Motivation	Evaluating actions	Conclusions

Better ignorant than misled: Including uncertainty in forecasts supporting management and policy

N. Thompson Hobbs

Natural Resource Ecology Laboratory, Department of Ecosystem Science and Sustainability, and Graduate Degree Program in Ecology, Colorado State University

Uncertainty Analysis: A Critical Step in Ecological Synthesis Annual Meeting of the Ecological Society of America, 8/5/2013

Motivation	Evaluating actions	Conclusions

Honest synthesis

Management and Policy

Motivation	Evaluating actions	Conclusions

The problem of management: What actions will allow us to meet goals for the future?

Synthesis with deterministic models

Evaluating actions

Conclusions

Orrin H. Pilkey and Linda Pilkey-Jarvis 2007

Bayes	Evaluating actions		Conclusions
dly applicable t of managem	approach to ecologi nent	cal modeling in	l

$$\begin{split} & [\mathbf{E}, \boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data} | \text{data}] \propto \\ & [\text{data} | \boldsymbol{\theta}_{data}, E_t] [E_t | \boldsymbol{\theta}_{process}, E_{t-1}] [\boldsymbol{\theta}_{process}, \boldsymbol{\theta}_{data}, E_0] \end{split}$$

Posterior predictive distribution of future states, E^\prime

Future state of system, E'

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < で 8/26

Motivation	Evaluating actions	Conclusions

How to evaluate actions?

Probability density

Objective: reduce state below a target

Future state of system, E'

イロト イヨト イヨト

9/26

Motivation	Evaluating actions	Conclusions

Objective: maintain state within acceptable range

Future state of system, E'

Probability density

Objective: increase state above a target

Future state of system, E'

Probability density

Probability density

Future state of system, E'

Future state of system, E'

Probability density

Future state of system, E'

Probability density

Future state of system, E'

Probability density

Example: Managing brucellosis in Yellowstone Bison

Motivation	Evaluating actions	Example	Conclusions

Goal: Reduce probability of infection by half in five years.

Action: Annually vaccinate 200 sero-positive females.

Bayesian matrix model with multiple sources of data

Motivation	Evaluating actions	Example	Conclusions

Effect of vaccination: Treat 200 sero-positive / year

Years into the future

Motivation	Evaluating actions	Example	Conclusions

Effect of vaccination

Years into the future

Effect of vaccination

Objective: reduce transmission probability by half

Five years in the future

э

Comparison of alternatives

Management action	Probability of meeting goal
Do nothing	.05
Vaccinate 200 sero-positives	.33
Cull 200 sero-positives	.29
Cull 200 females	.15
Boundary hunting	.03

Multiple objectives, multiple actions

Objectives

- Reduce P(infection) by half
- Sero prevalence < 40%</p>
- Population size between 3000 - 3500
- Appropriate demographic composition

Actions

- Vaccination
- Remove sero-positives
- Remove sero-negatives
- Boundary hunting (or removal)

Motivation	Evaluating actions	Conclusions

Closing

Value

- Provides honest forecasts relevant to actions and goals.
- Informs the conversation
- Limitations
 - Demonic intrusions aren't included.
 - Forecasting horizons are short.

Bayes

Evaluating actions

Exampl

Conclusions

Walters, C. J. 1986. Adaptive Management of Renewable Resources. Macmillan, New York.

Develop Bayesian model(s) of system

May 21-30, 2013 Google "NREL Bayes"

