JOHN CAMPBELL

Quantifying Uncertainty in Ecosystem Studies

LTER All Scientists Meeting Estes Park, Colorado Sept. 10-13, 2012

Agenda

Introductions (what's your biggest source of uncertainty?)

5 minute presentations (5 minutes questions/discussion)

- Mark Harmon: Introduction to sources of uncertainty
- Adam Skibbe: Precipitation interpolation
- Xuesong Zhang: Precipitation
- John Battles: Biomass
- Mark Green: Streams
- Ruth Yanai: Soils
- Jeff Taylor: NEON

Overarching topics: Introduction followed by group discussion

- Craig See: Gaps
- Carrie Rose Levine: Monitoring

A plea for your involvement

Bormann et al. 1977. Science.

What is **QUEST**?

QUEST is a research network interested in improving understanding and facilitating use of uncertainty analyses in ecosystem research

- Funding through LNO, NSF
- Working group meetings (Boston, Oregon, New York, NH)
- Held educational workshops (e.g., ESA)
- Several publications

www.quantifyinguncertainty.org quantifyinguncertainty@gmail.com

Introduction

- Name
- Affiliation
- Site
- What's your biggest source of uncertainty?

Discussion Questions

Overarching topics: Intro followed by group discussion

Craig See: Gaps Carrie Rose Levine: Monitoring

Should we use consistent approaches to estimating uncertainty for every observation?

How does one derive an optimal sampling strategy for minimizing uncertainty?

Is it always possible to estimate uncertainty?

MARK HARMON

Sources of Uncertainty

- Measurement error-technique and technology
- Sampling error-natural variability in space and time
- Regression/conversion (parameter) error- models used to convert one set of numbers to another
- Model selection error (structural error)-uncertainty of knowledge/representation

Uncertainty

Natural variability

"Random" variability Knowledge uncertainty

Systematic Error-bias

Judging progress objectively

timeline

ADAM SKIBBE

CWT Precip Models

Model Comparisons

Spline	Kernel
High 190	High 182
Low 111	Low 134
Radial Basis	IDW
High 192	High 183
Low 114	Low 135
Kriging	Global Polynomial
High 183	High 196
Low 135	Low 119

IDW Comparisons

1	A	B	С	D	E	F	G	H		J	K	L	M	N
1		Area (ha)	ElevMin	ElevMax	ElevRange	ElevMean		PrecipSites	Min	Max	Range	MeanMonthly	MeanAnnual	
2	AND	6369	412.04	1626.92	1214.88	972.9938		6	166.703	209.6488	42.9458	178.3679	2140.4148	
3	CWT	1626	674	1594	920	992.7321		10	135.0287	183.0461	48.01732	157.4323	1889.1876	
4	HBR	3393	117	1004	827	455.2198		24	113.9563	130.4734	16.51717	120.3517	1444.2204	
5	SEV	91931	1418	2651	1233	1634.165		10	14.22249	28.11513	13.89264	20.14921	241.79052	
6														
7														
8														
9														
0														
1														
2														
.3														
.4														
.5														
.6														
.7														
8														
.9														
20														

٠	Stations Observed
+	Stations Estimated
	< 1900
	1900 - 2000
	2000 - 2100
	2100 - 2200
	2200 - 2300
	2300 - 2400
	2400 - 2500
	2500 - 2600
	2600 - 2700
	2700 - 2800
	2800 - 2900
	> 2900

AND Comparisons

XEUSONG ZHANG

Enhancing Spatial Precipitation Interpolation using Auxiliary Data

Xuesong Zhang

Joint Global Change Research Institute Pacific Northwest National Laboratory and University of Maryland

Great Lakes Bioenergy Research Center Thrust 4 - Sustainability Michigan State University

Universal Spatial Variation Model

- Materon (1969) proposed a general representation of spatial variables:
 - $-Z(\mathbf{x}) = m(\mathbf{x}) + \varepsilon'(\mathbf{x}) + \varepsilon''(\mathbf{x})$
 - where x is a spatial location, m is deterministic component, ε' represents a stochastic component driven by unknown factors, ε'' denotes measurement error.
- Basic form of Kriging
 - $-Z(\mathbf{x}) = m(\mathbf{x}) + \varepsilon(\mathbf{x})$
 - where m is global or locally varying mean, and ε is residual that is spatially correlated.

Simple Kriging

- Best Linear Unbiased Estimator (BLUE)
- Estimate residual at an unsampled point by a linear combination of the observed residuals at surrounding points.

$$-Z(\boldsymbol{u}) - m(\boldsymbol{u}) = \sum_{i=1}^{n} \lambda_i \cdot [Z(\boldsymbol{x}) - m(\boldsymbol{x})]$$

• Allow for flexible m(u)

$$-m = \frac{1}{n} \sum_{i=1}^{n} Z(\mathbf{x})$$

$$-m(\mathbf{x}) = \beta_0 + \beta_1 \cdot Y_1(\mathbf{x}) + \beta_2 \cdot Y_2(\mathbf{x})$$

- where Y_i is external variable, such as
- elevation, spatial coordinate, NEXRAD

An example in Little River

Precipitation maps

• Spatial precipitation estimated by different methods on October 3, 2002

Evaluation statistics

• Estimation Efficiency

$$EE = 1.0 - \frac{\sum_{i=1}^{n} [\hat{Z}(x) - Z(x)]}{\sum_{i=1}^{n} [\hat{Z}(x) - \bar{Z}(x)]}$$

- where $\hat{Z}(x)$ estimated precipitation values at x, and $\overline{Z}(x)$ is mean value of the MEXBAP gauge observed precipitation values. Mean 63.7 73.43 60.95 Oct. 13. SDV 16.52 5.84 19.14 2002 EE 0.10 -0.260.65

	💙 NEXRAD_SWAT		_	
	NexRad processi	ing and correctio	on tool for SW	AT
	Define input data	Interpolation parameters	Output settings	
test.mxd - ArcMap - ArcView	NexRadar data folder	Add the folder that comtains N	exRad files 🛛 🚰	2
ije <u>E</u> dit <u>vi</u> ew Insert <u>S</u> election <u>L</u> oois <u>wi</u> ndow <u>H</u> eip	Rain gauge file	Add raingauge shapefile	C i	-
	Test Rain gauge file	Not Activated	P	
	Rainfall Inputfiles Folder	Add the folder that contains rai	nfall records	
Eavers Eavers	Outut file folder	C:\SWATNEX\test\PCP0	P	2
	Zonal map (subbasin map)	Add subbasin file	C i	2
	Set the format of the No	exradar file		
	For example, "xmrg_010120	004_02z_SE.Z'' will be		
	Prefix xmrg	Middle1 01012004	Middle2 02z	
Source Selection	Suffix1 SE	Suffix2	Extension Z	
🗸 📐 🖓 🔲 👻 🗛 👻 📝 🖉 Arial 💽 🔽 🔽				
248765.693 3519201.8 //	Grid discretization	5000		_
	 Grid discretization 	Grid resolution		
	Subbasin center			

xzhang.pbworks.com

S NEXRAD_SWAT		_ 🗆 🔀			
NexRad process	ing and correctio	on tool for SWAT			
Define input data	Interpolation parameters	Output settings			
Select interpolation meth	od				
Basic Approaches					
O No Correction					
 Bias Adjustment (BA) 					
C Linear Regression and	Inverse Distance Weighted (LR	IDW) Power 2			
Geo-statistical Approaches					
Simple Kriging with varying Local Means (SKIm)					
Kriging with External Drift (KED)					
C Regression Kriging (RK)	()				
C Colocated Cokriging					
	Spherical	•			
Semivariogram model	12				
Lag num					
Lag size					
Maximum sesearch nur	nber 10				
Minimum search numbe	er 5				

S NEXRAD_SWAT		_ 🗆 🔀
NexRad processing and	d correctio	n tool for SWAT
Define input data Interpolat	ion parameters	Output settings
Time series settings		
Time Step 🔿 Hour 💿 D	ay	
YearS 2002 MonthS 1	DayS 2	HourS 0
YearE 2004 MonthE 12	DayE 31	HourE 23
US time zones C Local and UTC time difference 6	ENTRAL STANDA	RD 💌
Beiginning hour		
Output grid settings		
🔲 Output grid	Grid size	500
Upper 3518354.3		
Left 236393.5 261539.5 3483502.7 Lower	Right	
Daily operations Hour!	y operations	Close Program

Thank you for your attention!

JOHN BATTLES

Estimating uncertainty in forest biomass: What exactly should we be reporting?

QUEST Workshop –LTER ASM 2012

John Battles Hubbard Brook

W6: Hubbard Brook Reference Watershed with uncertainty estimates

Sources of uncertainty in forest carbon estimates

Measurement

e.g., diameter and height measurements (tree) species (tree) density (plot)

Biomass transfer functions (tree level)

e.g., allometric equations, volume equations, wood density estimates

Sampling error (class level)

error when plots in a class are aggregated to get central tendencies (e.g., average to get mean value)

Model selection (tree level) related to transfer function Attention has focused on two aspects:

1. The statistics around the transfer function where tree measurements are used to calculate mass.

2. Propagating uncertainty as we scale up from trees to plots to stands to forests.

Many ideas on how to best develop transfer functions.

Zapata-Cuartas et al. 2012. Forest Ecology and Management 277:173–179

Methods for uncertainty assessment

Analytical error propagation e.g., Taylor expansions

Monte Carlo simulation

Hierarchical analysis e.g., Bayesian state space model Nested likelihood functions

Ad hoc approaches

e.g., various forest offset/carbon accounting protocols

None

Back to the question: What should we be reporting?

1. Science

Leave to peer review process with expectation uncertainty will be addressed.

2. What about resource managers?

e.g., National Forest and National Parks now required to monitor forest carbon pools.

3. What about carbon/GHG accounting protocols in states/regions? National standards and international standards

4. What about remote sensing approaches calibrated with biometric results?

MARK GREEN

Year

RUTH YANAI

Sources of Uncertainty in Soil Nutrient Contents

Analytical Uncertainty

Sampling Uncertainty

Nitrogen in the Forest Floor Hubbard Brook Experimental Forest

The change is insignificant (P = 0.84). The uncertainty is 22 kg/ha/yr.

	-		-	
Mapping unit	n	Soil N content	Soil C content	Soil mass
	٠ ٢	kg ha-1	—— Ма	; ha-1 ———
	•		Forest floor	
Tun-Lym	28	1400a†	34a	90a
Berkshire	19	1100a	25a	81a
Skerry	6	1300a	27a	96a
Beckett	2	11 00a	25a	61a
			<u>Mineral soil</u>	
Tun-Lym	28	5800a	130a	2500c
Berkshire	19	5600a	12 0a	3800b
Skerry	6	7100a	150a	4300ab
Beckett	2	5800a	130a	4100abc
			Total solum	
Tun-Lym	28	7200a	160a	2700a
Berkshir	19	6700a	150a	3900Ъ
Skerry	6	8300a	180a	4400ab
Beckett	2	7000a	160a	4200ab

Table 7. Total soil pools of N and C and oven-dry mass by soil mapping unit and soil stratum for Watershed 5 at the Hubbard Brook Exp. For. sampled in July 1983.

[†] Mean values within columns in a soil stratum which are followed by the same letter are not significantly different at p = 0.05 using Tukey's multiple pairwise comparison.

JEFF TAYLOR

A National Observatory: 20 Eco-Climatic Domains

Terrestrial Measurements

NEON Data Products

• Coordinating Standardized Approaches

(Observer Bias)

- Combining Uncertainties Across Scales
- Metadata
- Reprocessing

The National Ecological Observatory Network is a project sponsored by the National Science Foundation and managed under cooperative agreement by NEON Inc.

www.neoninc.org

jtaylor@neoninc.org

CRAIG SEE

Why gap filling?

What do you do?

- Sometimes its not important (finding mean)
- Sometimes we need a continuous records (calculating pools, fluxes)
- Often a reasonable estimate can be made based on other available data

Gap filling (imputation) methods

- Use of historical averages
- Bayesian Bootstrapping
- Expectation-maximization algorithm
- Use neighboring values
 - Direct substitution
 - Regression

All gap filling methods introduce new error into the final total!

Streamflow gaps at Wakayama

Eiji Matsuzaki

Precipitation gaps at Sevilleta Volume and chemistry measurements taken from 20 collectors across SEV from 1989-1995.

How do we incorporate "gap uncertainty" into annual nitrate deposition estimates?

Statistics

- Stepwise regressions using neighboring gauges as predictor variables
- 68.2% PI →
- Relative errors add \bullet

Gauge 2E Annual Nitrate Deposition

CARRIE ROSE LEVINE

Statistical Approaches

We used certain data analysis methods depending on the available data (pg. 7).

Model Type	Time Series	Multiple Sites
Repeated measures mixed	×	×
effects model	^	~
Detectable difference		v
analysis		~
Mann Kendall trends test	V	
and General Linear Model	^	

- **Repeated measures mixed effects model:** a generalized linear model that can include random as well as fixed effects. Time series within each site treated as a repeated measure, and random subsamples of sites were selected to generate hypothetical sampling schemes.
- **Detectable difference analysis:** describes the ability to detect significant changes in a future survey. The input variables include the sample size and standard deviation of the original survey and an alpha and power level.
- Mann Kendall trends test and General Linear Model: Mann Kendall test was used to assess trends in time series based on the Kendall rank correlation. When sampling took place throughout the year and seasonal trends were present, we used a Seasonal Mann Kendall trend test. General linear regression and the standard error of the were used to assess slope and the uncertainty in trends

Model estimate and model standard error of longterm average concentrations of SO_4 (mg L⁻¹) based on a repeatedmeasures mixed-effects model using 50 random iterations for each simulated subsample size. Open symbols show models that reduced the number of lakes sampled, and red symbols show models that reduce the number of months sampled per year for all lakes.