Demuth and Hagemann (1994), and others have shown that estimates of

Kb are highly correlated with basin geohydrologic parameters. Riggs (1961), Bing-
ham (1986), Vogel and Kroll (1992), Demuth and Hagemann (1994) and others,
also found estimates of Kb for a basin to be highly correlated with low-flow statis-
tics. This result should not be surprising, since low streamflows are groundwater
outflow or baseflow and Kb is the only model parameter in the baseflow model
described in (1a). Brutsaert and Nieber (1977) and Vogel and Kroll (1992) derive
physically-based catchment models which relate groundwater outflow (baseflow)
for a basin to the baseflow recession constant.
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.: ' . TABLE III. Comparison of baseftow recession constant estimators

Site

No. Kbl Kb2 Kb3 Kb4 KbS Kb6

. 1 0.893 0.894 0.911 0.905 0.910 0.916

2 0.916 0.920 0.933 0.926 0.930 0.945
3 0.901 0.871 0.905 0.879 0.887 0.899
4 0.902 0.913 0.936 0.924 0.924 0.939
5 0.910 0.864 0.913 0.874 0.884 0.883
6 0.912 0.887 0.918 0.901 0.906 0.898
7 0.909 0.926 0.938 0.936 0.934 0.958
8 0.915 0.907 0.934 0.916 0.919 0.939
9 0.893 0.878 0.923 0.898 0.896 0.902

10 0.932 0.908 0.925 0.908 0.919 0.928
11 0.892 0.861 0.919 0.872 0.876 0.924
12 0.880 0.910 0.927 0.922 0.923 0.929
13 0.919 0.871 0.918 0.881 0.889 0.926
14 0.911 0.917 0.937 0.923 0.931 0.945
15 0.888 0.906 0.921 0.918 0.919 0.927
16 0.877 0.897 0.914 0.910 0.911 0.926
17 0.924 0.894 0.911 0.901 0.911 0.913
18 0.910 0.925 0.933 0.933 0.935 0.946
19 0.887 0.881 0.911 0.893 0.898 0.914
20 0.910 0.901 0.928 0.914 0.918 0.927
21 0.932 0.932 0.935 0.933 0.942 0.948
22 0.865 0.875 0.894 0.893 0.893 0.893
23 0.892 0.884 0.914 0.900 0.901 0.923

Most prior studies which have sought to develop regional regression relation-
ships between low-flow statistics and drainage basin characteristics have met with
limited success. In general, existing regression equations do not yield accurate
low-flow predictions for ungaged sites due to the inability of those regional models
to explain the geohydrologic response of catchments. Vogel and Kroll (1992) show
that considerable improvements in regional regression relationships for predicting
low-flow statistics may be obtained by including the baseflow recession constant.
They show that the baseflow recession constant acts as a surrogate for basin scale
hydraulic conductivity and drainable soil porosity.

In this section we compare the six estimators of Kb summarized in Table II for
their ability to improve regional regression models which relate low-flow statistics
to basin geohydrology and geomorphology. Following Vogel and Kroll (1992),
we use ordinary least squares regression procedures to fit regional models of the
form

Q7,T = aAb SC Kg, (22)

.
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,: ., TABLE IV. Summary of estimated regional regression equations. Q7,T = aAb SC Kb d

~

Standard

Error

T Model a b c d SE%e R2f

. 2 A 0.034(11.1)8 1.34 (14.1) 58.0 90.0

A, S 0.090(6.8) 1.13 (12.2) 0.553(3.8) 44.0 93.9
A, S, Kbl * 0.949(13.2) 0.892(7.4) 16.0(6.4) 46.0 94.1

A,S,Kb2 * 0.912(19.4) 0.535(4.8) 16.2(9.4) 34.0 96.1

A, S, Kb3 * 1.03 (15.7) 0.487(3.8) 26.1(8.2) 37.9 95.4

A, S, Kb4 * 0.930(19.5) 0.466(4.1) 19.0(9.6) 33.4 96.2

A, S, Kb5 * 0.915(19.8) 0.534(4.9) 19.0(9.6) 33.4 96.2

A,S,Kb6 * 0.885(17.4) 0.536(4.2) 21.0(8.1) 38.3 95.8

10 A 0.011(9.6) 1.43 (9.9) 98.8 81.4

A,S 0.048(5.5) 1.12(7.7) 0.819(3.6) 74.0 88.1
A,S,Kbl * 0.886(7.8) 1.25 (6.6) 19.9(5.1) 78.2 87.9

A,S,Kb2 * 0.858(11.2) 0.774(4.2) 20.8(7.4) 58.2 91.6

A,S,Kb3 * 1.02(10.3) 0.693(3.5) 34.3(7.2) 59.7 91.3

A,S,Kb4 * 0.888(11.8) 0.671(3.7) 24.9(7.9) 54.9 92.4

A,S,Kb5 * 0.861(11.3) 0.773(4.3) 24.5(7.5) 57.8 91.7

A, S, Kb6 * 0.843(11.9) 0.730(4.1) 28.3(7.9) 55.3 92.6

e Computed using SE% = l00[exp(se2)-1]!, where Se2 is an estimate of the variance of the

residuals e. for each model.
f The values of R2 are adjusted for the number of degrees of freedom which remain after parameter

estimation.
g The values in parenthesis are the t-ratios of the estimated model parameters.. The estimated values of In(a) were not significantly different from zero using a 5% level t-test,

hence the models were refit using ordinary least squares regression, constraining parameter a to
be equal to unity.

where a, b, c, and d are model parameters to be estimated and A, S, and Kb are the
drainage basin area, average basin slope, baseflow recession constant, respectively,
and Q7,T is the 7-day T-year low-flow statistic. Vogel and Kroll (1992) show that
(22) can be derived by extending a conceptual stream-aquifer model to a watershed
scale.

The 7-day 10-year low flow Q7,IO, is the most widely used index of low flow in
the United States (Vogel and Kroll, 1990). Estimates of Q7,2 and Q7,IO at each of
the 23 sites described in Table I are obtained by fitting observed series of annual
minimum 7-day low-flows to a two-parameter lognormal distribution using the
method of maximum likelihood. Vogel and Kroll (1989) found that one could not
reject the regional hypothesis that annual minimum 7-day low-flows at the 23 sites
described in Table I arise from a two-parameter lognormal distribution assuming a
type I error probability of 5%.
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.; . Table IV summarizes the adjusted R2 values, standard errors of estimate, mod-

el parameters and their associated t-ratios (in parenthesis) corresponding to fit-

ted regional regression models. Overall, except for the estimator Kbl, significant
improvements in adjusted R2, standard error of estimate and the t-ratios of model

. parameters were obtained by adding estimators of Kb as an explanatory variable.

Overall, the estimators Kb2, Kb4, KbS, and Kb6led to the most dramatic reductions
in the standard error of prediction (SE%) and the most dramatic improvements in

R2. Recall that these four estimators assume additive model errors in log space.
Interestingly, those four estimators also led to regression models with the most sta-
ble model parameter estimates represented by the model parameter estimates with

the highest t-ratio's. In all cases, the values of R2 were computed for regressions
which contained a constant term In(a), even though in most instances that constant
term In(a) was not significantly different from zero. This is because it is a well
known fact that R2 makes little sense unless it is computed for a regression model

with a constant term.
The estimators Kbl and Kb3 were the only estimators which assumed additive

model errors in real space. Furthermore, it was found that model errors associated
with both of those estimators were heteroscedastic and nonnormal. In the case
of Kb3, we employed a weighted least squares estimator which removed the het-

eroscedasticity, hence Kb3 performed slightly better than Kbl in both regression

equations reported in Table IV.
For the regression equation for Q7,2 the estimators K b4 and KbS led to regression

equations with the highest R2, lowest standard error, and highest t-ratios of the

model parameters band d. For the regression equation for Q7, 10 the estimators Kb4
and Kb6 led overall to regression equations with the highest R2, lowest standard
error, and highest t-ratios of the model parameters band d. Although the estimator

Kb2 did not perform as well as the others, it still performs credibly, especially
when compared to Kbl and Kb3. Overall, our comparisons consistently reveal that
the estimators Kb2, Kb4, KbS, and Kb6 provide significant improvements in the
regional low-flow regression equations in terms of overall model precision (R2 and

SE%) and the precision of model parameter estimates (t-ratio's).

!
I

6. Conclusions

Six alternative estimators of the baseflow recession constant Kb, are derived and
compared in terms of their ability to produce a physically plausible and approxi-
mately unbiased estimate of the average recession constant at a site. Recent research
indicates that the baseflow recession constant can act as a surrogate for basin scale
hydraulic conductivity and is useful in regional low-flow investigations (Vogel and
Kroll, 1992). Physical plausibility of the recession constant estimators is deter-
mined from their ability to explain the variability of low-flow statistics for 23
catchments in Massachusetts. Two of the estimators Kbl and Kb3 are based on
a representation of a hydrograph recession as an AR(l) and an AR(2) process,
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.: respectively, with additive model errors in real space. Experiments document that

these estimators yielded almost no information about the baseflow response of a

watershed, when compared to the alternative estimators Kb2, Kb4, Kbs, and Kb6,

all of which assume model errors be additive in log space. Although these four

estimators were roughly comparable, the estimator Kb4 consistently led to regional

regression models of low-flow statistics with the highest R2, lowest standard error

SE%, and highest I-ratios of model parameter estimates. The estimator Kb4 is a

least squares regression estimate of an AR(2) model (Equation (9)) with additive

residuals in log space. It is the most complex estimator considered here, requiring

an iterative algorithm for its implementation. By comparison, the estimators KbS

and Kb6 are much easier to implement and performed almost as well.

All of the estimators described here, except Kb6, are regression estimators

which lump many individual hydrographs together, using a single estimator. The

traditional estimator Kb6 is the average of a large ensemble of individual regres-

sion estimates of Kb from (21) using the traditional approach of representing the

baseflow portion of a hydrograph recession as a linear relationship between the

natural logarithm of streamflow and time. Although the estimators Kb4 and KbS

are comparable, the traditional estimator Kb6 may be preferred in some instances

because one can easily assess its variance, as was illustrated in Figure 2, which

illustrates that a single estimate of Kb based on an individual hydrograph recession

using traditional procedures (Equation (21)) is extremely variable, even for long

hydro graph recessions. Nevertheless, the average of a large ensemble of individual

estimates, Kb6, provides a reasonably stable estimate of Kb.

This study, in addition to Demuth and Hagemann (1994), Vogel and Kroll

(1992), Bingham (1986) and Riggs (1961) indicate that incorporation of the base-

flow recession constant in regional regression models for predicting low flow statis-

tics holds substantial promise. Hopefully future research will lead to improvements

in our ability to estimate hydro graph recession constants while concurrently lead-

ing to improvements in regional models which are useful for estimating low-flow

statistics and groundwater outflow. Baseflow recession constants are also required

in rainfall-runoff models, baseflow augmentation studies and geohydrologic inves-

tigations, so improvements in our ability to estimate Kb have a number of other

applications in addition to their use in regional low-flow studies emphasized in this

study.
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