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Abstract: Paired-watershed studies analyze a response in two similar watersheds before and after a land treatment is 
applied to one of the watersheds. A typical analysis might compare regression models before and after the treatment 
is applied. Many experimental watersheds include more than two measurement locations or subwatersheds. Model 
residuals may be correlated in space or time. An approach for modeling responses from multiple watersheds with 
autocorrelated errors is exemplified by an analysis of storm flows from the Caspar Creek Experimental Watershed in 
northern coastal California. 
 

INTRODUCTION 
 
The usual analysis of paired-watershed studies is simple and conclusions are consequently very limited. Linear 
regression models are computed, relating a response in two similar watersheds, before and after a land treatment is 
applied to one of them. If there is a significant difference between the regression lines, then the treatment is deemed 
to have had an effect, and the size of the effect is estimated as the average change in response. Sometimes the 
magnitude of the effect is estimated for different event size classes after testing subsets of events, but the sample 
sizes are often too small to detect real effects, especially for large, infrequent events. Descriptors of the treatment are 
not explicitly included in the model, so it is impossible to use the model for prediction unless the new treatments can 
be considered identical to the original. Data collected during application of the treatment are typically lumped with 
post-treatment data, diluting the overall effect. Serial and spatial autocorrelation in the data are typically ignored, 
resulting in underestimation of variance and rates of Type I error (i.e. rejection of true hypotheses). If more than one 
watershed is treated, the analysis is repeated for each, instead of applying a single model to all the data. Splitting the 
data reduces statistical power and increases the probability of Type I errors unless adjustments are made for the 
testing of multiple hypotheses.  
 
Fixed and mixed-effects regression modeling tools available in many statistical software packages provide solutions 
to these problems, but have not been widely applied in hydrological research. The discussion begins with some 
general concepts, followed by an example showing the development of a model for storm flows. 
 

PAIRED WATERSHED MODEL 
 
Consider this formulation of a simple paired-watershed model: 
 
 ( ) ( ) ( )0 0 1 1log logj Cj jy T T y= β + γ + β + γ + ε   (1) 
 
The term jy is the response of the treated watershed in storm j, Cjy is the response of the control watershed in storm 

j, the dummy variable 0T =  before treatment, 1T =  after treatment, and 2(0, )j Nε σ∼ , i.e. the errors are 

independent and normally distributed with variance 2σ . The responses are log-transformed because that is often 
necessary in order to meet the error assumptions. The coefficients 0β and 1β  represent the regression intercept and 
slope before logging, while 0 0β + γ  and 1 1β + γ represent the intercept and slope after logging. F-tests (Weisberg, 
1985) are the traditional method for testing the significance of the coefficients 0γ and 1γ , either individually or 
simultaneously, to determine whether the treatment had a significant effect on the intercept, slope, or both. Since 
there are no explanatory variables other than the dummy variable T, this model is not useful for prediction under 
different conditions or treatment levels than those in which the model was developed. 
 

FIXED-EFFECTS MODEL 
 
The model can be expanded as a generalized fixed-effects model for multiple watersheds and disturbance variables: 
 



 ( ) ( ) ( )( ) ( )0 0 0 1 1 1log , , logij i i Cj ijy f f y= β + + β + + εx γ x γ  (2) 
 
The subscript i indexes treated watersheds. The term Cjy  could represent an average response from one or more 
control watersheds. (Individual terms for each control watershed are probably not generally warranted, because of 
the complexity and loss of degrees of freedom.) 0iβ  and 1iβ  can be termed “location parameters” since there is one 
for each treated watershed. The disturbance functions f0 and f1 replace the dummy treatment variables of the paired 
watershed model. They are functions of variables describing watershed condition (vector x ) and “disturbance 
parameters” (vectors 0γ  and 1γ ). The error assumptions, too, can be relaxed using the multivariate normal 
distribution to model correlated errors and heterogeneous variance, as ( , )ijε N 0 Σ∼ , where Σ  is an n n×  
covariance matrix (n is the total number of observations ijy ).  
 

MIXED-EFFECTS MODEL 
 
If some of the fixed effects are replaced with random effects, the result is a mixed-effects model: 
 
 ( ) ( ) ( )( ) ( )0 0 0 0 1 1 1 1log , , logij i i Cj ijy b f b f y= β + + + β + + + εx γ x γ  (3) 
 
Here, the location parameters 0iβ  and 1iβ are replaced by a mean slope 0β , mean intercept, 1β , and random 
effects, 0ib  and 1ib , representing deviations from 0β  and 1β , respectively. The random effects are assumed to follow 
a bivariate normal distribution, i.e. ( , )bb N 0 Σ∼ . For independent random effects the 2 2×  covariance matrix bΣ  is 
a diagonal matrix containing just the variances of 0ib  and 1ib . For correlated random effects the matrix also includes 
a non-zero covariance. (Typically slopes and intercepts are negatively correlated, so a watershed with a small slope 
is likely to have a large intercept). The residual errors, ( , )ijε N 0 Σ∼ , are assumed to be independent of the random 
effects and independent between watersheds (hence Σ  is block-diagonal, with watersheds as blocks). The random 
effects and residual errors replace the more general error term of the fixed-effects model. The result is a model in 
which errors within a watershed are correlated, but those between watersheds are independent.  
 
If nw is the number of treated watersheds, then the 2nw location parameters of the fixed-effects model are replaced by 
4 or 5 parameters in the mixed-effects model: 0β , 1β  , and the 2 or 3 parameters in bΣ . Therefore, if 2wn > , the 
mixed-effects model is more parsimonious than the fixed-effects model.  
 
Using random effects is appropriate when one considers the subjects being parameterized (in this case watersheds) 
to be a sample from some larger population, and it is the population rather than the particular sample that is the 
focus of inference. Predictions for observations from unsampled watersheds require setting 0 1 0i i ijb b= = ε = . 
Estimates of potential variability (e.g. prediction intervals) consider both the variance of the random effects, bΣ , and 
the residual variance 2σ .  

EXAMPLE: MODELING STORM FLOW VOLUMES 
 
To illustrate fitting of a mixed-effects model to multiple-watershed data, we use storm flow volumes (per unit area) 
from the North Fork of Caspar Creek (Lewis et al., 2001) in California’s Jackson State Forest. In the North Fork 
experiment, there were 13 gaged watersheds. Three were held as controls, five were clearcut, and five below the 
clearcut stations included mixtures of cut and uncut areas. Pretreatment measurements were taken for four years, 
logging took place over a three-year period, and measurements were continued for three more years at seven stations 
and nine more years at six stations. The mean flow volume of two control watersheds was selected for use as a 
synthetic control, because the two stations had been monitored for the entire duration of the study, and their mean 
generally correlated with the treated watersheds (before treatment) better than either of their individual responses. 
 



Models For The Mean Response: We start with a simple fixed-effects model that includes only slopes and 
intercepts relating responses in the treated watersheds to the synthetic control. This model essentially fits a separate 
linear regression for each watershed.  
 
 ( ) ( )0 1log logij i i Cj ijy y′= β +β + ε  (4) 
 

where ( ) ( ) ( )
1

log log log
m

Cj Cj Cj
j

y y y m
=

′ = −∑  is ( )log Cjy centered at its mean. Centering is necessary to make 

meaningful comparisons of both intercepts and slopes. Otherwise the extrapolation of intercepts back to zero 
induces large negative correlations between the intercepts and slopes. A display of 95% confidence intervals for 
slopes and intercepts (figure 1) indicates that the intercepts are clearly different from one another, while the slopes 
do not differ greatly. That suggests a model with one fixed effect each for slope and intercept, plus a random effect 
for intercepts: 
 
 ( ) ( )0 0 1log logij i Cj ijy b y= β + +β + ε  (5) 
 
The random effect is assumed to be normally distributed, i.e. ( )2

0 00,i bb N σ∼ . This model assumes a common slope 

but allows random deviations in intercept for each watershed. In place of 20 parameters ( 0iβ and 1iβ ) in model (4), 
we only need estimate 3 parameters ( 0β , 1β , and 2

0bσ ) for model (5). 
 

 
 

Figure 1 Estimated 95% confidence intervals for intercepts and slopes of model (4) 
 
Previous studies have shown that changes in runoff after logging were greatest in fall and early winter when soil 
moisture differences were greatest between logged and unlogged sites (Harr et al., 1975; Ziemer 1981). When 
antecedent wetness is lowest in uncut areas, soil moisture differences are expected to be greatest. For this analysis, 
we defined antecedent wetness on day k as 10.97716k k kw w r−= + , where kr  is the daily mean flow at the South Fork 
of Caspar Creek, a neighboring watershed with perennial streamflow. The decay coefficient corresponds to a 30-day 
half-life in the absence of runoff. Examining the relation of residuals from model (5) with proportion harvested at 
different levels of wetness, it is apparent that the effect of cutting is greatest under conditions of low antecedent 
wetness (figure 2). This suggests an interaction as the product of harvest proportion and antecedent wetness. The 
following model introduces fixed effects for the harvest/wetness interaction as well as harvest proportion by itself 
and a harvest/storm size interaction. 
  
 ( ) ( ) ( )0 0 1 1 2 3log log logij i Cj j Cj ij ijy b y w y c = β + +β + γ + γ + γ + ε   (6) 

 



The harvested proportion of watershed i at storm j is denoted by ijc , and the regional antecedent wetness at storm j 

is wj. Storm size is represented by ( )log Cjy , the log-transformed response in the control watershed. The 
harvest/storm size interaction allows the slope of the simple regression between treated and control watersheds to 
change with proportion harvested. Relating model (6) to the general mixed-effects model (3), we have ( ),=x c w , 

( )0 0 1 2, ij j ijf c w c= γ + γx γ , and ( )1 1 3, ijf c= γx γ . 
 

 
 

Figure 2 Interaction between proportion harvested and antecedent wetness in residuals from model (5) 
 

 
 

Figure 3 Declining trend in residuals from model (6) resulting from regrowth after logging 
 
Without a term to account for regrowth there is a declining trend in the residuals (figure 3). We can account for 
regrowth by replacing the proportion harvested, ijc , in model (6) with a term, ijx , that diminishes linearly with time 
after harvest: 
 

 
( ) ( ) ( )

( )( )
0 0 1 1 2 3

4

log log log

1 1

ij i Cj j Cj ij ij

ij ij ij

y b y w y x

x c t

 = β + +β + γ + γ + γ + ε 

= − γ −
 (7) 

 
The variable ijt  represents the time in years since harvesting watershed i. More precisely, it is defined as the 
difference in water years between the time of harvest and the arrival of storm j. For watersheds with multiple 
harvested areas, ijt is the area-weighted mean of the included areas. In the water year following harvest 1ijt =  and 



ij ijx c= . This model fits the data well during the recovery period but should not be expected to perform well after 
recovery is complete, because ijx  eventually becomes negative and continues to decline indefinitely. Introducing the 
new term effectively adds 3 new interaction terms to model (6) involving the products ij ijc t , ij ij jc t w , and 

log( )ij ij Cjc t y . To maintain a linear model, each of these products would require its own coefficient, adding three 
parameters to the model instead of just 4γ . Model (7) is not a linear model because it involves products of 
parameters: 1 4γ γ , 2 4γ γ , and 3 4γ γ , but it is more parsimonious than the linear version and can be readily solved by 
today’s statistical software packages. 
 

 
 

Figure 4 Storm flows the first season after fall and winter harvesting are overestimated by model (7) 
 
An examination of residuals from model (7) revealed most observations were over predicted in the first season after 
fall or winter logging (figure 4). Comparison with pretreatment regression lines indicated no apparent flow response 
the first season after winter logging, and a reduced response after fall logging. Under these circumstances, there was 
little opportunity for soil moisture differences to develop between cut and uncut areas before storms arrived. 
Therefore, a further refinement to the model was needed. The term ijc  was redefined as the proportion of area 
harvested in water years prior to storm j. In a Mediterranean climate, the water year begins at the start of the rainy 
season. This means that areas harvested after the rainy season begins are not included in the new definition of ijc  
until the second season. A second variable ijc′  is defined as the proportion of area harvested in the fall (through 
November) prior to storm j. Then ijx  is redefined to include a reduction factor, 5γ , for the effect of fall harvesting 
on subsequent flows that season. 
 
 ( )( )4 51 1ij ij ij ijx c t c′= − γ − + γ  (8) 
 
Error Models: Next let us consider the nature of the correlated errors. Because we have specified a model that 
includes random effects for each watershed, we must assume the residual errors between watersheds are 
independent. The covariance matrix is thus restricted to a block-diagonal form, with blocks corresponding to 
watersheds. The elements within blocks correspond to the variances and covariances between storms in a watershed. 
A typical model for between-storm correlation would be an autoregressive model in which correlations are greatest 
for storms that are temporally proximal. We can check for autocorrelation between storms by plotting the 
autocorrelation and partial autocorrelation functions within watersheds (Box and Jenkins, 1970). The autocorrelation 
function shows the correlation of a series with itself at various lags. The partial autocorrelation function shows the 
correlations at each lag, after accounting for all correlations at smaller lags. The only significant autocorrelations are 
at a lag of one storm (figure 5), suggesting an autoregressive error model of order 1. The very small partial 
autocorrelation at lag 2 indicates that the nearly significant autocorrelation at lag 2 is most likely due to the lag 1 
autocorrelation. 
   



 
 

Figure 5 Autocorrelation and partial autocorrelation among residuals from model (7) with (8) 
 
If we wish to instead model spatial autocorrelation, then the random effect of model (7) must first be dropped, 
because residual errors are assumed to be independent between the groups (watersheds) in the mixed-effects model. 
We replace the random effect by reintroducing a fixed intercept 0iβ  for each watershed as in model (4): 
 
 ( ) ( ) ( )0 1 1 2 3log log logij i Cj j Cj ij ijy y w y x = β +β + γ + γ + γ + ε   (9) 

 
Spatial correlation structures are generally represented by their semivariance, defined as ( )1

1 22 Varξ = ε − ε , where 

1ε  and 2ε  are any two observations. It is standardized by assuming ( )iVar 1ε = , from which it follows that the 
semivariance and correlation always sum to one. The semivariogram defines variation between points as a function 
of their location. For isotropic models, the semivariogram is simply a function of the distance s between any two 
observations and a correlation parameter ρ . A semivariogram of the residuals from the above model (figure 6) 
shows increasing semivariance between more distant watersheds. The scatter is great, and an exponential 
semivariogram model fits the data as well as any of the standard models (Pinheiro and Bates, 2000). 
 

 ( ) ( ) ( )( )0 01 1 exp / , 0
,

0, 0

c c s s
s

s

 + − − − ρ >ξ ρ = 
=

 (10) 

 
The term 0c , called the nugget, permits a discontinuity at zero. The nugget is non-zero if the limit of the 
semivariogram, as s approaches 0, is not the obligatory value of zero. 
 

 
 

Figure 6 Semivariogram and exponential model of spatial autocorrelation in residuals from model (9) 
 
Table 1 summarizes the sequence of models created. At each step, the value of AIC, Akaike’s Information Criterion 
(Akaike, 1974), decreases, indicating that the data support addition of the new parameters. The most dramatic 
improvements resulted from adding proportion harvested, wetness, recovery, and spatial autocorrelation to the 



model. Storm size provided relatively minor improvement after antecedent wetness was included in the model. The 
residual standard error (RSE) declines with each new term in the model for the mean response. Adding parameters 
to the error model does not reduce RSE but does improve inference, e.g. confidence intervals and hypothesis tests. 
The model fits the data well, explaining 94% of the variance in the logarithm of flow volume, and the residuals are 
very nearly normally distributed with equal variance through out the range of response (figure 7). 
 

Table 1. Summary of models for unit area storm flow at Caspar Creek 
 

Term(s) 
added 

 
Description 

Equation 
in text 

Total # of 
parameters 

 
AIC 

 
RSE 

2
0 1 0, , bβ β σ  slope, intercept, random effect 5 4 -57 0.225 

1γ  proportion harvested - 5 -225 0.197 

2γ  proportion harvested × wetness - 6 -467 0.164 

3γ  proportion harvested × storm size 6 7 -477 0.162 

4γ  regrowth after harvest 7 8 -636 0.143 

5γ  fall and winter harvest refinement 8 9 -673 0.139 

1φ  temporal autocorrelation (AR1) - 10 -737 0.141 

0iβ  fixed intercepts per watershed 9 18 -760 0.141 

0 ,c ρ  spatial autocorrelation (exponential) 10 19 -939 0.144 

 
 

 
 

Figure 7 Diagnostic plots showing distribution of residuals from model (9) with error structure (10) 
 

PREDICTION 
 
The inclusion of variables describing harvest, wetness, and recovery is an advance over the simple paired watershed 
model (1) because it provides a means for summarizing impacts under a variety of conditions as opposed to 
reporting an average change over all events or events by size class.  Similarly, these models facilitate prediction in 
other watersheds that can be thought of as part of the same population as the experimental watersheds. For example, 
the response of streamflow to harvesting in small watersheds throughout the rain-dominated redwood region of 
north coastal California can be reasonably expected to behave similarly to Caspar Creek. Within this region, the 
mixed-effects models (7) and (8) can be used for prediction by setting the random effect b0i to zero.  Values for 
log( )Cjy would typically be selected based on recurrence interval. 
 
To use the fixed effects model (9) for prediction involves the coefficients 0iβ , which are specific to the watersheds 
used to develop the model. However, prediction of percentage change is possible without regard to specific 
watersheds by differencing the log-transformed predictions for logged and unlogged conditions and retransforming 



to yield a ratio. The location parameters drop out of the equation, and the expected ratio of a response y0 to its 
expected undisturbed value 0y′ , for model (9) reduces to  
 

 ( )( )0
0 1 2 3

0

( )( ) exp log
( ) j Cj ij

E yE r w y x
E y

 = = γ + γ + γ ′
 (11) 

 
There is a small bias introduced when substituting estimated coefficients for the parameters in (11). Lewis et al. 
(2001) derive a bias correction involving the coefficient covariance matrix, and present formulas for confidence and 
prediction intervals for the ratio r0. 
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