Appendixes
Appendix A
Terminology and Component Changes

Numerous changes in terminology were made when *The Visual Management System* was updated. Following are lists of terminology changes in the Scenery Management System from *The Visual Management System*.

### Scenery Management System
- **Concern levels**
- **Constituent information**
- **Distance zones**
- **Scenic attractiveness**
- **Landscape character**
- **Section**
- **Very Low Scenic Integrity**
- **Low Scenic Integrity**
- **Moderate Scenic Integrity**
- **Very High Scenic Integrity**
- **High Scenic Integrity**
- **Scenic integrity objective**
- Travelways and use areas
- **Unacceptably Low**

### The Visual Management System
- **Concern levels**
- **Sensitivity levels**
- **Distance zones**
- **Variety class**
- **Characteristic landscape**
- **Landscape character type**
- **Maximum modification**
- **Modification**
- **Partial retention**
- **Preservation**
- **Retention**
- **Visual quality objective**
- Travelways and use areas
- **Unacceptable modification**

Some components of the Scenery Management System are from subsystems developed after 1974, when *The Visual Management System* was published. Here is a list of components with new and old terminology from subsystems.

### Scenery Management System
- **Corridor viewshed**
- **Desired landscape character**
- **Existing scenic integrity**
- **Visual absorption capability**
- **Visual magnitude**

### Original Subsystem Terminology
- **Corridor viewshed**
- **Desired character**
- **Existing visual condition**
- **Visual absorption capability**
- **Visual magnitude**

Some terminology and components of the Scenery Management System are new, having never been part of *The Visual Management System* or any previous sub-system, as follows:

- **Basin or feature viewshed**
- **Existing landscape character**
- **Ecological land unit**
- **Landscape character goal**
- **Landscape character theme**
- **Scenic class**
- **Scenic integrity level**
- **Scenic viewing opportunity**
Numerous Federal laws require all Federal land management agencies to consider scenery and aesthetic resources in land management planning, resource planning, and project design, implementation, and monitoring. These Federal laws include the following:

- Forest and Rangeland Renewable Resources Planning Act of 1974.
- Surface Mining Control and Reclamation Act of 1977.

In addition, the Forest Service has routinely included both scenery and recreation as part of the 1960 Multiple Use-Sustained Yield Act. The following are summaries of these Federal statutes referring to aesthetic, scenic, and visual resources.

**Wilderness Act**

The Wilderness Act of 1964 established a National Wilderness Preservation System of federally owned lands: “[These lands] shall be administered for the use and enjoyment of the American people... so as to provide for the protection of these areas, the preservation of their wilderness character...” (Emphasis added.)

“...wilderness, in contrast with those areas where man and his own works dominate the landscape, is hereby recognized as a area where the earth and its community of life are untrammeled by man, where man himself is a visitor who does not remain. (Emphasis added.)

“Wilderness... is an area of Federal land retaining its primeval character and influence, without permanent improvement or human habitation, which is protected and managed so as to preserve its natural condition and which generally appears to have been affected primarily by the forces of nature, with the imprint of man’s work substantially unnoticeable...” (Emphasis added.)
Wild and Scenic Rivers Act

The Wild and Scenic Rivers Act of 1968 declared: "...certain selected rivers of the Nation which, with their immediate environments, possess **outstandingly remarkable scenic**, recreation, geologic, fish and wildlife, historic, cultural, or other similar values, shall be preserved in free-flowing condition." A river within the system may be classified, designated, and administered as one of the following: wild river, scenic river, or recreational river. **Scenic rivers** are "...those rivers or sections of rivers that are free of impoundments, with shorelines or watersheds still largely primitive and shorelines largely undeveloped, but accessible in places by roads." (Emphasis added.)

National Trails System Act

The National Trails System Act of 1968 provides "for the ever-increasing outdoor recreation needs of an expanding population and in order to promote the preservation of public access to, travel within, and enjoyment and appreciation of the open-air, outdoor areas and historic resources of the Nation, trails should be established (1) primarily, near the urban areas of the Nation, and (2) secondarily, within scenic areas and along historic travel routes of the Nation, which are often more remotely located." (Emphasis added.)

National Environmental Policy Act (NEPA)

NEPA is the National Environmental Policy Act of 1969. NEPA covers procedures for considering all resources and values and documenting Federal land management decisions. It gives general direction for management of scenic and aesthetic resources.

NEPA states that it is the "continuing responsibility of the Federal Government to use all **practicable** means to... assure for all Americans safe, healthy, productive, and aesthetically and culturally pleasing surroundings." (Emphasis added.)

There is a difference between the words practicable and practical. **Practicable** deals with methodologies that are possible to practice or perform. **Practicable** concentrates on methods that are workable, feasible, or capable of being put into practice. Practicable methods may not be in practice currently, even though they are technically possible to put into practice.

Conversely, **practical** deals with methodologies that are actually being used, or are commonly engaged in practice or actual use. Therefore, NEPA mandates agencies to develop methodologies for scenery management of "**aesthetically and culturally pleasing surroundings**" that are capable of being put into practice, even if they are not currently in use.
NEPA also requires “a systematic and interdisciplinary approach which will insure the integrated use of the natural and social sciences and the environmental design arts in planning and decision-making which may have an impact on man’s environment.” (Emphasis added.)

NEPA requires federal land management agencies to “identify and develop methods and procedures... which will insure that presently unquantified environmental amenities and values may be given appropriate consideration in decisionmaking along with economic and technical considerations.” (Emphasis added.)

Environmental Quality Act

The Environmental Quality Act of 1970 “declares that there is a national policy for the environment which provides for the enhancement of environmental quality. This policy is evidenced by statutes heretofore enacted relating to the prevention, abatement, and control of environmental pollution, water and land resources, transportation, and economic and regional development.” (Emphasis added.)

Resources Planning Act (RPA)

RPA is the Forest and Rangeland Renewable Resources Planning Act of 1974. RPA states that “the Forest Service, by virtue of its statutory authority for management of the National Forest System, research and cooperative programs, and its role as an agency in the Department of Agriculture, has both a responsibility and an opportunity to be a leader in assuring that the Nation maintains a natural resource conservation posture that will meet the requirements of our people in perpetuity...” (Emphasis added.)

Regarding timber harvesting and scenery management, RPA states the following: “cuts designed to regenerate an even-aged stand of timber will be used as a cutting method on National Forest System lands only where... the interdisciplinary review has been completed and the potential... aesthetic... impacts have been assessed; [and where] cut blocks, patches, or strips are shaped to the extent practicable with the natural terrain; [and where] such cuts are carried out in a manner consistent with the protection of... recreation and aesthetic resources...” (Emphasis added.)

RPA requires that “Program benefits shall include, but not be limited to, environmental quality factors such as aesthetics, public access, wildlife habitat, recreational and wilderness use, and economic factors such as the excess of cost savings over the value of foregone benefits and the rate of return on renewable resources.” (Emphasis added.)
NFMA is the National Forest Management Act of 1976. Identical language to all of the above language in RPA concerning regeneration timber cutting is found also in NFMA. In addition, the following excerpts are taken from the most recent Code of Federal Regulations (CFR) dated Sept. 30, 1982. 36CFR Part 219 concerns implementation of NFMA.

36CFR Part 219.5 directs the Forest Service to use an “Interdisciplinary approach... Through interactions among its members, the team shall integrate knowledge of the physical, biological, economic and social sciences, and the environmental design arts in the planning process. (Emphasis added.)

Regarding “Estimated effects of alternatives. The physical, biological, economic, and social effects of implementing each alternative... shall be estimated... (1) The expected outputs for the planning periods, including appropriate marketable goods and services, as well as nonmarket items, such as recreation and wilderness use, wildlife and fish, protection and enhancement of soil, water, and air, and preservation of aesthetic and cultural resource values; (Emphasis added.)

“During formulations and evaluation of each alternative... combinations of resource management prescriptions shall be defined to meet management objectives for the various multiple uses including outdoor recreation, timber, watershed, range, wildlife and fish, and wilderness.

“Forest planning shall identify,
(1) The physical and biological characteristics that make land suitable for recreation opportunities;
(2) The recreational preferences of user groups and the settings needed to provide quality recreation opportunities; and
(3) Recreation opportunities on the National Forest System lands. (Emphasis added.)

Part 219.21(f) requires: “The visual resource shall be inventoried and evaluated as an integrated part of evaluating alternatives in the forest panning (sic) process, addressing both the landscape’s visual attractiveness and the public’s visual expectation. Management prescriptions for definitive land areas of the forest shall include visual quality objectives. (Emphasis added.)

“All management prescriptions shall...
(7) Be assessed prior to project implementation for potential physical, biological, aesthetic, cultural, engineering, and economic impacts and for consistency with multiple uses planned for the general area; (Emphasis added.)

Regarding vegetative manipulation, Part 219.27 states:
“(b) Vegetative manipulation.
Management prescriptions that involve vegetative manipulation of tree cover for any purpose shall...
(1) Be best suited to the multiple-use goals established for the area with potential environmental, biological, cultural resource, aesthetic, engineering, and economic impacts, as stated in the regional guides and forest plans, being considered in this determination;
(2) Assure that lands can be adequately restocked as provided in paragraph (c)(3) of this section, except where permanent openings are created for wildlife habitat improvement, vistas, recreation uses and similar practices;

(6) Provide the desired effects on water quantity and quality, wildlife and fish habitat, regeneration of desired tree species, forage production, recreation uses, aesthetic values, and other resource yields;... *(Emphasis added.)*

“(6) Timber harvest cuts designed to regenerate an even-aged stand of timber shall be carried out in a manner consistent with the protection of soil, watershed, fish and wildlife, recreation, and aesthetic resources, and the regeneration of the timber resource. *(Emphasis added.)*

Regarding even-aged management of timber: “When openings are created in the forest... (1) Openings shall be located to achieve the desired combination of multiple-use objectives. The blocks or strips cut shall be shaped and blended with the natural terrain, to the extent practicable, to achieve aesthetic, wildlife habitat, or other objectives established in the plan... As a minimum, openings in forest stands are no longer considered openings once a new forest is established... Regional guides shall provide guidance for determining variations to this minimum in the forest plan, based on requirements for watershed, wildlife habitat, scenery or other resource protection needs, or other factors. *(Emphasis added.)*

“The following factors shall be considered in evaluating harvest cuts of various sizes and shapes to determine size limits by geographic areas and forest types: Topography; relationship of units to other natural or artificial openings and proximity of units; coordination and consistency with adjacent forests and regions; effect on water quality; visual absorption capability... *(Emphasis added.)*

**Surface Mining Control and Reclamation Act**

The Surface Mining Control and Reclamation Act of 1977 “establishes a nationwide program to protect society and the environment from the adverse effects of surface coal mining operations...” *(Emphasis added.)*

The act states that “a surface area may be designated unsuitable for certain types of surface coal mining operations if such operations will... result in significant damage to important... aesthetic values and natural systems...” *(Emphasis added.)*

**Public Rangelands Improvement Act**

The Public Rangelands Improvement Act of 1978 declares that “unsatisfactory conditions on public rangelands... reduce the value of such lands for recreational and aesthetic purposes...” *(Emphasis added.)*
Visual Absorption Capability

Visual absorption capability indicates the relative ability of any landscape to accept human alteration without loss of landscape character or scenic condition.

Since the late 1960’s, landscape architects have recognized visual absorption capability as a pertinent part of a scenery inventory on land of diverse topography. Visual absorption capability has also been referred to as “visual vulnerability” or “landscape fragility.”

Landscape visibility, as a “perceptual factor,” is dynamic. It varies dramatically depending upon the location of the observer. Although many may think landscape visibility part of visual absorption capability because it is associated with perceptual aspects of scenery management, it is not. In this handbook, visual absorption capability is associated only with “physical factors” of the landscape in scenery management. For discussion of perceptual factors of landscape visibility, also known as visual magnitude, see Appendix E.

Visual absorption capability relates to physical characteristics of the landscape that are often inherent and often quite static in the long term.

Visual absorption capability is a classification system used to indicate the relative ability of any landscape to accept human alteration without loss of landscape character or scenic condition. Visual absorption capability is a relative indicator of the potential difficulty, and thus the potential cost, of producing or maintaining acceptable degrees of scenic quality. It can be used to predict achievable scenic condition levels resulting from known management activities in a landscape.

Thus, visual absorption capability is a useful tool in forest planning and in modifying management activities to meet landscape character goals and scenic condition objectives. It may be used to specify the most efficient location for a human alteration or structure on the landscape, so that a project will be accomplished easily, at low cost, and with minimal reduction in scenic quality.
The degree of visual screening provided by landform, rockform, or vegetative cover affects visual absorption capability.

Variety or diversity of landscape pattern—particularly the amount and extent provided by landform, rockform, waterform, or vegetative cover—affects visual absorption capability.

Heavily dissected landform and rockform partially screen and break up the visual continuity of landscape alterations, while smooth landform does not.

Tall vegetation, such as trees, screen and break up the visual continuity of landscape alterations. Short vegetation, such as grasses and low shrubs, does not.

Heavily patterned and diverse, dense vegetative cover, especially if mixed with waterforms, break up the perceived continuity of landscape alterations. Homogeneous vegetative cover and lack of waterforms do not.

Dense vegetation on flatter slopes provides more screening of landscape alterations than the same vegetative cover on steep slopes.

Vegetative regeneration potential affects visual absorption capability. A landscape with good soil productivity and favorable climate quickly reproduces vegetative cover. This "greening-up" tends to screen and blend human alterations into the landscape matrix more quickly. A landscape with poor soil and climate takes longer to recover.

Soil color contrasts to the normal vegetative cover affect visual absorption capability. Darker soil tends to reduce visual contrast of landscape alterations. Light-colored soil—tan, white, yellow, and red—tends to visually emphasize landscape alterations in heavily vegetated areas.

Geologic stability, soil stability, and potential of erosion of a landscape affect its visual absorption capability. A landscape prone to landslide, soil slippage, and erosion exacerbates the visual impact of landscape alterations. A stable landscape does not.
1. Slope

On steep mountainous terrain, slope is the most important visual absorption capability factor. Slope includes factors relating to landform screening, vegetation screening, geologic stability, soil depth, and soil stability. Therefore, scenery managers generally consider it to be the best single physical factor of relative visual absorption capability. Since it is not likely to change, slope is the most constant inventory factor of visual absorption capability. Slope is usually not an appropriate visual absorption capability factor for flat landscapes.

Many other resource professionals consider slope to be important, and it is often a basic inventory factor in forest planning. With the increased availability of computerized GIS with digitized data for topographic maps, it is becoming easier to obtain and customize slope-class maps for forest planning.

2. Vegetative cover

On gently rolling landscapes, vegetative cover is the most important visual absorption capability factor. It is also a key factor on hilly or mountainous landscapes. Vegetative cover is largely dependent upon climate, landform, waterform, and soils of an area. Vegetative cover is the end product of these environmental processes that determine regeneration potential.

Vegetative cover is innately able to produce a certain level of visual absorption capability, but it is the least stable factor. Natural disasters and human activities can easily modify vegetation, thus altering a factor of visual absorption capability.

Vegetative cover is often a basic inventory element in forest planning. Rapidly advancing technology in remote sensing is expected to improve the capacity to gather more detailed and uniform data on several attributes of vegetative cover.

Vegetative screening capability is primarily a function of the height and physical structure of the leaves, branches, and stems of individual plants, including trees, shrubs, and herbaceous layers. Inventories of vegetation type, density, and age-class will normally capture information needed for vegetative screening ability.

Vegetative patterns and diversity are a complex function of soils, micro-climates, and past management activities. Inventories of vegetation type, density, and age-class will often provide information needed for pattern and diversity, but may need to be supplemented by a more visually oriented approach to the vegetation inventory.
3. Soils and Geology

Soils and geology are very important factors when determining visual absorption capability. However, because soils fertility is aligned with vegetation, its effect on visual absorption capability may already be considered in the vegetation inventory. Other soils factors, such as mass stability, erosion hazard, and soil color contrast, would also need to be analyzed.

Geologic formations—such as rock outcrops, slides, and cliffs—can effect visual absorption capability by providing natural openings from which to borrow when designing human alterations.

Soils are important to many other resources, and soils information is often a basic inventory factor in forest planning. Rapidly advancing technology in remote sensing may improve the ability to gather more detailed and uniform data on several attributes of soils that affect visual absorption capability. Soil-type mapping will normally capture information needed to assess effects of stability, erosion hazard, and soil color contrast.

Mapping Process

Determining Pertinent Map Scale

The inventory of visual absorption capability can be most efficiently used if it is mapped at the same scale as other components of the scenery inventory.

Determining Pertinent Visual Absorption Capability Factors

Because all landscapes vary, the factors used to inventory visual absorption capability also vary. Although slope is often the most important single factor in steep mountainous landscapes, there is little value in developing slope information for flat terrain. The exception is where one area having flat terrain is compared to another having steep terrain.

Similarly, if vegetative cover or soils are quite homogeneous throughout a planning area, there is little value in analyzing and mapping these factors for visual absorption capability.

Therefore, the first step in the mapping process is to analyze which physical factors affect the visual absorption capability of a landscape.

Determining Data Sources

Next, landscape architects determine the availability of existing inventories for other resources or other purposes that could assist the visual absorption capability inventory. In certain cases, it may be necessary to interpret another discipline’s existing inventory for visual absorption capability. The author of the other inventory may be able to assist with interpretations, or have the ability to develop an efficient process to make such interpretations. Various disciplines, including landscape architects, can share existing data or join in the effort to obtain them.
Ranking Visual Absorption Capability Factors

Landscape architects must determine whether to "rank" or "weigh" visual absorption capability factors. This will depend upon which factors have been selected, analyzed, and mapped.

A general rule is that all factors should be ranked equally, unless there is evidence that one or more factors are clearly more important. Some previous studies in mountainous terrain have determined that slope is the most important factor, and have ranked it three times higher than the least important factor, site recoverability. Forest Service Manual Supplements should be prepared by each region to establish visual absorption capability factors and ranking values, preferably for each landscape province.

Classifications of Visual Absorption Capability

Normally, three classes of visual absorption capability are adequate—high, moderate, and low. With increased use of computerized GIS, it may be appropriate to increase the number of classes.
Utilization

In both forest planning and project planning, landscape architects may utilize visual absorption capability to determine achievable scenic condition levels. They may use it in either of two modes, "proactive" or "reactive."

Proactive

In a proactive mode, a landscape architect supplies visual absorption capability information to other resource management specialists. Visual absorption capability information is then used as a guide in determining appropriate types of management activities commensurate with the following:

- Theme and variations of each alternative of the forest plan.
- Relative value of the other (non-scenery) resources.
- Relative value of scenery and closely related resources, such as recreation.

Reactive

In a reactive mode, a landscape architect uses visual absorption capability information to determine:

- The predicted achievable scenic condition level of others' management activities, without benefit of design input for scenic quality.
- Potential adjustments in other management activities that would improve the achievable scenic condition level and integrate the activities with scenic values.
- Modifications of other resource management activities and prescriptions to better meet landscape character goals and scenic condition objectives.

In reality, usually both modes are employed. First, other resource disciplines use visual absorption capability information to help determine types and intensities of management activities for each alternative (proactive).

Then, the proposed management activities and intensities are analyzed to determine the achievable scenic condition level (reactive).
To be functional, facilities in immediate foregrounds must be visible and ordinarily create more contrast than will be acceptable in areas designated for retention and partial retention scenic condition objectives. However, they are actually a part of the expected image of the public being served.

Viewer Platform Design

Structures in immediate foregrounds of important national forest travelways and recreation areas often require special consideration in meeting scenic condition objectives.

- When travelers move through a landscape, while in a somewhat modified setting, they should obtain impressions that they are viewing a natural-appearing landscape outside the immediate foreground. The somewhat modified immediate foreground setting of their own viewer platform (a road, for instance) is accepted as a necessary component allowing them to experience the greater landscape. Thus, expected images of naturalness exist for the foreground, middleground, and background that do not exist for the immediate foreground.

- Scenery management strives for excellence in design of all structures to be viewed. Not only should they blend sufficiently with the backdrop at greater distances to meet strict definitions of scenic condition objectives, but they should be positive additions to landscapes when viewed in immediate foreground.

- Those structures serving purposes other than scenic viewing and recreation should ordinarily be located at sufficient distances from such routes and use areas that they can meet the definitions of the scenic condition objectives. Obviously, an alternative is to completely screen them from view from such routes and areas. Another alternative is to design them to effectively mimic positive cultural elements identified for landscape character goals. A further alternative is to incorporate and conceal them in a structure that serves scenic and recreation purposes.
Where structures must also meet ROS setting needs, it is necessary to identify the recreation opportunity class of an area and determine if uses and structures are consistent with settings. If not, structures should be designed and located in an appropriate ROS setting or denied as an inconsistency.

Structures required for serving public use of scenic and recreation resources include viewing platforms, such as roads, parking areas, trails, trail heads, buildings, decks, observation points, ski lifts, and so on. To be functional, these facilities are normally visible in immediate foregrounds and often create more contrast than will be acceptable in areas designated for retention and partial retention scenic condition objectives.

They are actually a part of the expected image of the public being served. However, allowable limits of contrasts only go to the extent that functions of structures are served. They should also reflect design excellence. Such structures should be a positive element of the built environment that does not detract from scenic experiences. Structures should blend into the landscape while still retaining their function. They should be an indicator of sensitive land stewardship.

Travel route structures need to be clearly distinguishable for a distance commensurate with normal speeds or intended use of such routes. For functional and safety purposes, a road and its safety markers and signs need not be distinguishable in middleground distances. Therefore, more distant portions of a road and its appurtenant structures should meet scenic condition objectives and be judged on that basis. Appurtenant structures exempted from meeting scenic condition objectives in immediate foregrounds may include those associated with roadways as well as other structures, such as an interpretive sign or kiosk, visitor center, observation point, resort or winter sports complex, or similar recreation and tourist facilities.

However, utility structures along travelways and in recreation sites, such as storage tanks, communication structures, or electrical transmission facilities, that are not directly used by the public and do not need to be distinguished by them should be judged as structures serving purposes other than scenery and recreation. They should meet scenic condition objectives, even when viewed in foreground.
Appendix E
Existing Scenic Integrity Inventory
Appendix E
Existing Scenic Integrity Inventory

Purpose

Existing scenic integrity represents the current status of a landscape. It is determined on the basis of visual changes that detract from the scenic quality of the area. An inventory of existing scenic integrity serves multiple purposes throughout forest planning, continuing on into project implementation and monitoring, as follows:

- It provides important benchmarks for prudent decision-making.
- It serves as a historical record of the degree, location, and extent of physical alteration of the landscape at given points in time.
- It is used to develop trends during forest planning.
- It helps determine the location, cost, and extent of rehabilitation required to achieve the desired scenic integrity levels of alternative forest plans. These rehabilitation needs are described in environmental documents.
- Once the forest plan is adopted, an inventory of existing scenic integrity is used to determine prioritization, location, and extent of rehabilitation required during forest plan implementation.
- Combined with visual absorption capability, type and intensity of planned activities anticipated during the forest planning period, existing scenic integrity will assist landscape architects in predicting future scenic integrity levels for alternative forest plans.
- Existing scenic integrity and its trends assist managers in monitoring progress toward meeting predicted future scenic integrity levels in a forest plan.

Discussion

In National Forest System lands, existing scenic integrity indicates the current status of the landscape. It indicates existing degrees of alteration from the attributes—form, line, color, and texture—of the existing landscape character. Harsh alterations decrease the existing scenic integrity of a national forest landscape, while subtle alterations do not.
**Description**

**Existing scenic integrity** may be described using three viewing situations, either separately or in combination.

1. As viewed from the air, which is most revealing (above left).

2. As viewed from existing travelways and use areas, using typical on-the-ground observer positions (above center).

3. As viewed from unusual and more unpredictable on-the-ground observer positions, while the observer wanders through the national forest (above right).

Situations (1) and (3) are physical inventories that are detailed and specific.

Situations (2) is more experiential, relating to a space-sequence, as it is a generalization of the experiences gained along an entire travelway or series of use areas.

Regardless of the viewing situation that is used, the following background knowledge, resources, and data should be available:

- Familiarity with the land base, resource activities, and their effects from ground-based observer positions.
- Recent low-level aerial photographs covering the entire land base.
- Study of recent orthophoto quadrangles, color aerial photography, or stereo pairs of color aerial photos.
- GIS inventories of vegetation and other data where available.

Review aerial photographs to gain a better perspective of how they relate to personal knowledge of on-the-ground situations.

Identify and delineate the existing landscape integrity on transparent overlays of orthophotos or on overlays of aerial photographs if the former is not available. Steps a) through g) below develop an inventory of existing scenic integrity for the entire landscape, called existing landscape integrity.

a) Map all classified wilderness, research natural areas, and previously inventoried but unaltered roadless areas. Identify them as *Very High*, unless there are some portions of these areas that appear to be in a landscape condition other than Very High.

b) Move some portions of previously inventoried roadless areas into *High* scenic integrity if, from aerial views, they obviously have vehicular routes crossing them or if they have other low-impact scenic deviations.
c) Identify all areas of **Unacceptably Low** scenic integrity. Such areas are generally readily apparent, well-known, and easily corroborated from aerial photographs or other sources.

d) Delineate all **Very High** areas of 100 acres or more not identified above in steps a) and b) above.

e) Identify and map all **High** **Scenic integrity** areas.

f) Identify all **Low** and **Very Low** areas in a sequence that best facilitates stratification.

g) Identify all remaining areas as **Moderate** scenic integrity.

Spot-check and develop systematic translations of aerial views to on-the-ground views. This refines the delineation of existing landscape integrity either from specific viewing locations or within entire viewsheds.

Spot-check reliability of the translated classifications with one or more landscape architects, preferably someone from an adjacent national forest, to improve the uniformity of classifications.

**Related Recommendations**

Inventory the entire landscape base inside the national forest boundary, including non-Federal inholdings, when such inclusion simplifies and expedites the preliminary mapping process. Thus, continuity of mapping is enhanced. However, when completing the final version of the maps, document existing landscape integrity for National Forest System lands only.

Human-caused alterations are often located in small clusters of spots, patches, or linear patterns. These are scattered within large areas of unaltered landscape matrix, as shown below. Conversely, there is often a large matrix containing human-caused alterations interspersed with small spots, patches, or corridors of unaltered landscape. In such cases, the entire landscape should be inventoried and mapped as a single aggregate level. This recognizes impressions generally perceived by constituents and also simplifies the mapping and recording process.

**Mapping existing landscape condition.**

**This.**

**Not this.**

E - 3 - Existing Scenic Integrity Inventory