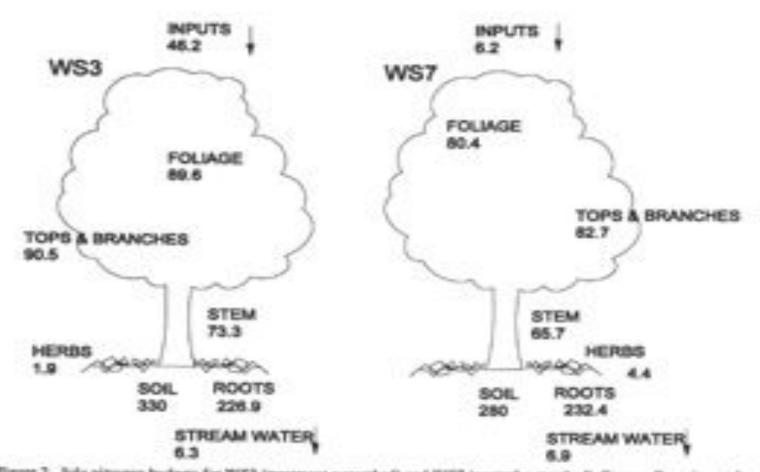


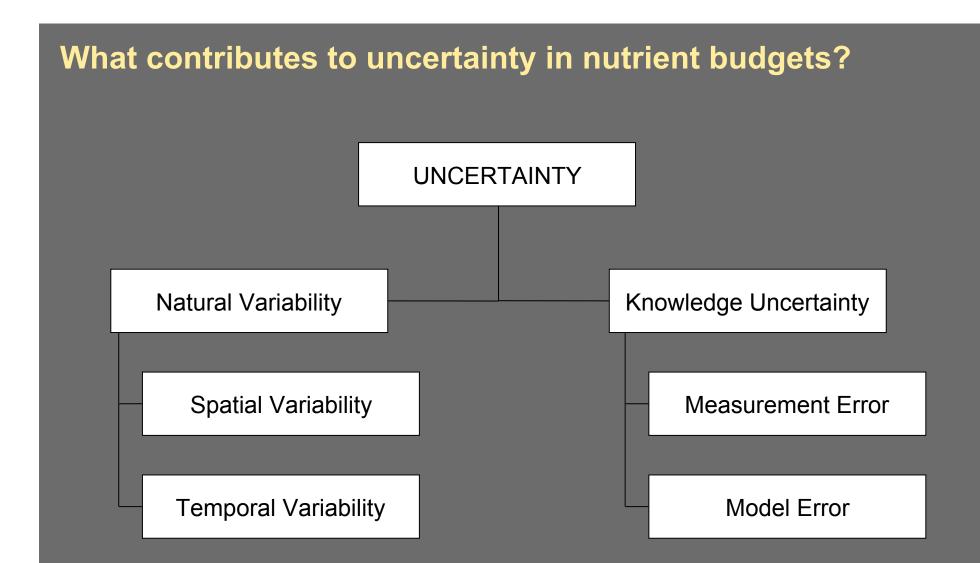
QUANTIFYING UNCERTAINTY IN ECOSYSTEM STUDIES : Using long-term data from small watersheds

Mary Beth Adams, Ruth Yanai, John Campbell, Mark Green, Doug Burns, Don Buso, Mark Harmon, Trevor Keenan, Shannon LaDeau, Gene Likens, Carrie Rose Levine, Bill McDowell, Jordan Parman, Stephen Sebestyen, James Vose, Mark Williams

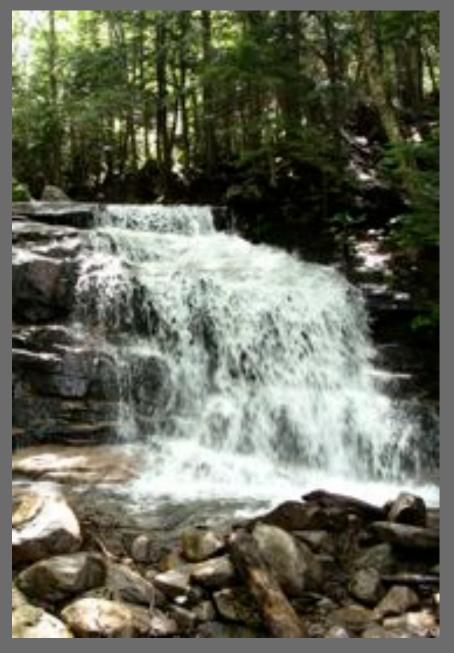
www.quantifyinguncertainty.org / quantifyinguncertainty@gmail.com


What is **QUEST**?

QUEST is a research network interested in improving understanding and facilitating use of uncertainty analyses in ecosystem research.

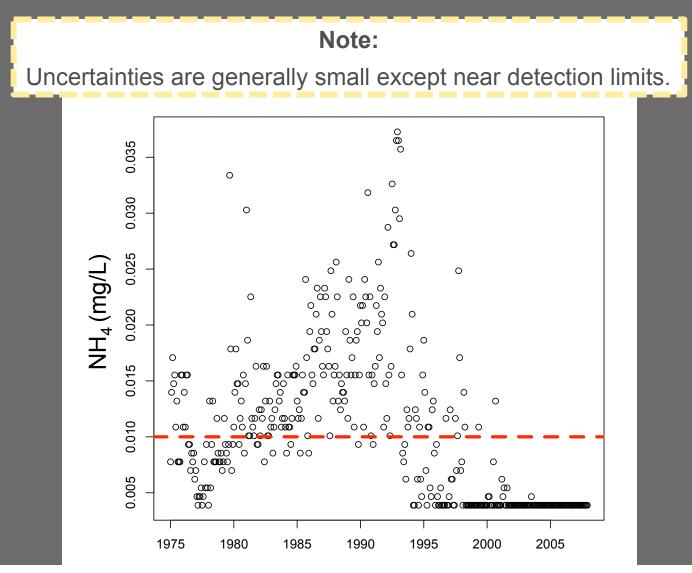

- Currently funded project is an analysis of hydrologic input-output budgets in small headwater catchments throughout the US
- Includes researchers and students in the US, Canada, and Japan

Ecosystem Budgets have no error.



Adams et al. 1995

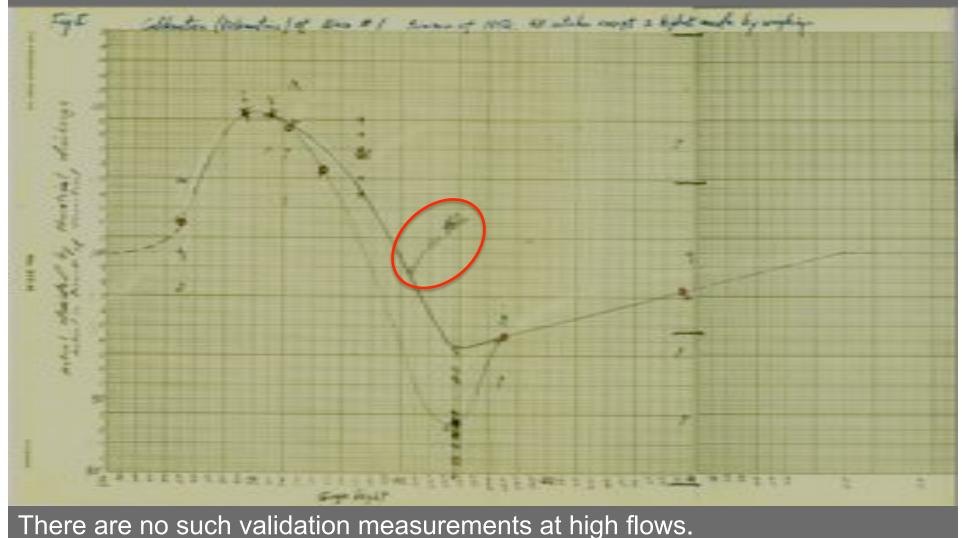
Measurement Uncertainty


• Uncertainty in analysis of water chemistry

Analysis of water chemistry

Precision over range (POR): repeatability

Method detection limit (MDL): lowest detectable concentration


Measurement Uncertainty

- Uncertainty in analysis of water chemistry
- Uncertainty in height-discharge relationship at the weir

Height-discharge relationship

At Hubbard Brook, discharge was measured at low flow and compared to the predictions of the theoretical curve ($Q = 2.49H^{2.48}$). The rating table is corrected according to this hand-drawn curve.

Measurement Uncertainty

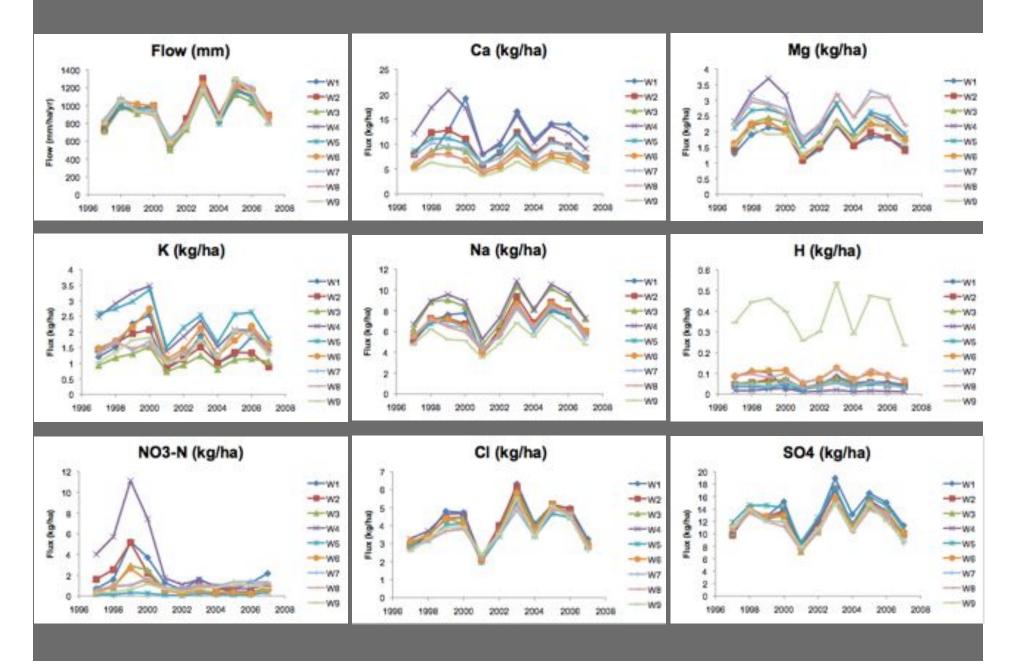
- Uncertainty in analysis of water chemistry
- Uncertainty in height-discharge relationship at the weir
- Uncertainty in filling gaps in the discharge record

Gaps in the discharge record are filled by comparison to other streams at the site, using linear regression.

Indiaign (mint)	10	82	114	80 · · · ·	800
32014	10.11441	11010	1.44(2)	4.004734	14404
12818	1311184	a kenado	4,568,677	5.362914	11001
\$ 25 14	1.Manual	110000	1.000	2.141091	4.14036
120.48	Long In	2 minutes	0.340700	CARENAR.	Inches.
52104	4111344	3 545402	6,77400	1.578975	1.TORN
12010	1+12641	117048	D-CHENNE	1.881242	1 marcel
5.5418	1.11160	1 100100		1.110344	EATERIN
1.3218	8.0707	1.4464.4	6.01848	2407674	127110
9.9.14	3-481035	1208477	1111204	47:2426	A REAL PROPERTY.
6/186	1.896(17)	1100768		0.003134	189758
6316	1.412542	1.340(4.53)		1.767068	1.740205
1.3.00	130011	0.047348		0.007068	Lawrence.
0.010	1.008134	8.72524		5425873	114001
5708	1.719408	6.6028.88		AUNT	1800.9
6-516	1.774482	13070	0.21941	4.327177	1.481(18)
6756	1.404621	6757799	10000C	6.276949	Liteuch.
10.00	1,346215		6.601980	1240242	14(66)
5.918	1.374148	1,21049177	0.424191	0.12124	LER-YCE
0.008	1 (7564.96	8.456748	OCCU.	0.220104	1.07544
612-06	1.0729	1.017968	675201	0.289164	134940
41234	0.000101	1 580004	6.149581	-transmitter	1710/10
6/218		471843	0.765474	0.180191	1.0779
67496	11.41412	1101444	24.50000	3144014	12000
10.000	14.16427	\$1.08x10	47.167.04	4710541	34,3002
6/1748		28 Mile	13.42148	18.18780	T1 84042
470.00		TANK	11 1110	15.2011	IN COLOR
a liste		18.42344	14.47 (14)	AACHINE.	11,10400
1.004		144477	11.110	5477943	1.77586
10.7.48		6.4298445	TROUTS	1154345	4.000112
600.00		1000344	LATER.	3.409735	1.070085
4.7348		4.776648	Larcar	Long Inc.	4.06754
10.0418		4.506724	4.367602	1.0100934	1.POIGE
62918		477207	1.49710	S PROFIN	4.49254
10018		18,54877	14.400	8.271343	14.864(14)
62118		10.45674	11.0366	8134234	11.429(96)
- 5280K		6.429768		5276854	104016
62918		7,00274	1,171(208)	3466456	0.008080
0.0004		3 804327	14,00790	2.484291	4.776067
		1,1844.34	1414	5.84874	1.000000
1218		1.873688	4,7680	1.964123	1.0.0.2
3396		1010081	10.000	1,756473	10,044
1414		8.071641		1.762434	1.160.00
1994		44.17994		10.05439	41,008
764		4138347		70.14535	119028
11.00		20,0004		15,89881	1740002
1946		13,76745		8.296741	114046
Tuple		N INCOME.	11 siled?	6.225/982	Libert?
114.66		a fairthi	10.41400	3 19634	4 Padlet
11218		6.812296	A.145867	2.8434310	1.000
11/10		4306774	6.706446	[[prints	1 111004
11418		3,0007	496279	1,79794	12860
210.04		TTERL	A.Thumas	1.008441	181920
1.16.16		3 (9908)	LICENT	1,2234.74	14070408
11116		145794	1.04%	1.987045	130404
7.018	1.176429	- A DAARS	137700	1.122214	1470
21918	12124	10 M	Yelledr.	6.582154	1.00048
1/2018	26.03688	1.2.1	31. (9074	201203-02	Pharming.
12/04	ALIENSE	\$1.30 M	1110707	40.79714	14.40056
12210	11.48774	26.02141	11,225.00	25-94214	14,810,74
11110	1110440	14,25410	20.111.0	117088	14.1450

Measurement Uncertainty


- Uncertainty in analysis of water chemistry
- Uncertainty in height-discharge relationship at the weir
- Uncertainty in filling gaps in the discharge record
- Uncertainty in watershed area

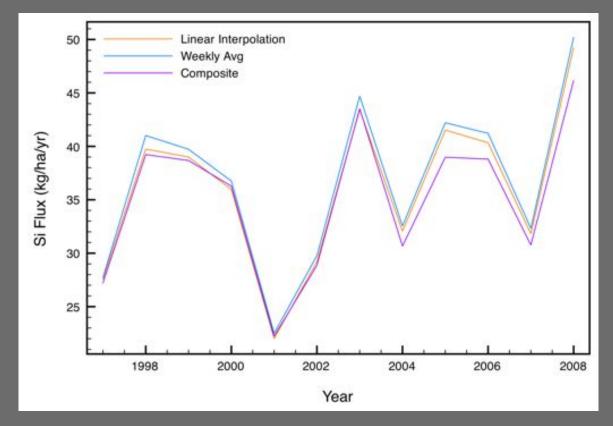

Measurement Uncertainty

Natural Variability

- Spatial variation (multiple streams sampled at each site)
- Temporal variation (multiple years of sampling)

Natural variability: Temporal and Spatial

Measurement Uncertainty


Natural Variability

Model Uncertainty

• Flux = concentration * discharge

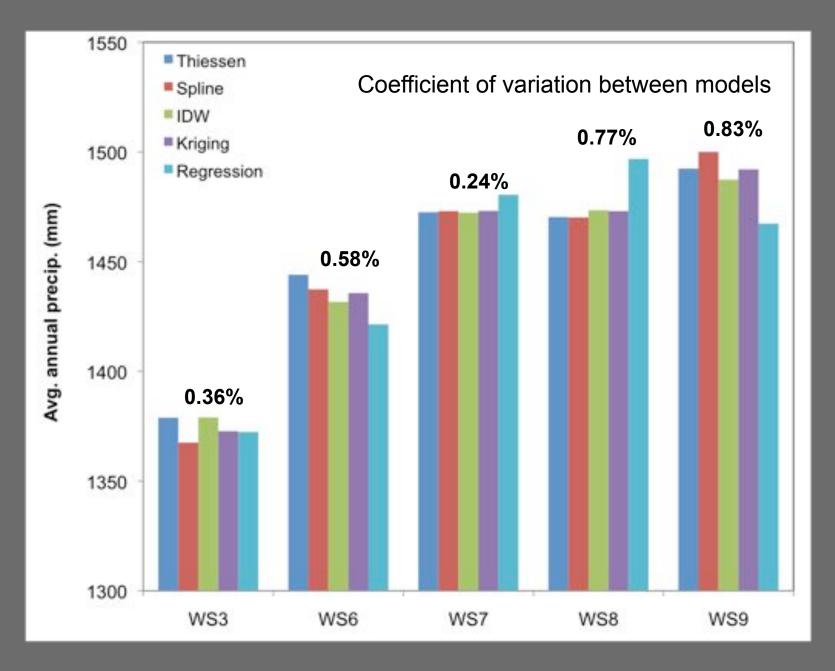
 Model selection: how to interpolate between sampling dates for water chemistry

Uncertainty in streamwater chemistry estimates: Methods comparison

Comparing methods for estimating flux of Si at Hubbard Brook:

- Linear interpolation: concentrations for the week are linearly estimated between the two sampling dates
- Weekly average: One value applied to the entire week (many ways to do this)
- **Composite method:** model including a concentration-discharge relationship which is driven through the measured points
- Annual Si fluxes varied by ~5%

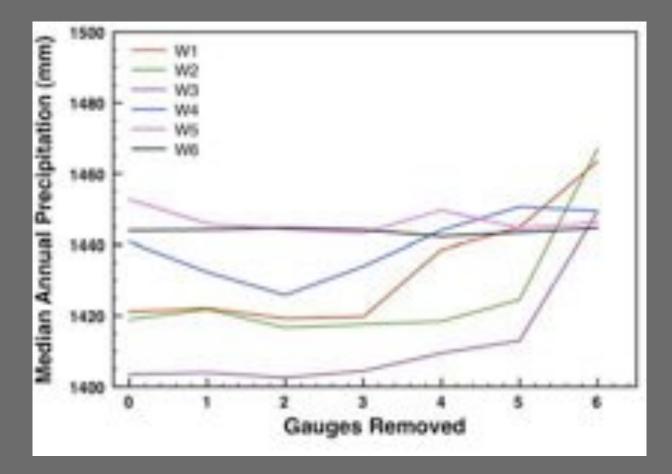
Sources of Uncertainty in Precipitation


Precipitation:

- Most uncertainty is in spatial variability.
- Varies with landscape factors;
 often shows orographic effects
- Low temporal uncertainty: generally measured cumulatively, most uncertainty in this area arises from analytical error
- Many spatial models can be used to predict precipitation amount in watersheds

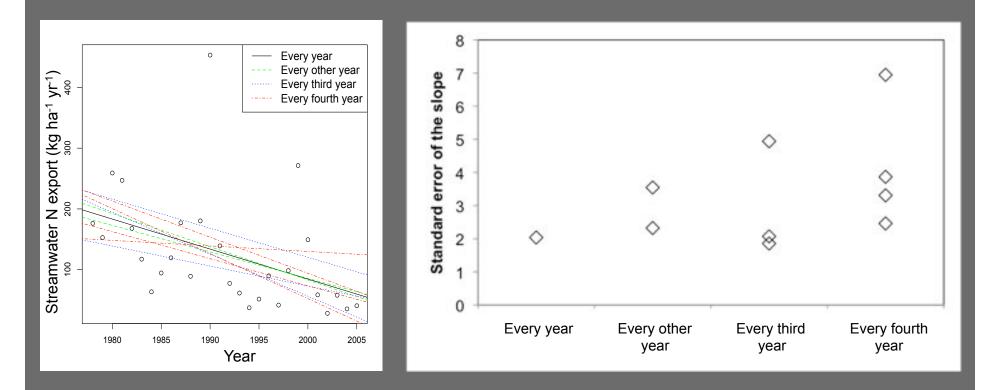
Alternative spatial models for precipitation in the Hubbard Brook Valley

Uncertainty and Monitoring Efficiency


- Long-term monitoring (LTM) data sets are very important for detecting change over time
- Uncertainty analysis can be a tool for assessing the efficiency and coverage of LTM programs

•Want to determine if current monitoring efforts are:

- **Excessive:** requiring more effort than is justified by the results produced
- Inadequate: producing results that are not sufficiently accurate or precise to meet science or policy needs


Using uncertainty to assess monitoring efficiency: Precipitation

• Test how sampling intensity contributes to confidence in the annual precipitation estimates by sequentially omitting individual precipitation gauges.

 Median annual precipitation estimates varied little until five or more of the eleven precipitation gauges were ignored.

Using uncertainty to assess monitoring efficiency: Streamflow

- Standard error of the slope increases as the number of sampled years decreases
- Trade off between less sampling (lower cost) and higher error around regression

Future QUEST projects:

- Hydrologic budget of QUEST sites including uncertainty in inputs and outputs
- QUEST workshops on soils, vegetation, and ecosystem budgets
- Ecosystem nutrient budgets including uncertainty in all pools and fluxes

Be a part of QUEST!

- Find more information at: www.quantifyinguncertainty.org
 - Read papers, get sample code, stay updated with QUEST News
- Email us at quantifyinguncertainty@gmail.com

http://www.guantifyinguncertainty.org/

QUEST

News Participating Sites Collaborators and Contact Information Papers Sample code (Excel, SAS, STATA, and R) Links Proposals and Presentations Images On Tour: Future Workshops, Presentations, and Posters QUEST Meeting Webinar Videos Contact Us

QUANTIFYINGUNCERTAINTY #

Stemap

Recent site activity

Welcome to QUEST

Ecosystem nutrient budgets often report values for pools and fluxes without any indication of uncertainty, which makes it difficult to evaluate the significance of findings or make comparisons across systems. QUEST is a research network that has evolved around the idea that uncertainty analysis should be an accepted and expected practice in the construction of ecosystem budgets.

Search this site

QUEST would like to thank:

- NSF, LTER, JSPS
- All QUEST sites for contributing data and many patient and accommodating data managers
- Many people who have contributed to collection of long-term data
- Everyone who has contributed papers, example code, presentations, and links to the QUEST website

www.quantifyinguncertainty.org

quantifyinguncertainty@gmail.com