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Abstract. Generalized least squares (GLS) regional regression procedures have been
developed for estimating river flow quantiles. A widely used GLS procedure employs a
simplified model error structure and average covariances when constructing an
approximate residual error covariance matrix. This paper compares that GLS estimator
(b̂GLS

MC ), an idealized GLS estimator (b̂GLS
E ) based on the simplifying assumptions of b̂GLS

MC

with true underlying statistics in a region, the best possible GLS estimator (b̂GLS
T ) obtained

using the true residual error covariance matrix, and the ordinary least squares estimator
(b̂OLS

T ). Useful analytic expressions are developed for the variance of b̂GLS
T , b̂GLS

E , and b̂OLS
T .

For previously examined cases the average sampling mean square error (mses) of b̂GLS
E

was the same as the mses of b̂GLS
T , and the mses of b̂GLS

MC usually was larger than the mses
of both b̂GLS

E and b̂GLS
T . The loss in efficiency of b̂GLS

MC was mostly due to estimating
streamflow statistics employed in the construction of the residual error covariance matrix
rather than the simplifying assumptions in presently employed GLS estimators. The new
analytic expressions were used to compare the performance of the OLS and GLS
estimators for new cases representing greater model variability across sites as well as the
effect return period has on the estimators’ relative performance. For a more
heteroscedastic model error variance and larger return periods, some increase in the mses
of b̂GLS

E relative to the mses of b̂GLS
T was observed.

1. Introduction

Regional regression models are often used to estimate flow
statistics at ungaged river sites. Relationships between flow
statistics and geomorphic, geologic, climatic, and topographic
parameters have been formulated in many regions for low
flows [Thomas and Benson, 1970; Thomas and Cervione, 1970;
Riggs, 1972; Vogel and Kroll, 1992] and for flood flows [Benson,
1962; Matalas and Gilroy, 1968; Thomas and Benson, 1970;
Jennings et al., 1994; Tasker et al., 1996]. Traditionally, the
parameters of these models were estimated using ordinary
least squares (OLS) regression procedures employing data for
gaged river sites [Thomas and Benson, 1970]. For OLS param-
eter estimators to be efficient the model residuals should be
independent and homoscedastic.

Tasker [1980] developed a weighted least squares (WLS)
regression technique to account for the varying sampling error
in the at-site quantile estimators. Stedinger and Tasker [1985,
1986] extended this work by developing generalized least
squares (GLS) regression techniques to account for the varying
sampling error and the cross correlation among concurrent
flows. Tasker and Stedinger [1989] discuss an implementation of
GLS estimators which also accounts for varying model error
variance among sites and variations in the cross correlation of
concurrent observations. Using Monte Carlo simulation, Ste-
dinger and Tasker [1985] demonstrated that GLS procedures

provided more accurate parameter estimators, better estima-
tors of parameter sampling variances, and an almost unbiased
estimator of the model error variance. In particular, the aver-
age sampling mean square error (mses) of the GLS estimators
was smaller than the mses of the OLS estimators when the
model error variance was small or the cross correlations among
the annual flows were large. Moss and Tasker [1991] showed
that GLS procedures describe model accuracy in regional anal-
yses better than OLS procedures do.

This paper addresses a number of unresolved issues regard-
ing GLS and OLS regional regression procedures. The paper
(1) clarifies assumptions that have been made when imple-
menting GLS and OLS regional regression procedures, (2)
examines the loss of efficiency of OLS estimators and GLS
estimators that employ a residual error covariance matrix dif-
ferent than the true residual error covariance matrix, (3) de-
termines whether this loss in efficiency in GLS estimators is
due to smoothing of the sampling covariance matrix or to
implementing an inadequate model of the model error vari-
ance, and (4) determines when OLS estimators are adequate
and when a GLS estimator which accounts for varying model
error variance is needed to achieve efficient parameter esti-
mates. To examine the efficiency of GLS estimators, the prac-
tical GLS estimator developed by Stedinger and Tasker [1985] is
compared with an idealized GLS estimator that uses the true
regional statistics and the simplifying assumptions Stedinger
and Tasker used to construct the residual error covariance
matrix, and an ideal GLS estimator that uses the true residual
error covariance matrix.
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This paper is structured as follows. Section 2 presents the
regional regression problem. Section 3 describes Stedinger and
Tasker’s [1985] Monte Carlo experiments. Section 4 discusses
the construction of the residual error covariance matrices. Sec-
tion 5 compares the results for one of Stedinger and Tasker’s
[1985] Monte Carlo experiments with analytic expressions.
Section 6 uses analytic expressions to compare the efficiency of
OLS and GLS estimators for several new cases not considered
by Stedinger and Tasker [1985, 1986]. Finally, section 7 presents
our conclusions.

2. Regional Regression Model
Following the notation by Stedinger and Tasker [1985], let u

be a vector of the true flow statistics for river sites in a region
and let X be a matrix of drainage basin characteristics associ-
ated with the sites augmented by a column of ones. Assume
that the relationship between u and X is described by the linear
model

u 5 Xb 1 « (1)

where b contains model parameters and « contains the residual
errors. Here var (« i) 5 g i

2 is the model error variance. In
practice the true flow statistic, u, is not known, and an estima-
tor, û, of the statistic of interest is obtained with available
streamflow records. Assume that û is an unbiased estimator of
u so that

E@ û# 5 u (2)
and

E@~ û 2 u !~ û 2 u !T# 5 S (3)

where S is the sampling covariance matrix associated with the
estimator û. The covariance of û about the regression mean Xb
defines the residual error covariance matrix,

E@~ û 2 Xb!~ û 2 Xb!T# 5 LT 5 G 1 S (4)

where G 5 diag [g i
2], and g i

2 is the model error variance
associated with site i .

In practice, OLS regression procedures have been used to
estimate the parameters of linear models such as (1). If LT is
equal to a diagonal matrix with a constant variance g2 along
the diagonal, then OLS parameter estimators are efficient
since they have minimum variance among all unbiased linear
estimators [Johnston, 1984, p. 173]. In practice the variance,
and therefore the diagonal elements of LT, will differ from site
to site. However, the assumption of a constant variance (called
homoscedasticity) is often adequate for many practical prob-
lems [Draper and Smith, 1981].

The OLS estimator of the parameter vector is [Johnston,
1984, equation 5-26]

b̂OLS
T 5 ~XTX!21XTû (5)

Because the residual errors associated with the model in (1)
are not independent and identically distributed with equal vari-
ances, the standard relationship for the variance of the OLS
parameter estimator [Johnston, 1984, equation 5-33]

var ~b̂OLS
T ! 5 g2~XTX!21 (6)

does not describe the actual sampling variance of the OLS
parameter estimator. Instead the correct expression is
[Johnston, 1984, equation 8-13]

var ~b̂OLS
T ! 5 ~XTX!21XTLTX~XTX!21 (7)

Equation (7) involves LT, the true residual error covariance
matrix.

An extension of OLS parameter estimators are GLS param-
eter estimators that employ some estimate of LT. These esti-
mators weight each observation to reflect the variance of the
residual error associated with that observation and the covari-
ance of the residual error with other residual errors. If LT is
known, one can employ the optimal GLS estimator [Johnston,
1984, equation 8-20]

b̂GLS
T 5 ~XTLT

21X!21XTLT
21û (8)

whose sampling variance is [Johnston, 1984, equation 8-12]

var ~b̂GLS
T ! 5 ~XTLT

21X!21 (9)

Both b̂GLS
T and b̂OLS

T are unbiased estimators of the parameters
in the model given by (1); however, b̂GLS

T has a smaller variance
than b̂OLS

T because the former correctly weights each of the
observations. The parameter estimator b̂GLS

T is the best (min-
imum variance) linear unbiased estimator (BLUE) of the
model parameters [Greene, 1990; Johnston, 1984].

Stedinger and Tasker [1985] were interested in developing an
estimator of the parameters of the model in (1) that had an
efficiency approaching that of the GLS estimator b̂GLS

T . Em-
ploying b̂GLS

T is not practical because LT is unknown; LT

requires knowledge of the model error variance associated
with each observation, g i

2, and the sampling covariance matrix,
S, both of which need to be estimated. Stedinger and Tasker
[1985] proposed constructing an approximation of LT, which
we denote as LE, by approximating G by diag (g2) with a
constant value of g2 that must be estimated, and by approxi-
mating S using averaged or smoothed estimates of the sam-
pling variances associated with the at-site streamflow statistics
of interest. An average value of the cross correlation between
concurrent flows in the region was used to calculate the co-
variance terms which are the off-diagonal elements of S. In
later work a relationship between the cross correlation and the
distance between gaged river sites was employed, and g2 was
allowed to vary across sites [Tasker and Stedinger, 1989].

If smoothed estimates of the variance of individual stream-
flow observations are available, and the average cross correla-
tion of concurrent streamflows across sites and the average
model error variance are known, one can construct LE and
compute the corresponding idealized GLS estimator

b̂GLS
E 5 ~XTLE

21X!21XTLE
21û (10)

For particular X and LT matrices the sampling variance of this
GLS parameter estimator is

var ~b̂GLS
E ! 5 ~XTLE

21X!21XTLE
21LTLE

21X~XTLE
21X!21 (11)

While Stedinger and Tasker wanted to employ LE as an
approximation to LT, as a practical matter they had to employ
an estimator of LE, which we denote as LMC. Stedinger and
Tasker [1985] encountered problems when at-site sample vari-
ances were used to construct an estimator of the sampling
covariance matrix S, because those weights were then corre-
lated with the at-site quantile estimators, the dependent vari-
able in the regression equation. To avoid such problems, the
variance of the individual streamflow observations used to
compute the elements of S was estimated using a regression
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relationship developed between at-site sample variances and
physiographic basin characteristics. LMC was constructed using
the computed estimate of the variance of individual observa-
tions from this regression relationship, a computed average of
the sample cross-correlation estimators, and a computed gen-
eralized mean square error estimator of the average model
error variance. In Stedinger and Tasker’s Monte Carlo exper-
iment, for every replicate of the experiment a different value of
LMC was constructed to allow computation of a GLS param-
eter estimator b̂GLS

MC for that replicate. They also employed
LMC to estimate the variance of the GLS parameter estimator
as

var ~b̂GLS
MC ! 5 ~XTLMC

21 X!21 (12)

Thus Stedinger and Tasker had two estimators of the variance
of their GLS parameter estimator: the observed empirical vari-
ability of the individual b̂GLS

MC estimators across replicates of the
Monte Carlo experiment and the average of (12) across repli-
cates. The observed variability of the individual b̂GLS

MC estima-
tors across replicates should correspond to an average of equa-
tion (11) where LE is replaced by LMC:

E@var ~b̂GLS
MC !#

5 E@~XTLMC
21 X!21XTLMC

21 LTLMC
21 X~XTLMC

21 X!21# (13)

and the expectation is taken over the joint distribution of LMC,
LT, and X; for every replicate Stedinger and Tasker randomly
generated new drainage areas for the region so that X and the
corresponding LT were both random. In the Monte Carlo
experiments reported by Stedinger and Tasker [1985], the dif-
ference between (13) and the average across all Monte Carlo
replicates of (12) was relatively small.

In the following sections we compare the variance of Ste-
dinger and Tasker’s GLS estimator, b̂GLS

MC , from their Monte
Carlo experiment, with the variance of the GLS estimator
using the true residual error covariance matrix, b̂GLS

T , and the
variance of the GLS estimator, b̂GLS

E , based on a constructed
residual error covariance matrix using the average variance of
the streamflows at each site, the average cross correlation
between concurrent flows, and the average model error vari-
ance. The parameter estimators b̂GLS

T and b̂GLS
E are based on

population values of these statistics, whereas b̂GLS
MC employed

sample estimators of the corresponding parameters. The vari-
ance of b̂GLS

T and b̂GLS
E will be obtained using the analytic

expression in (9) and (11), respectively.
In their Monte Carlo analysis, Stedinger and Tasker ran-

domly generated new values of the drainage areas for every
replicate. To account for the random drainage areas, the ana-
lytic expressions were averaged over 100 replicates, with drain-
age areas randomly generated for each replicate. This Monte
Carlo analysis was also necessary to generate a true random log
space standard deviation of the flows at each site which is
needed to construct the true residual error covariance matrix.
These issues are discussed in section 4.

3. Stedinger and Tasker’s Monte Carlo
Experiment

The results from Stedinger and Tasker’s [1985] first Monte
Carlo experiment will be used to compare the variance of their
GLS parameter estimator, b̂GLS

MC , to the variance of b̂GLS
T and

b̂GLS
E . This experiment considered a regional regression model

for 50-year floods. The region included 30 sites with drainage
area randomly selected from a uniform distribution ranging in
logarithmic space from 10 to 20,000 miles2 (25.9 to 51,800
km2). It was assumed that the annual maximum flows at each
site are lognormally distributed. The log space mean, m i, and
standard deviation, s i, at each site were a function of drainage
area at that site, Ai, following the models

m i 5 am 1 bm ln ~ Ai! 1 y i (14)

s i 5 @as 1 bs ln ~ Ai!# exp ~d i! (15)

where am 5 0, bm 5 0.75, as 5 1.5, bs 5 20.14, and y i

and d i are independent normally distributed random error
terms with means 0 and 20.03125sy

2, and variances sy
2 and

sd
2 5 0.0625sy

2, respectively. For each site an annual flow
record of length ni was randomly generated from a lognormal
distribution with moments given by (14) and (15), and the cross
correlation among the logarithms of concurrent flows in a
region equal to a constant value, r. Using the generated record
for a site, the sample moment estimators, m̂ i and ŝ i, were
calculated and used to compute an at-site estimator of a flow
quantile

Q̂p,i 5 m̂ i 1 zpŝ i (16)

where Q̂p ,i is an at-site estimate of a flow quantile with a
nonexceedance probability of p , and zp is the pth percentile of
a standard normal distribution (for the 50-year flood p 5 0.98
and zp 5 2.054). Combining (14), (15), and (16), the under-
lying regression model is

Q̂p,i 5 a 1 b ln ~ Ai! 1 « i (17)

where a 5 am 1 zpas, b 5 bm 1 zpbs, and « i is the residual
error.

In their first experiment, Stedinger and Tasker considered
the cases where r 5 0.0, 0.3, 0.6, and 0.9, and sy 5 0.0, 0.1, 0.3,
0.5, and 0.9. For 10 sites the record length was set to ni 5 50,
for 10 sites ni 5 20, and for the remaining 10 site ni 5 10.

4. Construction of the Residual Error
Covariance Matrix

The residual error covariance matrix constructed in Ste-
dinger and Tasker’s Monte Carlo experiment for their GLS
estimator, LMC, is an estimator of the covariance matrix, LE,
they proposed to employ. Both of these matrices differ from
the true residual error covariance matrix, LT. This section
examines the assumptions employed to develop the sampling
covariance matrix and model error variance for each of the
GLS estimators. Table 1 summarizes those assumptions.

4.1. Estimation of Sampling Covariance Matrix

The diagonal elements of the sampling covariance matrix, S,
correspond to the variance of the at-site quantile estimators,
and the off-diagonal elements correspond to the covariance
among quantile estimators for different sites. When the indi-
vidual observations are normally distributed, the correct diag-
onal elements of the sampling covariance matrix, S ii, are

S ii 5 var ~Q̂p,i! 5 var ~m̂ i 1 zpŝ i! 5 var ~m̂ i! 1 zp
2 var ~ŝ i!

5
s i

2

ni
1 zp

2s i
2F 1 2 S 2

ni 2 1D S G~ni/ 2!

G~~ni 2 1!/ 2!D
2G (18)

Equation (18) incorporates an exact expression for the vari-
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ance of the at-site estimator of the standard deviation [David,
1981] and is employed in LT. Stedinger and Tasker employed
the first-order approximation

var ~ŝ i! 5
s i

2

2ni
(19)

for the variance of the at-site estimator of the standard devi-
ation when constructing the sampling covariance matrix [Ste-
dinger, 1983]. Using this approximation, (18) becomes

var ~Q̂p,i! 5
s i

2

ni
F 1 1

zp
2

2 G (20)

Stedinger and Tasker used a smoothed estimator of the at-site
variance of the observations, s i

2, in (20) when constructing
their residual covariance, LMC. The idealized residual error
covariance matrix, LE, implements (20) with the expected
value of s i

2 for each site i .
Stedinger and Tasker also employed a first-order approxi-

mation to the covariance among at-site quantile estimators
which are the off-diagonal elements of the sampling covariance
matrix,

S ij 5
r ijmijs is j

ninj
@1 1 r ijzp

2/ 2# i Þ j (21)

where mij is the number of concurrent years of data at sites i
and j , and r ij is the lag zero correlation coefficient between the
annual flows at sites i and j . The exact expression for the
covariance among the at-site quantile estimators is quite com-
plex, so (21) will be employed to compute LT and LE in the
calculations reported here. LT and LE will employ the true
value of the cross-correlation which was constant across the
region in Stedinger and Tasker’s Monte Carlo experiment. The
matrix associated with the GLS estimator implemented by
Stedinger and Tasker, LMC, used a regional average of at-site
estimators of the correlation coefficient.

In (18) and (20), which describe the sampling variance as-
sociated with the at-site quantile estimators, an estimate of the

variance of the annual flows, s i
2, is required. The expected

variance of the log-space annual flows is

E@s i
2# 5 var @s i# 1 ~E@s i#!

2 (22)

The formula for the at-site standard deviation given by (15)
assumes that the standard deviation is lognormally distributed.
In terms of the logarithm of (15)

ln ~s i! 5 ln @as 1 bs ln ~ Ai!# 1 d i (23)

the log space moments of the standard deviation are

E@ln ~s i!# 5 ln @as 1 bs ln ~ Ai!# 1 E@d i# (24)

and

var @ln ~s i!# 5 var @d i# 5 sd
2 (25)

The real-space moments for the lognormal distribution can be
calculated using the log space moments [Loucks et al., 1981],
resulting in

E@s i# 5 as 1 bs ln ~ Ai! (26)

and

var @s i# 5 @as 1 bs ln ~ Ai!#
2@exp ~sd

2! 2 1# (27)

Substituting (26) and (27) into (22) yields

E@s i
2# 5 @as 1 bs ln ~ Ai!#

2 exp ~sd
2! (28)

Equation (28) corresponds to the average variance of the an-
nual flows at a site with drainage area Ai and is used in the
residual error covariance matrix, LE. Equation (28) is not the
same as the variance of the flows in each replicate because d i

in (15) is replaced by an expectation in (28). In this study a
Monte Carlo analysis was employed to account for that differ-
ence.

In addition, for every replicate of their Monte Carlo exper-
iment, Stedinger and Tasker randomly generated new drainage
areas for the region. To account for the variability due to
random drainage areas and the difference between s i in (15)

Table 1. Alternative Assumptions and Equations Employed to Construct Residual Error Covariance Matrices, L, for the
GLS Estimators b̂GLS

T , b̂GLS
E , and b̂GLS

MC

Assumption/Equation b̂GLS
T (LT) b̂GLS

E (LE) b̂GLS
MC (LMC)

Model error variance for each
parameter estimator

G ii 5 g i, true model error
variance (equation (32))

G ii 5 g# , expected model error
variance (equation (33))

G ii 5 ĝ, estimator of average
model error variance for each
replicate (equation (34))

Estimator of variance of
observations, s i

2, employed
to calculate sampling error
associated with at-site
quantile estimators,
S ii 5 var (û i)

s i
2, true value of variance
(equation (15))

E[s i
2], expected value of

variance (equation (28))
(E[ŝ i])2, square of estimated

expected value of standard
deviation (equation (29))

Formula employed to compute
the variance of at-site
quantile estimator,
S ii 5 var (û i)

exact estimator (equation (18)) first-order approximation
(equation (20))

first-order approximation
(equation (20))

Correlation coefficient used in
first-order approximation
(equation (21)) to compute
covariances among at-site
quantile estimators,
S ij 5 cov (û i, û j)

true value true value average regional estimate for
each replicate
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and E[s i
2] in (28), 100 random sets of different drainage areas

and d i values were generated. In the construction of the true
residual error covariance matrix, LT, the random values of d i

and Ai were used to calculate the true value of s i at each site
using (15), and this value was used in (18) for constructing one
realization of S ii. This allows calculation of the average value
over 100 replicates of the sampling variance of b̂GLS

E and b̂GLS
T

in (9) and (11), respectively, using generated values of X and
associated LT and LE matrices.

Stedinger and Tasker used

~E@s i#!
2 5 ~âs 1 b̂s ln ~ Ai!!

2 (29)

instead of (28) for an estimator of the variance of the obser-
vations. This estimator systematically underestimates the vari-
ance of the observations, but the bias was small in Stedinger
and Tasker’s Monte Carlo experiment because sd

2 was much
smaller than 1, and thus var (s i) was much smaller than
(E[s i])2.

4.2. Estimation of Model Error Variance

The residual error covariance matrix also depends upon the
model error variance, g i

2, for each site i . Assuming the annual
flows are lognormally distributed, g i

2 is

g i
2 5 var [ln ~Qp,i!] 5 var @m i 1 zps i#

5 var @m i# 1 zp
2 var @s i# 1 2zp cov @m i, s i# (30)

The regional model adopted in the experiment had cov (mi, si) 5
0. From (14)

var @m i# 5 var @y i# 5 sy
2 (31)

The var (s i) is given in (27). Substituting (27) and (31) into
(30) yields

g i
2 5 sy

2 1 zp
2@as 1 bs ln ~ Ai!#

2@exp ~sd
2! 2 1# (32)

The model error variance is a function of drainage area and
thus varies across sites. Stedinger and Tasker [1985] proposed a
GLS estimator that uses an average model error variance. This
assumption was relatively good in their Monte Carlo experi-
ment because the model error variance varied only slightly
among sites. In that study sd

2 5 0.0625sy
2, so that the variance

of the standard deviation of the observations, sd
2, was small

compared to the variance of the mean of the observations, sy
2,

and g i
2 in (32) never varied more than 25% from the average

model error variance.
The average value of the model error variance is obtained by

taking the expectation over the drainage areas of interest on
right hand side of (32) to obtain

E@g i
2# 5 sy

2 1 zp
2$as

2 1 2asbs E@ln ~ Ai!#

1 bs
2 E@~ln ~ Ai!!

2#% @exp ~sd
2! 2 1# (33)

Stedinger and Tasker’s experiments included six values of sy

which correspond to E[g i
2] 5 0.0, 0.011, 0.102, 0.284,

0.557, and 0.922. These average values can be used to con-
struct a diagonal model error variance matrix G with constant
elements to compute the residual error covariance matrix LE.

When implementing the GLS estimator in their Monte
Carlo experiment, Stedinger and Tasker computed a general-
ized mean square error estimator of the average model error
variance by solving

~ û 2 Xb̂!T@LMC#21~ û 2 Xb̂! 5 N 2 k (34)

for ĝ2 where LMC 5 ĝ2IN 1 Ŝ( û), N is the number of sites,
k is the number of degrees of freedom in the model, and û is
the parameter estimator for each replicate. This estimator of
the average model error variance is dependent upon the at-site
data and thus varies from replicate to replicate because of
different sets of flows and drainage areas in each replicate.

5. Comparison of Stedinger and Tasker’s Monte
Carlo Results With Analytic Expressions

In their Monte Carlo analysis (experiment 1) Stedinger and
Tasker [1985] computed estimates of the variance of the pa-
rameter estimators and the average sampling mean square
error (mses) of the OLS and GLS quantile estimators. The
mses of a quantile estimator is the average over sites of the
squared difference between the quantile estimator and its true
value at such sites. The mses of unbiased quantile estimators is

mses 5 EA,â,b̂$@ û 2 u#2% 5 var ~â! 1 2E@ln ~ A!# cov ~â , b̂!

1 E@~ln ~ A!!2# var ~b̂! (35)

In this study the Monte Carlo results from Stedinger and Tasker
[1985] for the mses of b̂GLS

MC are compared to calculated values
of the mses of b̂GLS

T and b̂GLS
E computed using the average

values over 100 replicates of the analytic expressions for the
variance of the parameter estimators, (9) and (11), respec-
tively. Record lengths of 10, 20, and 50 were randomly assigned
to a third of the sites, as in Stedinger and Tasker’s first exper-
iment.

For this comparison the efficiencies of the estimators b̂GLS
MC

and b̂GLS
E are computed as

Efficiency b̂GLS
MC 5

mses@b̂GLS
T #

mses@b̂GLS
MC #

(36)

Efficiency b̂GLS
E 5

mses@b̂GLS
T #

mses@b̂GLS
E #

The efficiency of an estimator approaches unity when the mses

of an estimator is almost as small as the mses of b̂GLS
T , which

has the smallest possible mses for a linear unbiased estimator.
Figure 1a is a plot of these efficiencies over the range of cross
correlations and average model error variances examined in
Stedinger and Tasker’s experiment 1. The first set of four
columns correspond to cross correlations of 0.0, 0.3, 0.6, and
0.9, respectively, when the average model error variance g# 2 5
0.0. Other sets of four columns correspond to different values
of g# 2. Figure 1a also contains the efficiencies of the OLS
estimator b̂OLS

MC reported by Stedinger and Tasker.
In general, the efficiency of b̂GLS

E is nearly 100% and the
efficiency of b̂GLS

MC is greater than 90% for the cases examined.
The apparent exception is the efficiency for b̂GLS

MC when r 5 0
and g# 2 5 0.0, in which case the computed efficiency is only
80%. The computed mses of b̂GLS

MC for this case (0.004) is small,
and Stedinger and Tasker reported only one significant digit;
thus this low efficiency is likely due to rounding error. The
efficiency of b̂GLS

MC based on the reported variance of the indi-
vidual parameter estimators was approximately 90% [Kroll,
1996], which further confirms that this low efficiency is due to
rounding error.

In the experiment reported in Figure 1a the high efficiencies
of b̂GLS

E indicate that the assumptions Stedinger and Tasker
made when simplifying the residual error covariance matrix
had relatively little effect on the performance of the estimator
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compared to an estimator based on knowing the true residual
error covariance matrix. The high efficiencies of b̂GLS

MC indicate
the practical implementation of Stedinger and Tasker’s pro-
posed GLS estimator b̂GLS

E in the form of b̂GLS
MC resulted in

little reduction in the performance of the estimator, especially
when g# 2 was greater than 0.1.

Figure 1a also includes the efficiency of the OLS estimator
b̂OLS

MC compared to the best GLS estimator b̂GLS
T . For large

values of g# 2 the efficiency of the OLS estimator is close to the
efficiency of b̂GLS

MC . For small g# 2 the efficiency of the OLS
estimator drops considerably. For moderate model error vari-
ances, as the cross correlation increases, the relative efficiency
of the OLS estimator decreases. The efficiency of the OLS
estimator depends on whether the elements along the diagonal
of L are close to constant and on the relative magnitude of the
off-diagonal elements of L compared to the diagonal elements.
If the off-diagonal elements are relatively small and the diag-
onal elements are close to constant, the OLS estimator is
almost as efficient as the GLS estimator. For small g# 2 the effect
of heteroscedasticity due to the sampling error in the at-site
quantile estimators is greater than when g# 2 is large, and thus
the OLS estimator performs worse when g# 2 is small. Kroll
[1996] showed that the mses and variance of the OLS estimator
reported in Stedinger and Tasker’s [1985] Monte Carlo analysis,
b̂OLS

MC , was nearly identical to the average mses and variance of
the OLS estimator using (11), b̂OLS

T , as they should be.

6. Comparison of OLS and GLS Estimators
Using Analytic Expressions

Obtaining the mses of the OLS and GLS quantile estimators
requires significantly less effort using the average over 100
replicates of the analytic expressions (equations (7), (9), and
(11)), instead of Stedinger and Tasker’s complete Monte Carlo
simulation using randomly generated streamflows. Using ana-
lytic expressions, we examined how the mses of the OLS pa-
rameter estimator b̂OLS

T compares to the GLS parameter esti-
mator b̂GLS

E for a number of different cases. The previous
section demonstrated that b̂GLS

MC performed almost as well as
b̂GLS

E in Stedinger and Tasker’s Monte Carlo experiment 1.
In experiment 1 the variance of the residual terms in (14)

and (15) were related by sd
2 5 0.0625sy

2. This relationship
determines the variability in the model error variance across

sites, given by (32). In experiment 1 the maximum variation in
the model error variance, g i

2, from the average model error
variance, g# 2, in the region was 25%. In this case the model
error variance was relatively constant across sites, and thus
b̂GLS

E , which employs a constant model error variance, per-
formed well compared to b̂GLS

T . Of interest is the relative
performance of b̂GLS

E and b̂GLS
T when the model error variance

has greater variability across sites in a region, as well as the
effect return period has on the estimators’ performance.

The case where sd
2 5 sy

2 was examined, which yields a max-
imum variation of g i

2 from g# 2 of 93%. This corresponds to a
realistic but perhaps extreme case wherein the relative preci-
sion with which the median flood flow and the log space stan-
dard deviation of the flood flows can be estimated by their
respective models is roughly the same. The same values of g# 2

and r examined in Stedinger and Tasker’s experiment 1 were
examined for a quantile estimator with a 50-year return period.
Figure 1b contains the efficiency of b̂GLS

E and b̂OLS
T relative to

b̂GLS
T for this case. As sd

2 increases relative to sy
2, the model

error variance varies more across sites and we observe a drop
in the relative efficiency of both b̂GLS

E and b̂OLS
T . The decrease

in efficiency of b̂GLS
E is larger for cases with larger model error

variances, because the heteroscedasticity along the diagonal
terms of L due to variations in the model error variances is
greater for these cases. For the cases presented in Figure 1b
the efficiency of b̂GLS

E is generally greater than 90%. This result
indicates that the assumption of a constant model error vari-
ance in regions where the model error variance varies as much
as 90% from the average model error variance only produces
a 10% drop in the efficiency of b̂GLS

E for quantile estimators
with a 50-year return period. As the cross correlation increases,
the efficiency of b̂GLS

E increases, since b̂GLS
E correctly describes

the cross correlation between the quantile estimators. For
these cases one would expect that the efficiency of b̂GLS

MC to
track that of b̂GLS

E and be somewhere between the efficiency of
b̂GLS

E and the OLS estimator b̂OLS
T .

Also of interest is the effect of return period on the perfor-
mance of b̂GLS

E and b̂OLS
T . Figures 2a and 2b contain the effi-

ciency of b̂GLS
E and b̂OLS

T relative to b̂GLS
T for a quantile esti-

mator with a 2-year return period when sd
2 5 0.0625sy

2 and
sd

2 5 sy
2, respectively. With a 2-year return period, zp 5 0 in

(32), and thus the model error variance is constant across sites

Figure 1. Efficiency of GLS and OLS estimators versus average model error variance for 50-year return
period.
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in a region regardless of the relationship between sd
2 and sy

2. In
Figure 2b, where sd

2 5 sy
2, we see a slight loss in efficiency in

b̂GLS
E compared to Figure 2a, for which sd

2 5 0.0625sy
2. This

loss is due to errors incurred when modeling the sampling
covariance matrix in b̂GLS

E . As sd
2 increases relative to sy

2, the
variance of the at-site standard deviation increases, which in-
creases the error in modeling the variance of the flows as
E[s i

2] by (28), as opposed to the true value s i
2 in (15). The

relatively small loss in efficiency observed in Figure 2b indi-
cates that modeling the variance of the flows as E[s i

2] pro-
duces only minor loss of efficiency in the estimator b̂GLS

E .
In Figures 2a and 2b we also observe that the loss in effi-

ciency of the OLS estimator b̂OLS
T for a 2-year return period is

much smaller than when the return period was 50-year (Fig-
ures 1a and 1b). This is most dramatic for larger model error
variances and smaller cross correlations when the efficiency of
b̂OLS

T is almost as large as the efficiency of b̂GLS
E . This is be-

cause with a 2-year return period the model error variance is
constant across sites, so for larger average model error vari-
ances the diagonal term of the true residual error covariance
matrix is nearly homoscedastic. The effect of cross correlation
on the efficiency of b̂OLS

T decreases as the average model error
variance increases.

Figures 3a and 3b consider 100-year quantile estimators. For
a 100-year return period zp 5 2.326, which produces more
heteroscedasticity in the model error variance across the re-
gion than when the return period is 2 or 50 years. Because
b̂GLS

E models the model error variance as constant across sites,
we observe a greater loss in efficiency in b̂GLS

E as the return
period increases and sd

2 increases relative to sy
2, as in Figure 3b,

though the efficiency of b̂GLS
E is always greater than 80% for

the cases examined. This result indicates that a GLS estimator
which accounts for varying model error variance, as proposed
by Tasker and Stedinger [1989], should be implemented when
the return period of the quantiles of interest are 100 years or
greater if high efficiency is desired, especially when moderate
to large average model error variances are present. In Figure
3b we also observe an increased loss in efficiency of b̂OLS

T

because of the increased heteroscedasticity.

7. Conclusions
Stedinger and Tasker [1985] used Monte Carlo simulation to

compare the average sampling mean square error (mses) of
ordinary least squares (OLS) and generalized least squares
(GLS) quantile estimators in regional hydrologic regression

Figure 2. Efficiency of GLS and OLS estimators versus average model error variance for 2-year return
period.

Figure 3. Efficiency of GLS and OLS estimators versus average model error variance for 100-year return
period.
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analyses. Stedinger and Tasker made a number of simplifying
assumptions regarding the structure of the model error vari-
ance and the sampling error associated with at-site quantile
estimators when constructing their residual error covariance
matrix. They used smoothed estimators of the at-site variance
of the flows, adopted an average regional cross correlation, and
employed a single average generalized mean square model
variance estimator in their ideal residual error covariance ma-
trix, LE. In practice, all of these parameters and statistics had
to be estimated, so the residual error covariance matrix actu-
ally employed, LMC, differs from LE. Both of these matrices
are different from the true residual error covariance matrix,
LT, associated with the underlying model in their Monte Carlo
experiment.

The variance of the GLS parameter estimator implemented
by Stedinger and Tasker in their Monte Carlo experiment,
b̂GLS

MC , was compared to the variance of GLS parameter esti-
mators based on the residual error covariance matrices LE and
LT, denoted b̂GLS

E and b̂GLS
T , respectively. Since the parameter

estimator b̂GLS
T is based on LT, this estimator is unbiased and

has minimum variance among all linear unbiased estimators.
Using the average over 100 replicates of the new analytic
expressions for the mses of b̂GLS

E and b̂GLS
T , it was shown that

the mses of b̂GLS
E is almost indistinguishable from the mses of

b̂GLS
T for the cases considered by Stedinger and Tasker. For

these cases the approximations employed to obtain a smoothed
covariance matrix would result in almost no loss of efficiency.
In addition, the parameter estimator implemented by Ste-
dinger and Tasker, b̂GLS

MC , had an mses almost as small as b̂GLS
E .

In most cases the difference was less than 10%. Thus for this
case the difference in efficiency between b̂GLS

T , which is the
best linear unbiased GLS estimator one could implement, and
b̂GLS

MC , which represents the practical GLS estimator employed
by Stedinger and Tasker, is relatively small.

The mses of the OLS estimator from Stedinger and Tasker’s
[1985] Monte Carlo experiment, b̂OLS

MC , was also compared to
the GLS estimators. For large model error variances, the effi-
ciency of the OLS estimator is close to the efficiency of b̂GLS

MC ,
but for a small model error variance the efficiency of the OLS
estimator drops considerably. For moderate model error vari-
ances, the relative efficiency of the OLS estimator decreases as
the cross correlation increases.

Using analytic expressions for the mses, the performance of
b̂OLS

T and b̂GLS
E relative to b̂GLS

T were compared for a number
of cases not considered by Stedinger and Tasker [1985]. In
particular, a model with a more heteroscedastic model error
variance was considered for return periods of 2, 50, and 100
years. For models where the model error variance varied con-
siderably across sites, some loss in efficiency in b̂GLS

E was ob-
served (up to 20%). It was shown that the loss in efficiency of
b̂GLS

E resulted from using an average model error variance and
not from smoothing the sampling covariance matrix. The loss
of efficiency was particularly apparent for large return periods
and moderate to large average model error variances. In this
case a GLS estimator which accounts for varying model error
variance such as that developed by Tasker and Stedinger [1989]
should be implemented. They used a three-parameter error
model to account for correlation between the log space means
and standard deviations of the flood flows.

Overall, for a small return period and moderate to large
model error variance, the OLS estimator b̂OLS

T performed

nearly as well as b̂GLS
E , especially when the cross correlation of

the flows was small. In this case an OLS estimator, which is
much easier to implement than a GLS estimator, could be
implemented with little or no loss in efficiency. One should
note that the efficiency of the b estimators is only one of the
advantages of GLS procedures: Stedinger and Tasker [1985]
observe that GLS estimators also provide more accurate esti-
mators of model error variances and the precision of estimated
parameters than do OLS analyses.
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