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Abstract12

Ecological models help us understand how ecosystems function, predict responses to13

global change, and identify future research needs. However, widespread use of models is14

limited by the technical challenges of model-data synthesis and information management.15

To address these challenges, we present a ecoinformatic workflow, the Predictive16

Ecosystem Analyzer (PEcAn), that facilitates model analysis. Herein we describe the17

PEcAn modules that synthesize plant trait data to estimate model parameters, propagate18

parameter uncertainties through to model output, and evaluate the contribution of each19

parameter to model uncertainty. We illustrate a comprehensive approach to the20

estimation of parameter values, starting with a statement of prior knowledge that is21

refined by species level data using Bayesian meta-analysis; this is the first use of a22

rigorous meta-analysis to inform the parameters of a mechanistic ecosystem model.23

Parameter uncertainty is propagated using ensemble methods to estimate model24

uncertainty. Variance decomposition allows us to quantify the contribution of each25

parameter to model uncertainty; this information can be used to prioritize subsequent26

data collection. By streamlining the use of models and focusing efforts to identify and27

constrain the dominant sources of uncertainty in model output, the approach used by28

PEcAn can speed scientific progress.29

We demonstrate PEcAn’s ability to incorporate data to reduce uncertainty in30

productivity of a perennial grass monoculture (Panicum virgatum L.) modeled by the31

Ecosystem Demography model. Prior estimates were specified for fifteen model32

parameters, and species-level data were available for seven of these. Meta-analysis of33

species-level data substantially reduced the contribution of three parameters (specific leaf34

area [SLA], maximum carboxylation rate, and stomatal slope) to overall model35

uncertainty. By contrast, root turnover rate, root respiration rate, and leaf width had36
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little effect on model output, therefore trait data had little impact on model uncertainty.37

For fine root allocation the decrease in parameter uncertainty was offset by an increase in38

model sensitivity. Remaining model uncertainty is driven by growth respiration, fine root39

allocation, leaf turnover rater, and SLA. By establishing robust channels of feedback40

between data collection and ecosystem modeling, PEcAn provides a framework for more41

efficient and integrative science.42

keywords: traits, ecoinformatics, ecophysiology, Ecosystem Demography, sensitivity43

analysis, variance decomposition, ecological forecast, Bayesian meta-analysis, ecosystem44

model45
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Introduction46

In the face of unprecedented global change there is growing demand for predictions of47

ecosystem responses that provide actionable information for policy and management48

(Clark et al., 2001). Currently, the response of the terrestrial biosphere remains one of49

the largest sources of uncertainty in projections of climate change (Denman et al., 2007).50

This uncertainty comes from a combination of the uncertainties about our conceptual51

understanding of ecological systems, as captured by the structure and assumptions of the52

models used to make ecological forecasts, the uncertainties in the parameters of these53

models, and the uncertainties associated with the underlying data itself (McMahon et al.,54

2009). Reducing these uncertainties requires that we be able to synthesize existing55

information, efficiently identify the dominant sources of model uncertainty and target56

them with further field research.57

Despite the acknowledged importance of these activities, there is often a disconnect58

between model simulation and data collection. Both model-data synthesis and the59

investigation of uncertainty remain challenging, while the use of models to quantitatively60

inform data collection is extremely rare. Most modeling uses a single point estimate for61

each parameter, effectively treating each parameter value as completely certain. However,62

such point estimates do not account for the degree to which we understand a parameter63

based on observations. Furthermore, the rationale for a particular estimate is often64

unclear, as is the degree to which the estimate represents the process being observed or65

its representation in a model. In many cases, parameter values are chosen iteratively to66

“tune”, or “calibrate” the model output to observations. A first step toward constraining67

model uncertainty is to account for uncertainty in model parameters instead of relying on68

point estimates.69

More rigorous approaches to estimating parameter values include model optimization and70
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data assimilation (Medvigy et al., 2009; Reichstein et al., 2003), as well as Bayesian71

model-data fusion (Luo et al., 2011). However, these approaches have generally started72

with uninformative or vague prior estimates of model parameters. These vague priors73

ignore available data that could directly inform parameter values; the most commonly74

used vague prior distribution is a uniform. A uniform prior assigns equal probability to75

parameter values over its entire range, in many cases over many orders of magnitude. The76

use of such vague priors often exacerbates problems with equifinality (Richardson and77

Hollinger, 2005; Williams et al., 2009; Luo et al., 2009) which can produce unidentifiable78

parameters, as well as biologically unrealistic parameter sets that generate the right model79

output for the wrong reasons (Beven and Freer, 2001; Beven, 2006; Williams et al., 2009).80

Another reason to use informed priors is to take advantage of one of the key strengths of81

the Bayesian paradigm: the ability to synthesize multiple sources of information in a82

rigorous and consistent framework. For example, plant traits related to leaf stoichiometry83

and photosynthetic capacity are often well constrained by previous research (Skillman,84

2008; Reich and Oleksyn, 2004; Wright et al., 2004; Wullschleger, 1993), while other traits,85

such as root respiration rate, are more difficult to measure and data are sparse. Informed86

priors allow existing information to be formally integrated into model parameterization,87

even if there is no data for the particular species or plant functional type (PFT) being88

measured; the level of confidence in a parameter value is reflected in its variance.89

Models have rarely been used to quantify the value of data with respect to reducing90

uncertainty. Instead, data collection is often focused on answering specific questions in91

specific spatial, temporal, and taxonomic contexts. In these contexts, the value of a92

particular data set is based on the ability to answer a particular question. However, the93

same data set may have a very different value in the context of reducing model94

uncertainty. For example, a single data point used to inform a poorly understood but95

influential model parameter can reduce model uncertainty more than a large collection of96
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data on a trait that is relatively well studied. In a modeling context, the value of an97

additional data point depends both on how much it constrains parameter uncertainty and98

the sensitivity of model output to the parameter. Thus, the ability to comprehensively99

utilize available data in model parametrization can help to identify gaps in existing100

knowledge, improve the ability of models to account for current understanding, and101

inform data collection efforts by identifying the knowledge gaps most responsible for102

uncertainty.103

While the increasing sophistication of model-data fusion and uncertainty accounting is a104

critical step in the right direction, the complexity of such analyses can make models even105

less accessible. One of the reasons to make models more accessible, and to make them106

better at synthesizing existing data, is that they are fundamentally a formal, quantitative107

distillation of our current understanding of how a system works. As such, models can be108

used to identify gaps in our understanding and target further research. This feedback109

between models and data could be improved if models were routinely evaluated in a way110

that quantifies the value of data with respect to reducing uncertainty. We fundamentally111

believe that streamlining the informatics of modeling – the need to track, process, and112

synthesize data and model output – will make the development and application of113

ecological data and models more accessible, transparent, and relevant.114

In this paper we present the Predictive Ecosystem Analyzer (PEcAn) as a step toward115

meeting these objectives. PEcAn is a scientific workflow that manages the flows of data116

used and produced by ecological models, and that assists with model parametrization,117

error propagation, and error analysis. PEcAn accomplishes two goals: first, it synthesizes118

data and propagates uncertainty through an ecosystem model; second, it places an119

information value on subsequent data collection that enables data collection that120

efficiently reduces uncertainty. In addition to quantifying the information content of any121

prediction or assessment, these techniques also help identify the gaps in our knowledge of122
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ecological and biogeochemical processes (Saltelli et al., 2008).123

PEcAn addresses the challenge of synthesizing plant trait data from the literature in a124

way that accounts for the different scales and sources of uncertainty. Available data is125

synthesized using a Bayesian meta-analysis, and the meta-analysis posterior estimates of126

plant traits are used as parameters in an ecosystem model.127

A model ensemble is a set of model runs with parameter values drawn from the128

meta-analysis posteriors estimate of plant traits. Output from a model ensemble129

represents the posterior predictive distributions of ecosystem responses that account for130

trait parameter uncertainty (hereafter “model posterior” refers to the “model ensemble131

output”). Sensitivity analysis and variance decomposition help to determine which traits132

(model parameters) drive uncertainty in ecosystem response (model posterior) (Saltelli133

et al., 2008; Larocque et al., 2008). These analyses help target parameters for further134

constraint with trait data, forming a critical feedback loop that drives further field135

research and provides an informative starting point for data assimilation. Here we136

illustrate an application of PEcAn to the assessment of aboveground yield in a perennial137

grass monoculture.138

In the sections below, we provide an overview of the components of PEcAn’s integrated139

framework for data synthesis and ecological prediction. We start with a description of the140

methods implemented in the workflow (Implementation). This includes descriptions of141

the database, Bayesian meta-analysis, ensemble analysis, sensitivity analysis, and142

variance decomposition. Finally we present an example of the application of the system143

(Application) to analyze the aboveground biomass of switchgrass (Panicum virgatum L.),144

by the Ecosystem Demography model, version 2.1 (ED2) (Medvigy et al., 2009;145

Moorcroft et al., 2001).146
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Implementation147

PEcAn workflow148

The Predictive Ecosystem Analyzer (PEcAn) manages the flow of information into and149

out of ecosystem models. PEcAn is not a model itself, it is a scientific workflow consisting150

of discrete steps, or modules. Individual modules are building blocks of the workflow,151

represented by the rectangles in Figure 1, while flows of information are represented by152

arrows. This makes PEcAn an encapsulated, semi-automated system for model153

parametrization, error propagation, and analysis.154

A central objective of the PEcAn workflow is to make the entire modeling process155

transparent, reproducible, and adaptable to new questions (sensu Stodden et al., 2010;156

Ellison, 2010). To achieve this objective, PEcAn’s adheres to “best practice” guidelines157

for ecological data management and provenance tracking (Jones et al., 2006; Michener158

and Jones, 2012).159

PEcAn uses a database to track data provenance and a settings file to control workflow160

analyses and model runs. The database records the site, date, management, species, and161

treatment information for each trait observation used in the meta-analysis. Settings162

related to the experimental design and computation are set and recorded in a separate file163

for each analysis.164

The PEcAn source code, as well as the inputs and output used in the analysis described165

below (see Application) are provided as an appendix. However, new users are encouraged166

to utilize the latest release available on the project web site (www.pecanproject.org).167

This site also provides a virtual machine and a web-interface that minimize the effort168

required to run PEcAn and begin using an ecosystem model. The PEcAn “virtual169

machine” provides all of the required software dependencies in a pre-configured desktop170

environment that can be run on any standard operating system using a freely available171
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virtualization software such as VirtualBox (www.virtualbox.org/) or VmWare Player172

(www.vmware.com). The virtual machine minimizes the installation time and173

pre-requisite knowledge required to perform analyses, and can be used to support174

investigation, development, and education. The web interface is even easier to use, but175

does not provide access to all of PEcAn’s functionality.176

The PEcAn software is primarily written in R and developed in a Linux environment. It177

also relies on a MySQL database, bash, JAGS, and specialized R packages. PEcAn has a178

family of model-specific functions that manage the details of launching of model runs and179

reading model output.180

Although PEcAn does not depend on any specific model, it was developed to support181

ecosystem models that run in high-performance computing environments; for this reason,182

it is capable of running models locally, remotely, or through queuing systems regardless of183

whether PEcAn is compiled locally or run as a virtual machine. The PEcAn 1.1 release184

described herein runs with the Ecosystem Demography model, however the current (at185

time of publication) 1.3 release supports SIPNET (Moore et al., 2008). Near term186

support for IBIS (Kucharik et al., 2000), DayCent (Parton et al., 1998), and BioCro187

(Miguez et al., 2009) is under development.188

Trait Database189

Model parameters are associated with corresponding prior distributions, and in many190

cases, with species-level data. Both prior distributions and data are stored in a relational191

database (Appendix B). PEcAn directly accesses the database, which contains additional192

meta-data for each data set, including site descriptions, measurement conditions,193

experimental details, and citations.194
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Trait Priors195

A fundamental component of the Bayesian approach to parameter estimation is the use of196

priors. Priors formally incorporate knowledge of a parameter based on previous studies197

into a new analysis. In the current study, we leverage previously collected data from198

non-target species to place biologically informed constraint on the distribution of a plant199

trait parameter. When additional data for a specific species or plant functional type is200

available, priors are further constrained before being used as model parameters. When no201

additional data are available, these priors are used directly to parameterize the model.202

For the P. virgatum example described below, priors were set using data from all plant203

species, from only grass species, or from just C4 grass species depending on availabile204

data. Sources of this prior information included data from previous and ad-hoc syntheses,205

expert knowledge, and biophysical constraints (Table 1).206

Prior distributions used in the meta-analysis were fit to one of four types of information:207

1) data from multiple species, 2) the posterior predictive distribution for a new species208

from a meta-analysis of data (when error estimates were available), 3) a central tendency209

informed by data with expert constraint on the confidence interval, or 4) expert210

constraints on both the central tendency and confidence intervals. In case number 2, the211

across-species meta-analysis “posterior” informs the prior for the species-level212

meta-analysis. In all cases, maximum likelihood estimation was used to fit a prior213

distribution. When more than one candidate distribution was considered, Aikake’s214

Information Criterion (AIC) was used to select the best fit distribution. The choice of215

prior was confirmed by visually inspecting the prior density functions overlain by data or216

expert constraints (Figure 2).217
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Meta-analysis218

A Hierarchical Bayes meta-analytical model (Figure 3) formally synthesizes available trait219

data from multiple studies while accounting for various sources of uncertainty. This220

Hierarchical Bayes approach integrates prior information and provides a flexible approach221

to variance partitioning and parameter estimation.222

The meta-analytical framework is useful for summarizing data sets that include summary223

statistics. The trait data queried by PEcAn consist of a trait name, sample mean, sample224

size, and a sample error statistic. PEcAn transforms error statistics to exact or225

conservative (i.e., erring toward inflating the variance) estimates of precision (τ = 1/SE2)226

(Appendix C).227

The sample mean is drawn from a normal distribution:228

Yk ∼ N(Θk, τk) (1)

Where Yk is the sample mean of the kth unique site by treatment combination (sample229

unit), Θk is the unobserved ’true’ value of the trait for the kth sample unit.230

The meta-analysis partitions trait variability into among site, among treatment, and231

within-unit variance. The unobserved ’true’ trait mean Θk is a linear function of the232

global trait mean, β0 plus random effects for study site (βsitej) and treatment (βtr|siteij)233

and a fixed effect for greenhouse (βgh):234

Θk = β0 + βsitei + βtr|siteij + βghI(i) (2)

Where i indexes study site, j indexes each treatment within a study, and I(i) is an235

indicator variable set to 0 for field studies and 1 for studies conducted in a greenhouse,236

growth chamber, or pot experiment. The parameter used in the ecosystem model is the237

posterior estimate of the global mean trait value, β0. β0, has an informed prior functional238
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form and parameter specification that varies by trait and species or PFT. Methods used239

to elicit priors for the present study are provided in the Application section under Priors.240

The “site” random effects (βsite), accounts for the spatial (among-site) heterogeneity of a241

parameter. The “treatment” random effect (βtr|site) accommodates differences among242

experimental treatments. These random effects of treatment and site are assumed to be243

Normally distributed with zero mean and they have diffuse Gamma priors on precision244

τsite and τtr. Control treatments and observational studies have βtr|site = 0. PEcAn245

dynamically adjusts the meta-analysis model specification to include terms for each level246

of site and treatment, or greenhouse studies as required by available data. To ensure that247

the prior on precision remains sufficiently diffuse when the magnitude of a parameter is248

small, the scale parameters in the gamma priors on random effect precision terms (τsite249

and τtr|site) are scaled to (β̄0
2
/1000) when the prior on β0 has a mean β̄0 <

√
10.250

A “greenhouse” fixed effect βgh accounts for potential biases associated with plants grown251

in a greenhouse, growth chamber, pot, or other controlled environment. This “greenhouse”252

effect, βgh, has a diffuse Normal prior with a mean of zero and a precision of 0.01.253

The observation precision (precision = 1/variance) for the kth sample mean, τk, is254

determined based on the within-unit precision, τY , and the sample size, n, as τk = n× τY255

(since SE = SD/
√
n). A common within sample unit precision, τY , is assumed in order256

to accommodate literature values with missing sample sizes or variance estimates. The257

sample standard error, sek, is drawn from a Gamma distribution with parameters258

informed by the sample size, n, and within-site precision, τY :259

1

n× se2k
∼ Gamma(

n

2
,
n

2τY
) (3)

τY has a diffuse gamma prior. Unlike the mean and variance parameters, missing values260

of n cannot be estimated and are conservatively set either to 2 (when existence of a261
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variance estimate indicates n ≥ 2) or to 1 (if no variance estimate is given).262

The random and fixed effects and the among study, among treatment, and within-unit263

precisions are used to evaluate the importance of different sources of uncertainty.264

The meta-analysis module in PEcAn is fit using JAGS software (version 2.2.0, (Plummer,265

2010)) called from within R code that handles data manipulations and meta-analysis266

model specification in JAGS. JAGS uses standard Markov Chain Monte Carlo (MCMC)267

methods (Gelman and Rubin, 1992) to approximate the posterior distribution of the268

terms in the meta-analysis. To overdisperse the n MCMC chains, initial values of β0 are269

set to the 1
n+1

, · · · , n
n+1

quantiles of the prior on β0; for the default n = 4 chains, this270

would be the {0.2, 0.4, 0.6, 0.8} quantiles. Following Gelman and Shirley (2011), PEcAn271

discards the first half of each chain, thins each chain to 5000 samples and then combines272

the chains into a single vector of samples for each term in the meta-analysis model. Trace273

plots and the Gelman-Rubin convergence diagnostic (Gelman and Rubin, 1992) are used274

to assess chain convergence. Density plots (Figure 4) are used to visually compare the β0275

chain to data and priors. The significance of the greenhouse effect is evaluated by276

calculating a two-sided probability that βgh 6= 0.277

When species-level data are unavailable, the posterior distributions are equivalent to the278

priors.279

Each term in the meta-analysis is represented as a vector of MCMC samples from the280

posterior distribution. Statistical summaries of the parameters can easily be calculated281

from these chains, and chains can also be directly sampled for use in ecosystem model282

parameterization. When the β0 chains are sampled for the ecosystem model ensemble,283

the meta-analysis posteriors become the model ensemble priors.284
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Model Analysis285

Ensemble Analysis286

Typically, ecosystem models are run for a single model parameterization. For example,287

the model could be evaluated at the median value of each parameter. However, this288

approach only provides a point estimate with no accounting for parameter uncertainty.289

To propagate parameter uncertainty through the ecosystem model, PEcAn uses standard290

ensemble-based Monte Carlo approaches. An ensemble of model runs is a set (e.g. 500 or291

1000) of model runs that are parameterized by sampling from the trait parameter292

distributions. For each ensemble member, parameter sets are sampled from the full joint293

parameter distribution of β0, the vector of all model parameters. As a result, the model294

ensemble approximates the posterior distribution of the ecosystem model output. The295

model ensemble produces a posterior distribution of the ecosystem model output that can296

be summarized with standard statistics (e.g. mean, standard error, and credible interval).297

Sensitivity Analysis298

Sensitivity analyses are used to understand how much a change in a model parameter299

affects model output; sensitivity is the derivative, df/dβ0t, of the model (f) with respect300

to the estimate of β0 for trait t. PEcAn approximates the sensitivities based on univariate301

perturbations of model parameters. These approximations are necessary because302

analytical solutions for sensitivity are not tractable for most ecosystem models, and303

PEcAn is designed to be flexible and applicable to any such model. One disadvantage of304

traditional perturbation-based sensitivity analyses is that the perturbations are usually305

arbitrary, for example varying each parameter by a fixed percentage of its value306

(Larocque et al., 2008) rather than over a meaningful range of the parameter. These307

traditional approaches make interpretation of sensitivities difficult because they fail to308
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acknowledge the distribution or uncertainty of each parameter. In this regard, PEcAn309

offers a distinct advantage over traditional sensitivity analyses because parameters are310

varied based on the meta-analysis posterior parameter distributions.311

Based on initial exploratory analyses, we found a local perturbation to be inadequate for312

capturing the responses in most parameters so we instead estimate sensitivities using a313

global univariate sensitivity analysis. By default, PEcAn evaluates each parameter at the314

posterior median and at the six posterior quantiles equivalent to ±[1, 2, 3]σ in the315

standard normal while holding all other variables constant at their posterior median. The316

relationship between model output and each model parameter β0t is then approximated317

by a natural cubic spline gt(β0t) that interpolates through the evaluation points. The318

model sensitivity to each parameter is approximated by the derivative of the spline319

(dgt/dβ0t) at the parameter mean. In addition to the sensitivity analysis, this set of320

spline approximations is used in the variance decomposition, in partitioning residual321

variance, and in evaluating the effect of ensemble size on the estimate of model variance.322

To facilitate comparisons among the trait sensitivities, despite differences in the units on323

different traits, we tabulate the coefficient of variation (normalized parameter variance)324

and the elasticity (sensitivity with terms df and dβ0t standardized by the mean model325

output and parameter mean respectively).326

Variance Decomposition327

Variance decomposition aims to explain how much each input parameter contributes to328

uncertainty in model output (Cariboni et al., 2007). Although the present analysis329

focuses on model parameters, these methods can be extended to address uncertainty in330

initial conditions or model drivers.331

The Delta Method uses Taylor series expansion to approximate the probability332

distribution of a continuous function of random variables (Oehlert, 1992; pp. 240–245 in333
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Casella and Berger, 2001). In this study, the model output f(β0) is a function of a vector334

of the full set of parameters. After approximating the distribution of f(β0), it is possible335

to estimate the variance of the model output. The first step is to derive the Taylor series336

approximation of the variance of a function (Casella and Berger, 2001, equation 5.5.9 in):337

V ar(f(β0)) ≈
m∑
t=1

V ar

(
f(β0t) +

df

dβ0t

(β0t − β0t) + . . .

)
(4)

=
m∑
t=1

(
df

dβ0t

)2

V ar(β0t) + ω (5)

where m is the number of parameters in the model, and the error term ω accounts for338

higher order terms in the Taylor series, and β0t is the estimate of β0 from the339

meta-analysis (equation 2) for each trait, t.340

With this approximation, it is straightforward to estimate the variance contributed by341

each parameter. The terms in this form of the variance decomposition can be estimated342

directly from the preceding analyses: V ar(f(β0)) is the variance of the model ensemble;343

V ar(β0t) is the posterior variance of trait β0t from the meta-analysis (equation 2); and344

df/dβ0t is the model sensitivity at the parameter mean β0t. The resulting assertion is345

that the variance of model output is equal to the sum over the variance of each trait346

times its sensitivity squared plus a closure term, ω.347

We found that the traditional Taylor polynomial approach to variance decomposition348

produced a poor closure of the total variance of the model output: for more sensitive349

parameters, a linear approximation of f(β0) provided unrealistic estimates of the350

sensitivity function that overestimated variance. Increasing the order of the Taylor series351

expansion actually exacerbated this problem (results not shown). One problem with the352

polynomial approximation is that, unlike polynomials, most response variables in353

ecosystems and ecosystem models tend to be asymptotic at both high and low values of a354

trait. For example, when assessing aboveground biomass there is a lower bound of zero355
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biomass and most parameters become progressively less sensitive, if not genuinely356

asymptotic, at their upper bound. This asymptotic behavior is poorly approximated by a357

polynomial because polynomials are unbounded at extreme parameter values. Therefore,358

we sought a better approximation for the variance decomposition.359

First, we formulated a more generalized form of the variance decomposition (equation 4):360

V ar(f(β0)) =
m∑
t=1

V ar(gt(β0t)) + ω (6)

The spline gt(β0t) is a statistical emulator of the model response to trait t that361

transforms β0t from the parameter domain to the model domain. The univariate362

contribution of each parameter to variance of the model output is thus V ar(gt(β0t)).363

Equation 6) only requires β0t from the preceding meta-analysis, gt(β0t) from the364

sensitivity analysis, and V ar(f(β0)) from the ensemble analysis.365

The final term, ω, is the closure between the right hand side and the left hand side of the366

variance decomposition; ω represents the effects of the higher order terms in the Taylor367

approximation and the covariance terms between parameters. This closure term is368

intended to represent parameter interactions that are excluded from the univariate369

variance decomposition (equation 6). Negative trade-offs among physiological traits370

would result in ω less than zero. However, our estimate of ω also includes errors371

associated with using finite sample sizes, the spline approximation in each gt(β0t), and372

biological range restrictions on model output that are not reflected in the variance373

decomposition (equation 6).374

One approach to partition the error in the closure term is to use the univariate spline375

functions from the sensitivity analysis to estimate what the model output would be for376

each of the parameter sets used in the model ensemble; we call this estimate the “spline377
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ensemble”:378

g`(β0) = g(β̂0) +
m∑
t=1

(
gt(β0t`)− gt(β̂0t)

)
(7)

In this equation, g`(β0) is the spline estimate of the model output for the `th ensemble379

member and β̂0t is the posterior median parameter value.380

Although the individual splines may respect range restrictions on output variables (e.g.381

biomass values cannot fall below zero), combinations of the splines evaluated for a set of382

unfavorable traits can fall outside these ranges. For parameter sets that give a383

biologically implausible estimate of negative biomass (g`(β0) < 0), the estimate is set to384

zero. The only difference between the variance of the spline ensemble (equation 7) and385

the variance decomposition (equation 6) is that range restrictions are not corrected for in386

the variance decomposition. Therefore, the spline ensemble allows us to estimate the387

effect of using combinations of spline estimates that do not respect the zero bound on388

biomass in the variance decomposition. The difference between the model ensemble and389

the spline ensemble provides an estimate of parameter interactions in the model because390

the spline ensemble does not include the parameter interactions that exist in the model.391

The precision of the estimate of model ensemble variance is affected by the number of392

runs in the ensemble. When the computational expense of the model itself limits the393

ensemble size, there can be significant uncertainty in the estimate of ensemble variance.394

The uncertainty in a sample variance is estimated as395

V ar(s2) =
1

n

(
µ4 −

n− 3

n− 1
σ4

)
(8)

(Mood et al., 1974, , p 239) where µ4 is the fourth central moment. V ar(s2) scales396

inversely with sample size. The effect of the limited model ensemble size on uncertainty397

in the estimate of ensemble variance is measured in two ways. The first way is to398

calculate V ar(s2) for the model ensemble (n = 500). The second way is to compare399
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V ar(s2) of the spline ensemble with 500 and 10, 000 runs. The 95%CI for s2 is calculated400

as s2 ± 1.96ss2 where ss2 =
√
V ar(s2).401

The errors introduced from using a spline approximation of the model response can not402

be estimated based on the existing output, but it is small in comparison to the other403

effects given the range restrictions imposed by the spline interpolation.404

The results of a model ensemble are posterior estimates of aboveground biomass.405

However, we also distinguish between ensembles depending on the nature of model406

parameters. First, we ran a “prior model ensemble” using an ensemble of parameter sets407

drawn from prior distributions, and then a “posterior model ensemble” drawn from408

meta-analysis posteriors.409

Application: Switchgrass Monoculture410

We demonstrate the application of PEcAn to estimate the aboveground yield of an411

experimental switchgrass (Panicum virgatum) monoculture. The first step to applying412

PEcAn was to construct an appropriate set of priors based on data syntheses and expert413

knowledge. These priors were conservative estimates of the plant trait parameters based414

on information other than species level data. Next, switchgrass trait data from both415

previous studies and field measurements were summarized using meta-analysis to416

constrain the prior parameter estimates. The Ecosystem Demography model version 2.1,417

(Medvigy et al., 2009; Moorcroft et al., 2001) was used to simulate plant growth.418

The model ensemble and sensitivity analysis were performed using both the prior and419

posterior parameter estimates. By comparing the prior model ensemble to the posterior420

model ensemble, we are able to evaluate the ability of species level data to reduce model421

uncertainty.422

To evaluate model performance, we compare the ensemble estimates of aboveground423
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biomass with observed yields (Heaton et al., 2008; Wang et al., 2010, Figure 5).424

Site425

Switchgrass (Panicum virgatum) is a perennial grass native to North America that has426

received attention as a potential cellulosic biofuel crop (McLaughlin and Kszos, 2005;427

Wang et al., 2010). We modeled the aboveground biomass production of a switchgrass428

monoculture and compared model estimates to a monoculture planted in 2002 at the429

University of Illinois Agricultural Research and Education Center in Urbana, IL430

(40.09 N, 88.2 W). The climate at this site is characterized by hot, humid summers and431

cold winters with a 50 year (1959-2009) mean annual temperature of 11 ◦C and mean432

annual precipitation of 1000 mm yr−1 (Angel, 2010). Meteorological data used to drive433

the model were downloaded from the North American Regional Reanalysis (Mesinger434

et al., 2006). Soil is a silt loam from the Drummer-Flanagan soil series; texture data was435

obtained through the USDA NRCS web soil survey website (websoilsurvey.nrcs.usda.gov).436

The yield and other aspects of this ecosystem have previously been reported (Heaton437

et al., 2008).438

Ecosystem Demography Model439

We used the Ecosystem Demography Model, version 2 to model the productivity and soil440

carbon pools in this switchgrass agro-ecosystem. ED2 is a terrestrial biosphere model441

that couples age- and stage-structured plant community dynamics with ecophysiological442

and biogeochemical models. The biophysical land-surface model in ED2 allows plant443

uptake and growth to respond dynamically to changes in weather and soil hydrology444

(Medvigy et al., 2009). ED2 has the ability to link short-term, physiological responses to445

environmental conditions with realistic, long-term successional changes in ecosystem446

structure and composition (Moorcroft et al., 2001). While other models have both447
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succession and physiology, ED2 also has explicit spatial scaling, a sub-daily time-step,448

and the ability to couple with to a land surface model (Dietze and Latimer, 2011).449

ED2 incorporates a mechanistic description of plant growth that accounts for the fast450

temporal responses of plants to changes in environmental conditions. In this study, we451

vary fifteen model parameters based on observable plant traits that control carbon452

uptake, carbon allocation, turnover, and reproduction (Table 1, Figures 2, 4).453

ED2 calculates photosynthetic rates using the enzyme kinetic model developed for C3454

plants (Farquhar and Sharkey, 1982; Ball et al., 1987) and the modifications for C4455

(Collatz et al., 1992). Vc,max sets the upper bound on the rate of Rubisco-limited456

photosynthesis, while light limited photosynthesis is constrained by the quantum457

efficiency parameter, and a threshold parameter controls the minimum temperature at458

which photosynthesis will occur. Stomatal conductance is calculated using the Leuning459

variant of the Ball-Berry model (Leuning, 1995) and is controlled by the stomatal slope460

parameter. Leaf boundary layer conductance depends on the leaf width parameter.461

Together, stomatal conductance and leaf boundary layer conductance affect carbon and462

moisture fluxes and the leaf energy balance. Specific leaf area (SLA) determines the463

amount of leaf area produced per unit leaf biomass investment.464

In addition to photosynthesis, ED2 also accounts for carbon allocation to growth,465

respiration, and for the turnover rate of carbon pools. These parameters include: one to466

partition between leaf and fine root growth; one for allocation to reproduction; two467

respiration parameters associated with growth respiration and root maintenance468

respiration; and two parameters to control the rates of leaf and root turnover.469

Finally, three demographic parameters control seed dispersal, seedling mortality, and470

adult mortality due to carbon limitation (Table 1).471
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Priors472

Priors from data473

Priors were estimated by finding the best fit distribution to raw data sets include SLA474

and leaf turnover rate from the GLOPNET database (Wright et al. (2004), n = 125, 40475

respectively), root turnover rate (Gill and Jackson (2000), n = 66), and quantum yield476

(Skillman (2008), n = 56). Candidate distributions for these priors were Gamma,477

Weibull, log-Normal, and F because each of these traits is bound at zero. In all cases we478

are interested in using the full distribution of across-species data as our prior constraint479

on what one individual species is capable of doing, as opposed to using the estimate of480

the mean of this distribution as our prior.481

Quantum yield data represent a survey of published values of quantum yield in C4482

monocots (Skillman, 2008); original data were provided by the author and restricted to483

measurements made under photorespiratory conditions (ambient CO2 and O2) (J.484

Skillman, personal communication). Given the narrow range of data (CV = 11%), the485

normal distribution was also considered but was not the best fit.486

Priors from meta-analysis487

We used meta-analysis to calculate a prior from data when summary statistics and488

sample sizes were available. The meta-analysis model used to calculate prior distributions489

is similar to the one used by PEcAn to summarize species-level data (equation 2), with490

three differences. First, there are no site, treatment, or greenhouse effects. Second, data491

from multiple species were used. Third, we generated a posterior predictive distribution492

to predict the distribution of trait values for an unobserved C4 plant species, unlike the493

species-level meta-analysis, which estimated the global mean parameter value. Thus, the494

model included plant functional type (PFT) as a random effect:495
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Θspecies = β0 + βPFT (9)

Stomatal slope is the empirical slope coefficient in the (Leuning, 1995) model of stomatal496

conductance. Estimates of this parameter are sparse, so we collected new data for this497

study. Stomatal slope was estimated using measurements of four leaves from each of five498

field-grown energy crop species during the 2010 growing season (Appendix A). The five499

species included two C4 grasses: Miscanthus (Miscanthus x giganteus) and Switchgrass500

(P virgatum) planted in 2008 and three deciduous tree species: Red Maple501

(Acer rubrum), Eastern Cottonwood (Populus deltoides, and Sherburne Willow502

Salix x Sherburne) planted in 2010 as 2 year old saplings. All plants were grown at the503

Energy Biosciences Institute Energy Farm (40o10’N, 88o03”W). We used the data from504

the three tree species and Miscanthus to calculate the posterior predictive distribution of505

an unobserved C4 grass species, and used this distribution as the prior estimate for506

Switchgrass stomatal slope.507

Maximal carboxylation rate (Vcmax) data consists of ninety-four C3 species (Wullschleger,508

1993) plus three C4 species (Kubien and Sage, 2004; Massad et al., 2007; Wang et al.,509

2011). To express Vcmax at a common temperature of 25oC for all species, we applied an510

Arrhenius temperature correction (Appendix C). The Wullschleger (1993) data set511

included a 95% CI and an asymptotic error calculated by the SAS nlin proceedure (Stan512

Wullschleger, personal communication). We used the asymptotic error as an estimate of513

SE, the 95% CI to estimate SD
(

SD =
1
2
CI

1.96

)
, and then estimated n as n̂ =

(
SE
SD

)2
. Plant514

species were classified into five functional types: C3 grass, C4 grass, forb, woody515

non-gymnosperm, and gymnosperm based on species records in the USDA PLANTS516

Database (USDA and NRCS, 2011). Ambiguous species (those with both forb and woody517

growth forms, n = 15) were excluded.518
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Leaf width data represent 18 grass species grown in a common garden greenhouse519

experiment (Oyarzabal et al., 2008). P. virgatum was among the 18 species, and was520

excluded from the prior estimation but used as raw data in the meta-analysis. The521

remaining seventeen species were divided into C3 and C4 functional types. Relative to522

the small sample of C4 grasses, switchgrass leaf width was an outlier; inflating the523

variance four-fold reduced the prior information content to account for this descrepency.524

Root respiration rate values were measured on thirty-six plants representing five525

functional types, including six C4 grass species (Tjoelker et al., 2005). As before, P.526

virgatum data was excluded from the prior estimation and used as raw data in the527

species-level meta-analysis.528

Priors from limited data and expert knowledge529

When available data were limited to a few observations, these were used to identify a530

central tendency such as the mean, median, or mode, while expert knowledge was used to531

estimate the range of a confidence interval. An optimization approach was used to fit a532

probability distribution to this combination of data and expert constraint.533

In order to estimate the fine root to leaf ratio for grasses, we assume fine roots account534

for all belowground biomass (Jackson et al., 1997) and that leaves account for all above535

ground biomass. Roots account for approximately 2/3 of total biomass across temperate536

grassland biomes (Saugier et al., 2001, Table 23.1), so we constrained a beta prior on the537

root fraction to have a mean of 2/3 by setting α = β/2 since the mean of a beta is538

defined as α
α+β

. To convert from proportion to ratio, we used the identity: if539

X ∼ Beta(α
2
, β
2
) then X

1−X ∼ F(α, β)× α
β
. We constrained the 95%CI = [1/3,

10 /11],540

equivalent to a fine root to leaf ratio with a mean fixed at two and a 95%CI = [1/2, 10].541

We simulated the distribution of the fine root to leaf ratio by drawing 10000 samples542

from a F(2α, α) distribution and multiplying these samples by two.543
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Seed dispersal in ED2 represents the proportion of seed dispersed outside of a 7.5m radius544

plot, which we approximate as a beta distribution. Although no direct measurements of545

seed dispersal were available, it was straightforward to parametrize a ballistic model of546

seed dispersal (Ernst et al. (1992), from Creemer 1977): D = VwH
Vt

. This model relates547

dispersal distance D to terminal velocity Vt, wind speed Vw, and seed height H. Although548

more sophisticated treatments of dispersal exist and are important for estimating low549

probability long distance dispersal events (Clark et al., 1999; Thompson and Katul,550

2008), the Ernst et al. (1992) model is sufficient for relatively short dispersal distances551

required in the present context.552

Values of terminal velocity, Vt, of grass seeds were taken from two references, (Ernst553

et al., 1992; Jongejans and Schippers, 1999) and these data were best described as554

Vt ∼ Gamma(2.93, 1.61).555

Next the heights from which the seeds are dropped was estimated from calibrated556

photographs of reproductively mature switchgrass at a field site in Urbana, IL:557

H ∼ N(2, 0.5). Finally, wind speed observed at the site were fit to a Weibull distribution558

(Justus et al., 1978). Vw ∼Weibull(2.4, 0.712) (Marcelo Zeri, unpublished wind and559

height data). Given these distributions of Vw, H, and Vt, sets of 100 dispersal distances560

were simulated 10000 times to calculate the fraction of seeds in each simulation dispersed561

beyond 7.5m,562

Priors informed by expert knowledge563

When no data were available, expert knowledge was used to estimate the central564

tendency and confidence interval for a trait parameter. Again, optimization was used to565

fit a probability distribution to these constraints.566

The minimum temperature of photosynthesis for C4 grasses was given a prior based on567

expert knowledge with a mean of 10oC and a 95%CI = [8, 12]oC that fits a normal568
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(µ = 10, σ = 1.02) distribution (Don Ort, UIUC, personal communication, 2010).569

The growth respiration factor is the proportion of daily carbon gain lost to growth570

respiration. Because it is a proportion, the beta distribution was fit with a mean set571

equal to the ED2 default parameter value, 0.33 and a 95%CI = [0.05, 0.60], conservatively572

based on the range of construction costs reviewed by Amthor (2000).573

Seedling mortality factor represents the proportion of carbon allocated to reproduction574

that goes directly to the litter pool. Given the default ED2 parameter is 0.95, we stated a575

beta prior with a median at 0.95, and a 95%CI = [2/3, 1].576

The mortality factor in ED2 is the rate parameter in the negative exponential577

relationship between carbon balance and mortality (Medvigy et al., 2009). The default578

parameter for all plant functional types (PFT’s) in ED2 is 20, and our weakly informed579

gamma prior sets this as the median and gives a 95%CI = [5, 80].580

Reproductive allocation represents the proportion of carbon in the storage pool allocated581

to reproduction. This parameter is a proportion and has a default value of 0.33 in ED.582

The Beta(2, 4) distribution has a mean of 1/3 and a 95%CI = [0.05, 0.72] representing583

relatively high uncertainty. This distribution implies that the plant may allocate any584

fraction of the carbon pool to reproduction between but not equal to 0 and 1 and has an585

80% probability that less than half of the carbon pool will be allocated to reproduction.586

Switchgrass Trait Meta-analysis587

Switchgrass trait data used to constrain model parameters are stored in the Biofuel588

Ecophysiological Trait and Yield database (BETYdb, www.betydb.org), a database589

designed to support research on biofuel crops. BETYdb includes both previously590

published and primary data (Appendix A). Prior to entry in the database, data were591

converted to standard units chosen for each variable (Table 1).592

Trait data available for Panicum virgatum include Vcmax, SLA, leaf width, fine root to593
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leaf ratio, root respiration, stomatal slope, and root turnover rate (Figure 4, Table 2).594

Methods used to collect these data and site descriptions are available in the source595

references (Appendix A). Each meta-analysis was run with four 50,000 step MCMC596

chains.597

Model Analysis598

We executed a ten-year, 500 run ensemble of ED2 using parameter values drawn from the599

prior or posterior parameter distributions. The model was run for the years 1995-2006 to600

simulate the field trials conducted by Heaton et al. (2008). The model output of interest601

was the December mean aboveground biomass (AGB) during the years 2004–2006,602

simulating the yields of the mature stand (Heaton et al., 2008). The ensemble estimate603

was also compared to the larger set of all reported switchgrass yield data (Wang et al.,604

2010).605

Runs resulting in yields less than 2 Mg/ha were considered non-viable parameter606

combinations. To test if prior and posterior parameter sets resulted in different fractions607

of non-viable runs, we estimated the posterior probability of a non-viable run as a608

binomial posterior from a beta-binomial model with a flat (Beta(1, 1)) prior. Then, we609

calculated the two-tailed probability that the difference between these binomial posteriors610

was 6= 0.611

Results612

Trait Meta-analysis613

Switchgrass data were collected from the literature and field for seven of the model614

parameters: specific leaf area (SLA) (n = 24), leaf width (39), Vcmax (4), fine root to leaf615

allocation ratio (4), stomatal slope (4), root respiration rate (1), and root turnover rate616
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(1). Table 2 summarizes the meta-analysis for each of these parameters, including the617

posterior mean and 95% CI of the global mean, the fixed greenhouse effect, and each of618

the variance components (reported as standard deviations).619

SLA and leaf width data were from from multiple sites, but the meta-analysis provided620

no evidence for among site variability in excess of within site variability (σY and σsite,621

respectively, in Table 2). For the remaining traits, there was insufficient spatial sampling622

to assess site to site variability. Greenhouse growing conditions had a positive effect on623

both SLA (P = 0.027), and leaf width (P = 0.052).624

Figure 4 compares parameters before and after incorporating data in the meta-analysis.625

A reduction in parameter uncertainty is seen as the reduction in the spread of the626

posterior (black) compared to the prior (grey) parameter distributions. The influence of627

the prior information on the posterior distribution increased when the prior was more628

constrained or when less data were available for use in the meta-analysis. For example,629

data substantially constrained the uncertainty in the Vcmax and SLA posteriors relative to630

the priors. By contrast, there was little effect of additional data on the parameter631

estimates for fine root to leaf allocation and root respiration rate; these parameters had632

relatively well constrained priors and limited species-specific data.633

Model Analysis634

Ensemble635

Within the model ensemble analysis (Figure 5), both the prior and posterior636

parameterizations produced yield estimates that were consistent with yields observed at637

the Urbana site for which the model was run (Heaton et al., 2008) and with 1902638

previously reported yields of switchgrass (Wang et al., 2010). In both the prior and639

posterior ensembles, the predicted aboveground biomass was clearly bimodal. These two640
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modes had little overlap and a distinct break at two Mg/ha. We infered that the first641

peak represents non-viable plants generated by unrealistic parameter sets so plants with642

aboveground biomass less than two Mg/ha were considered “non-viable”. When643

summarizing the model output, we consider viable and non-viable ensemble members644

separately; all runs are considered in the senstivity analysis and variance decomposition.645

A greater percentage of runs in the prior ensemble fell below this threshold (53.4 vs 36.6,646

P ' 0).647

Compared to the prior ensemble prediction, the data-constrained posterior runs had lower648

median yields and a more constrained 95% credible interval (16.5[7.2, 37] Mg/ha vs649

25[7.7, 56] Mg/ha). This reflects the substantial shrinkage of the posterior relative to the650

prior SD estimates of model output uncertainty (from σ = 19.7 to σ = 11.9). In651

particular, the upper tail of the modeled yield was reduced toward the observed yields.652

Despite the reduction in ensemble uncertainty, the ensemble posterior yield was still653

relatively imprecise and had much greater uncertainty than the field trial (Heaton et al.,654

2008, σ = 4.1) or the meta-analysis of all observations (Wang et al., 2010, (σ = 5.4)).655

The spline ensemble viable plants had a median 18.7[2.8, 48] and σ = 12.656

Sensitivity Analysis657

Sensitivity analysis demonstrated that traits varied in their effect on on aboveground658

biomass (Figure 6), and many of these relationships are clearly non-polynomial. For659

example, parameters associated with photosynthesis and carbon allocation - including660

Vcmax, SLA, growth respiration, and root allocation - were particularly sensitive. For661

particularly sensitive parameters, the sensitivity functions had coverage of unrealistic662

yields greater than 30 Mg/ha. Constraining SLA and Vcmax parameters with data663

resulted in a more realistic range of yields. On the other hand, aboveground biomass was664

largely insensitive to leaf width, seed dispersal, and mortality rate.665
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Variance Decomposition666

The variance decomposition showed that data-constrained parameters substantially667

reduced their contribution to overall model variance (Figure 7). Prior to including668

species-specific trait data, SLA contributed the most to model uncertainty, followed by669

growth respiration, fine root allocation, Vcmax, seedling mortality, and stomatal slope670

(right panel, grey bars Figure 7). Incorporating species level data substantially reduced671

the contributions of SLA, Vcmax, seedling mortality, and stomatal slope to model672

uncertainty. For example, SLA fell from first to fourth and stomatal slope fell from sixth673

to fourteenth in rank contribution to ensemble variance. Although the addition of data674

reduced parameter uncertainty for fine root to leaf allocation, aboveground biomass was675

more sensitive to this parameter at the posterior median. These changes cancelled each676

other out, and as a result the contribution of the fine root allocation parameter to677

ensemble variance remained constant.678

The variance of the ensemble was less than the variance calculated in the variance679

decomposition, and this difference is the closure term, ω. The closure term accounted for680

approximately 22.8% of the variance decomposition estimate (Table 3). There was no681

effect of increasing the sample size from 500 to 10000 on the variance estimates.682

Discussion683

Switchgrass Trait Meta-analysis684

When species-level data were available, the meta-analysis constrained estimates of the685

trait mean parameter (Figure 4) and provided insight into the sources of parameter686

uncertainty (Table 2). In the context of constraining model parameters, we were687

interested in accounting for but not directly investigating the specific effects of site,688
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treatment, or greenhouse effects. However, we can use the meta analysis results to689

identify sources and scales of parameter variability. This insight into parameter690

variability helps inform future sampling designs, development of the ecosystem model,691

and improvement of methods used to parametrize the ecosystem model.692

Where data from multiple sites were available, we could evaluate the relative importance693

of within versus among-site variance for the range of sites represented in the data694

(Table 2). Recent studies demonstrate important effects of intraspecific trait variability695

on ecosystem functioning (Breza et al., 2012; Albert et al., 2011; Violle et al., 2012).696

Therefore, for traits that do exhibit greater variability across than within sites, explicit697

inclusion of spatial, environmental, and even genetic information into the meta-analytical698

model would be justified. This approach would enable the estimation of site-specific699

parameters for use in the ecosystem model and will be investigated in future development700

of the meta-analysis module.701

For the other parameters (Vcmax, fine root allocation, root respiration rate, and root702

turnover rate) data came from one site, so it is not possible to estimate the across-site703

variability. For these traits, obtaining data from additional sites would better constrain704

both the global mean and the across-site variance. This additional data collection is705

particularly justified for traits that contribute most to the uncertainty in the model706

ensemble.707

Model Ensemble708

Despite the large reduction in model uncertainty from the prior to the posterior model709

ensemble, the uncertainty in projected yield is substantial (Figure 5) and further710

constraint would increase the utility of this model output. However, the explicit711

accounting of parameter uncertainty is an important first step toward producing more712

informative model output. If model parameters had been treated as fixed constants, we713
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would have no estimate of model uncertainty; without an estimate of uncertainty, the714

similarity between the modeled (16.5 Mg/ha) and observed (12.0 Mg/ha) median yields715

would be difficult to interpret; a naive interpretation could create false confidence in the716

model. Including the non-viable plants would have made the model mean more accurate717

(Figure 5), but the 90%CI would have been less accurate, containing the possibility that718

switchgrass would not grow in Champaign County, Illinois, even though extensive719

research (Heaton et al., 2008; VanLoocke et al., 2012, personal observation) demonstrates720

that it does grow very well in this area.721

The reduction in median modeled yield in the posterior relative to the prior model722

ensemble 5 is consistent with the reduced probability of high SLA and Vcmax values in the723

posterior relative to the prior distributions. As expected, the use of switchgrass trait data724

to inform model parameters succeeded in both reducing total uncertainty and bringing725

modeled yield in line with observations of switchgrass yields both at this site (Heaton726

et al., 2008) and globally (Wang et al., 2010). Reducing uncertainty in model outputs, in727

this case yield, is key to increasing the value of ecological forecasts (Clark et al., 2001).728

While reducing uncertainty does not necessarily increase model accuracy, an estimate of729

model uncertainty is a first step toward generating meaningful statistical inference from730

the model itself. Without an estimate of model uncertainty, it is not possible to make731

such a basic inference as the probability that the model predictions overlap with observed732

data; this limits the capacity of models to inform research and applied problems (Clark733

et al., 2001). Instead, comparisons of ecosystem models with observations have focused734

on differences and correlations between model output and data (Bellocchi et al., 2010;735

Schwalm et al., 2010; Dietze et al., 2011) without providing a confidence interval around736

the model output itself. The ability to identify, with confidence, the conditions under737

which a model produces valid output helps determine appropriate applications of the738

model and it helps to identify targets for further model development (Williams et al.,739
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2009). While parameter uncertainty is clearly just one of many sources of uncertainty in740

models (McMahon et al., 2009), and constraining model parameters by no means741

guarantees that a model will match reality, is difficult to assess the accuracy of a model if742

it has low precision. In deterministic models, such as most ecosystem models, parameter743

uncertainty is a major driver of the precision of a model.744

In this study, we can state with 90% Confidence that the mean Switchgrass yield during745

the Heaton et al. (2008) study should have been between 7.2 and 37, and if we had made746

this prediction in advance, we could have said that we were correct because the mean did747

fall within this range. We can also see that the model uncertainty contains the 90% CI748

for observed switchgrass yields globally (Wang et al., 2010), even though we know that749

important drivers of variability in the global meta-analysis (e.g., climate, soil) are750

different from the source of uncertainty in our model predictions (e.g., parameters). The751

model ensemble left open the possibility that the yields could have been much more or752

much less than was actually observed, and we conclude that much of this variability could753

be constrained with additional trait level data or data assimilation. Wang et al 201x (in754

review, Ecological Applications #12-0854) provides an example of combining the PEcAn755

meta-analysis and variance decomposition with data assimilation of biomass to constrain756

uncertainty in parameter estimates and improve the accuracy and precision of model757

output. Once the model can make more precise predictions, it will be possible to begin758

investigation of other sources of uncertainty, such as model structure and state variables759

(e.g. climate, soil).760

Although the present analysis focuses on modeled aboveground biomass, PEcAn can761

analyze any model output, including pools and fluxes of water, energy, and carbon.762

Indeed, PEcAn’s approach to the synthesis of data and mechanistic models is763

independent of the system being modeled, and thus has potential applications far beyond764

the scope of its current development to support ecosystem modeling.765
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Variance Decomposition766

Variance decomposition quantified the contribution of each parameter to model767

uncertainty, helping to identify a subset of parameters for further constraint. SLA, Vcmax,768

fine root to leaf ratio, and leaf turnover rate dominated uncertainty in yield prior to769

incorporating species level data. Therefore, SLA, which can be measured quickly and at770

low cost, would make a good first target for reducing uncertainty when a new species is771

evaluated. SLA also correlates strongly with other important model parameters, such as772

photosynthetic rate, leaf lifespan, and nitrogen content (Wright et al., 2004). The ranking773

of parameters based on variance contribution depends on the response variable of choice774

(in this case, aboveground biomass) as well as the conditions of the run (duration, soil,775

climate), and the species or PFT being evaluated. In general, for a given species and776

model output, overall patterns of parameter importance are consistent across a broad777

range of climates (Wang et al., 201x, in review, Ecological Applications #12-0854).778

Variance decomposition (equation 6) demonstrates that it is not parameter uncertainty or779

model sensitivity alone, but the combination of the two, that determines the importance780

of a variable. For example, despite the high uncertainty in seed dispersal, switchgrass781

yield is insensitive to this parameter (Figures 6, 7), therefore a better understanding of782

switchgrass seed dispersal would not reduce model uncertainty. By contrast, although783

uncertainty in the growth respiration is not particularly large, switchgrass yield was very784

sensitive to growth respiration, and for this reason growth respiration is the greatest785

contributor to model uncertainty. In addition, although no seedling mortality data were786

available, model sensitivity to this parameter was much lower in the posterior compared787

to prior runs. Using the sensitivity analysis or parameter uncertainties alone would thus788

lead to incorrect conclusions about what parameters are most important and an789

inefficient approach to reducing predictive uncertainties.790
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This analysis only represents the first step toward more comprehensive accounting of791

known sources of uncertainty. The next step in reducing uncertainty would be to use the792

results of the variance decomposition to target the most influential model parameters for793

further constraint through data collection. We have demonstrated how the use of794

species-level data to constrain parameter uncertainty reduced ensemble variance, resulting795

in a new set of targets for additional field observations and refined literature surveys.796

Traits that are difficult to measure, such as belowground carbon cycling, can be indirectly797

constrained with ecosystem-level observations using data assimilation (Luo et al., 2009,798

2011). Integrating data assimilation into PEcAn will allow ecosystem-level observations799

to further constrain parameters for which trait level observations are difficult or800

impossible to obtain. To date most Bayesian data assimilation approaches applied by801

ecologists have employed flat, uninformative priors (assigning equal probability to values802

over many orders of magnitude) , which has lead to the problems of parameter803

identifiably and the criticism that model parameters are allowed to take on biologically804

unrealistic values. The use of the meta-analysis posteriors as priors in the data805

assimilation step ensures that any parameter estimates are consistent with what is known806

about different plant traits. In this way Bayesian methods are, in effect, updating the807

literature-derived estimates with new data and providing a coherent and rigorous808

framework for combining multiple different types of data.809

In addition, by effectively restricting parameter space based on observed values, the use810

of informed priors in data assimilation reduces problems of equifinality and identifiability.811

This is consistent with the argument by Beven and Freer (2001) that only the feasible812

parameter range should be sampled.813

To a first order the spline interpolations of the univariate relationships between814

parameters and aboveground biomass (Figure 6) provide a good estimate of the total815

model variance. The closure term accounted for approximately 21.7% of the overall816
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model variance (the difference between the model ensemble variance and variance817

decomposition terms, Table 3), suggesting that while parameter interactions are818

important, univariate parameter uncertainty drives overall model variance. One key819

concern of parameter interactions is that the combination of the variance decomposition820

terms would result in the prediction of negative yields, which is clearly biologically821

impossible. By comparing the spline ensemble, where this term is truncated, to the822

spline-based variance decomposition we can conclude that this truncation effect accounts823

for 85% of the closure term in the variance decomposition.824

By contrast, evaluating the spline ensemble for different ensemble sizes shows that825

ensemble size had negligible effect on the mean variance estimate although it does826

improve the precision of this estimate (Table 3). Finally, comparing the model and spline827

ensembles suggests that the absence of parameter interactions in the variance828

decomposition account for the remaining 15% of the closure term (< 4% of the overall829

ensemble variance), which could be improved by a multivariate meta-analysis and830

sensitivity analysis, both of which are planned for future development of PEcAn. Overall,831

the closure term is relatively well constrained even when the parameter interactions are832

assumed to be linear.833

Model-field work feedback834

Variance decomposition can be used to inform data collection by identifying candidate835

parameters for further refinement based on their contributions to model variance. Recall836

that this variance contribution is a function of parameter sensitivity and the parameters’837

probability density (equation 6, Figure 7). Sensitivity is a function of the model and so838

there is no direct way to reduce sensitivity. However, because V ar(f) ∝ V ar(β0), it is839

possible to reduce the model uncertainty by reducing parameter variances.840

Through simple power analyses one can explicitly estimate the relationship between an841
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increase in sample size and the reduction in posterior variance. Not only can we calculate842

the reduction in parameter uncertainty that would be expected for a given sample size,843

but using equation 6 we can also express this in terms of reductions in the variance of the844

model output. This then allows us to directly compare the value of different data types in845

a common currency.846

Quantitatively evaluating the relationship between data and model uncertainty provides a847

path of communication between field research and modeling, opening the door for a new848

framework in which modeling and field work can be mutually informative. Given the849

current data and model uncertainties, it is possible to identify effective data acquisition850

strategies based on this analysis. For example, data could be ranked by the ratio of851

reduction in model uncertainty to the cost of acquiring each sample in terms of dollars852

and/or man hours. In this way, data collection could be optimized in terms of the853

efficiency at which new information is gained.854

These approaches close the model-data loop by enabling models to inform data collection,855

and data to inform models. Such a shift has the potential to put field ecologists and856

modelers in closer connection. It also gives us the tools to answer the long standing857

question among many field ecologists about what exactly modelers need to know. Indeed,858

this shift highlights a need for greater accessibility to models by the general research859

community so that field ecologists can drive this loop directly. This is exactly the860

objective of PEcAn – to encapsulate these tasks in a way that makes the analysis of861

models transparent, repeatable, and accessible.862

In addition to informing sample size, the parameter meta-analysis can inform863

experimental design by providing valuable information on the scales of variability. For864

example, when data from multiple sites is available, the meta-analysis partitions among865

site and within site variance. This information can be used to construct optimal sampling866

designs which balance intensive vs extensive sampling, and may help identify867
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environmental covariates that should be measured in order to explain parameter868

variability.869

Based on our switchgrass example, variance partitioning also highlights broad data needs870

and the discrepancy between the relative ease of parameterizing aboveground processes871

compared to below ground processes. Indeed, one of the greatest challenges in ecosystem872

ecology is the ability to constrain below ground processes such as root allocation,873

respiration, and turnover. These parameters are uncertain precisely because measurement874

is difficult, often indirect, and data may reflect the diverse methods used to indirectly875

estimate a pool or flux. Many parameters in the ED2 model correspond to processes that876

are not directly observable. For example, the root respiration parameter in ED2 is not877

total root respiration but just maintenance respiration, while measurements typically can878

not separate growth, maintenance, and rhizosphere respiration. Whole-plant growth879

respiration, which is currently the most important model parameter, is also difficult to880

estimate directly from measurements (Amthor, 2000). In this case, data assimilation is881

likely the most efficient route to constrain this parameter; data assimilation would882

effectively use mass balance of ecosystem carbon exchange to estimate this respiration883

parameter once other parameters are more directly constrained by data.884

Future Directions885

The analyses presented here represent the first phase in the development of the PEcAn886

project. In the near term we intend to expand the existing analyses to include a887

multivariate meta-analysis and sensitivity analysis to reduce model uncertainty by888

accounting for parameter covariances. In addition, we plan to implement the power889

analyses discussed above to more quantitatively inform data collection. A data890

assimilation module is in progress for PEcAn that will allow the use of ecosystem level891

data including plot-level inventory data, eddy covariance fluxes, and remote sensing892
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imagery to enter the analysis and provide additional constraint on uncertainty in both893

parameters and output. The basic concept of variance decomposition will also be894

expanded to investigate other sources of variability, such as uncertainty in initial895

conditions or in driver data. We are implementing ecosystem models other than ED2896

within the PEcAn workflow. This will provide opportunities for multi-model ensemble897

forecasting and assessing data requirements across models.898

Integrating modeling into a workflow system has distinct advantages not just for model899

analysis but also for managing the flows of information coming in and out of the model.900

In this sense we also envision PEcAn as an informatics and data management tool.901

Finally, it is our hope that other researchers will find PEcAn useful and contribute902

modules that extend the functionality of the system in creative and exciting ways.903

Conclusion904

In this paper, we demonstrate an approach to the parametrization of a terrestrial905

biosphere model that synthesizes available data while providing a robust accounting of906

parameter uncertainty. We also present a scientific workflow that enables more efficient907

constraint of this uncertainty by identifying the key areas requiring data collection and908

model refinement. By quantifying the effect that each parameter has on model output909

uncertainty, this analysis identifies additional data that, once obtained, would improve910

model precision. In addition, the analysis calculates probabilities of alternate potential911

outcomes, resulting in more useful assessments.912
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model spline variance
ensemble ensemble decomposition

n sf(β0) sg(β0)

∑
sgi(β0i)

500 13(14) 13.8(13) 18.2(6)
10000 ∗ 14(2.7) 18.1(1.3)

Table 3
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List of Figures1213

1 Overview of the PEcAn workflow. The synthesis of plant trait data be-1214

gins by querying a database of plant trait data for data on a single species or1215

a plant functional type, and then mapping these data to the model parame-1216

ters that they inform. The database also provides probability distributions1217

that describe our prior information about the range of values that a model1218

parameter can take. Next, this information is synthesized in a Bayesian1219

meta-analysis, resulting in a posterior trait distribution that summarizes1220

the uncertainty in each parameter. The ensemble of model runs produces1221

the posterior distribution of model outputs, representing a probabilistic as-1222

sessment or forecast that accounts for input parameter uncertainty. The final1223

steps in the workflow are the sensitivity analysis and variance decomposition;1224

these steps gives insight into the relative contribution of each parameter to1225

the uncertainty in the model output, and can be used to guide additional1226

data collection that will most efficiently reduce model uncertainty. . . . . 621227
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2 Prior distributions PDFs of priors with data constraints. Parameter value1228

is on the x-axis and probability density is on the y-axis, and the area under1229

each curve equals one. Three points on each line, from left to right, indicate1230

the 2.5th, 50th, and 97.5th quantiles. (From top left) Four priors fit to data1231

(data points shown as rug plot) using maximum likelihood: specific leaf1232

area and leaf turnover rate (Wright et al., 2004), root turnover rate (Gill1233

and Jackson, 2000), and quantum yield (Skillman, 2008). Four priors fit to1234

the posterior predictive distribution of an unobserved C4 grass species using1235

Bayesian meta-analysis of data from multiple plant functional types (C41236

data shown in black, other functional types in grey): stomatal slope (present1237

study data provided in Appendix A), Vcmax of C3 plants (Wullschleger, 1993)1238

and C4 grasses (Kubien and Sage, 2004; Massad et al., 2007; Wang et al.,1239

2011), leaf width (Oyarzabal et al., 2008), and root respiration (Tjoelker1240

et al., 2005). Priors fit to 95% CI (dashed grey line) and median (solid grey1241

line) based on ED2 defaults and expert opinion as described in the text:1242

fine root to leaf ratio (Chapin III et al., 2002), seed dispersal (Ernst et al.1243

(1992) model parameterized with site level data), minimum temperature1244

of photosynthesis (Don Ort, personal communication), growth respiration,1245

seedling mortality factor, mortality factor, and reproductive allocation. . . 631246
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3 Overview of the Hierarchical Bayesian meta-analysis model. For1247

each trait, the posterior estimate of the global trait mean (β0) is used as1248

an input parameter in the sensitivity analysis and model ensemble (Figures1249

6 and 5). Results from the meta-analysis of specific leaf area are as an1250

illustrative example; x-axes have units of m2kg−1 and all plots are on the1251

same scale. Each of the k sample means (Yk) are taken from published1252

articles and unpublished field measurements, and may be associated with a1253

sample standard error and sample size. When sufficient data were available,1254

site, treatment, and greenhouse effects were estimated. The within-unit1255

standard deviation, σY , is estimated from se and n. Site and treatment1256

random effects, represented by βsite and βtr|site, are estimated for each site1257

and treatment within site with from normal distributions with mean zero1258

and standard deviations σsite and σtr|site, respectively. Greenhouse is a fixed1259

effect. Table 2 summarizes the global mean, variance terms, and greenhouse1260

effect for the seven model parameters informed by species-level data. . . . 641261
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4 Prior (gray) and posterior (black) densities of trait parameters1262

used in the analysis. Priors distributions are based on the traits of1263

plants within broad taxonomic or functional type groupings (e.g. all grasses).1264

When species-level data were available, they are used in a hierarchical Bayesian1265

meta-analysis, and the posterior estimate of the mean parameter value is1266

shown. Data used in the meta-analysis come from both published and direct1267

measurements of the trait on the perennial C4 grass Switchgrass (Panicum1268

virgatum). These data are represented as mean ±SE. Mismatch between1269

data and the posterior estimate of the global trait mean results from site,1270

treatment, and greenhouse effects. Data from plants grown under an experi-1271

mental treatment or in a controlled environment (e.g. in a pot or greenhouse)1272

are presented in grey; data from field-grown plants under control treatments1273

are in black. Site-level effects account for disparity between raw data and1274

parameter distribution in the SLA and leaf width plots. . . . . . . . . . . 651275

5 Ensemble average 2004-2006 post-senescence yield. Histogram of re-1276

sults from prior ensemble runs (dashed), posterior ensemble runs (solid line),1277

and the spline ensemble (gray line). The gray box on the left represents non-1278

viable ensemble members (≤ 2Mg/ha, see text). Horizontal bars provide a1279

summary of yields, from top: a three year trial at the modeled site (Heaton1280

et al., 2008), all 1902 observations included in a recent meta-analysis (Wang1281

et al., 2010), viable runs from the ED2 ensemble based on prior and poste-1282

rior parameterizations. Diamonds indicate the median; thick and thin lines1283

indicating the 68% and the 95% CI, respectively. Histogram-style plots pro-1284

vide comparison of the distributions of observations and model runs. For1285

clarity, non-viable and viable runs are plotted with different width bins. . 661286
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6 Univariate relationships between parameters and 2004-2006 aver-1287

age modeled yield. Parameter values are on the x-axis and biomass is on1288

the y-axis while runs centered around the prior median are in gray and those1289

centered around the posterior median are in black. The univariate responses1290

were estimated using a cubic spline to fit model output at the median and1291

±[1, 2, 3]σ quantiles of each parameter while holding other parameters to the1292

median value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671293

7 Partitioning of variance by parameter results from variance decom-1294

position conducted before (grey) and after (black) updating parameter es-1295

timates with species-level data in the meta-analysis. From left to right,1296

panels present: a) the uncertainty associated with each parameter (coeffi-1297

cient of variation, CV = σ/µ). The degree to which some parameters have1298

been constrained by data is indicated by the reduction in CV in the black1299

compared to the grey bars; sample sizes are indicated in Table 2. b) the1300

sensitivity of modeled aboveground biomass to each parameter presented1301

as elasticity (elasticity is normalized sensitivity, and an elasticity of one in-1302

dicates that model output will double when the parameter value doubles).1303

Sensitivity is the slope of the line at the median in Figure 6). Parameters1304

with larger bars have greater influence on model output. c) Partial variance1305

is the contribution of each parameter to explained variance. This is a func-1306

tion of both the parameter variance and sensitivity. Parameters with both1307

large CV and elasticity contribute the most to uncertainty in model output. 681308
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Figure 4
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Figure 5

Modeled and Observed Switchgrass Yield
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Figure 6
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Figure 7
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