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1 
EXECUTIVE SUMMARY 

 
Researchers and managers of commercial bioenergy plantations often require estimation of standing aboveground 
biomass prior to harvesting. At the time of harvest, biomass can be weighed, but obtaining estimates prior to that 
time requires the use of an alternate, non-destructive technique. At an operational level, willow plantations will be 
harvested in winter, chipped and transported to power facilities. Chips will have to be delivered on an as needed 
basis because of the limited amount of storage space at power plants. In order to ensure a steady supply of willow 
biomass to the power plants, estimates of biomass before the time of harvest will be necessary. Landowners will 
likely find estimation of biomass useful for decision-making. For example, rotations are typically three years, but 
could be extended to four or even five years if the amount of standing biomass does not make harvesting 
profitable. Because of the strong allometric relationship between stem diameter and dry stem biomass, regression 
estimation is a reasonable, non-destructive approach to estimating biomass.  
 
The objective of this study was to develop regression equations that accurately predict aboveground biomass in a 
cost-effective manner. Equations were developed for one- and two-year-old coppice for willow clones S25, S301, 
S546, SA2 and SV1, and poplar clone NM6. Several regression models were considered for estimation of stem 
dry weight (biomass) for each clone individually and combined (i.e., one equation for all clones). Several 
explanatory variables were considered in the various regressions, including height (H), diameter (D), D2 and D2H. 
Validation was conducted by randomly splitting the data. Transformational bias can be an issue when predictions 
are made using logarithmic regression. Two bias correction approaches were evaluated.   
 
Regression equations based solely on diameter (D), or the natural log (D), fit the data well (e.g., r2 values ranged 
from 0.98 to 0.99). Application of equations that use diameter as the only predictor variable will allow for cost-
effective measurement and estimation of standing biomass.  Adding height to the stem-based regression equations 
increased the cost of data collection and did not significantly improve the regression equations. Clone-specific 
models appeared to be necessary, although estimates of biomass could be made using equations developed for 
more than one clone or site, combined (i.e., generalized), depending on the intended use or required degree of 
accuracy. Neither bias correction approach consistently improved predictions for logarithmic regressions; 
therefore, neither was recommended for use in this instance. With the exception of the poplar clone, NM6, the 
non-linear and logarithmic regressions performed equally well, suggesting that the two models are both 
reasonable; logarithmic estimators had a slight predictive advantage overall. For NM6, the logarithmic regression 
performed substantially better. 
 
The biomass estimation equations developed to date are being used in various research trials. Additional data 
collection will take place in the future to expand the range of ages and diameters. Further verification of the 
equations will be conducted when three-year-old coppice willow is harvested. This will allow the application of 
these equations to commercial size trials in central and western New York. 

 

INTRODUCTION 

Background 
The use of short-rotation woody crop (SRWC) plantations for bioenergy production has become increasingly 
attractive as alternative sources of renewable energy are being explored. Environmental concerns over acidic 
deposition and global warming, in relation to the burning of fossil fuels, primarily coal, in industrial and utility 
plants, have sparked an interest in clean sources of renewable energy (e.g., CO2-neutral and low SOx and NOx 
emissions).  Fast-growing plantations of hardwoods, such as willow or poplar, have the potential to meet some of 
these needs in the northeastern United States. Co-firing willow biomass with coal results in consistently reduced 
SOx emissions, and reduced NOx emissions under certain conditions. Both of these compounds are precursors of 
acid rain.  The amount of CO2 released in the burning of willow biomass is equivalent to the amount recaptured 
by growing willow trees, and therefore, can be considered a CO2 -neutral fuel.  
 
Led by Niagara Mohawk Power Corporation, the Salix Consortium, formed in 1994, is an association of more 
than 20 corporations, industrial and government agencies, and farming and research organizations.  Current 
research at the State University of New York, College of Environmental Science and Forestry (SUNY-ESF), in a 
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coordinated effort with other Salix Consortium members, is aimed at establishing operational bioenergy 
production on a regional level to supply wood for co-firing with coal at power plants in the region.   
 
The Willow Bioenergy System 
Plantations of trees (shrubs) are planted in a “double-row system” based on a Swedish design. Trees are generally 
harvested on a three to four year rotation. Cuttings (25 cm-long sticks) are planted at a density of approximately 
15,000 stools per hectare (60 x 70 x 150 cm spacing). Cuttings sprout soon after planting and are coppiced (cut 
back) in the first winter. The following spring, stumps re-sprout, producing stools with multiple stems (3 to 15+ 
stems per stool). Further details of the production system can be found in Kopp et al. (1997). 
 
Application to Commercialization 
At an operational level, willow plantations will be harvested in winter, chipped and transported to power facilities. 
Chips will have to be delivered on an as needed basis because of the limited amount of storage space at power 
plants. In order to ensure a steady supply of willow biomass to the power plants, estimates of biomass yield before 
the time of harvest will be necessary. Landowners will likely find estimation of biomass useful for decision-
making. For example, rotations are typically three years, but could be extended to four or even five years if the 
amount of standing biomass does not make harvesting profitable.  Additionally, current research often requires 
estimation of aboveground biomass prior to harvesting. At the time of harvest, biomass can simply be weighed, 
but obtaining estimates prior to that time requires the use of an alternate, non-destructive technique. Because of 
the strong allometric relationship between stem diameter and dry stem biomass and the relative ease of data 
collection, regression estimation offers a reasonable, non-destructive approach to estimating stem biomass.  
 
Objectives 
1) To develop regression equations to predict biomass in a cost-effective manner using stem samples taken from 

existing plantings in New York State for six different clones (five willow clones and one poplar clone; 
summarized in 
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Table 1).  
2) To establish an efficient approach for collecting measurements necessary to use the biomass estimators. 
 
Present Status 
Objective 1: One- and two-year-old stems were collected and regression equations have been developed.  
Objective 2: A reasonable approach has been developed for measuring individual stems.  Research plots can readily 

be measured using a census of trees. 
 
Future Progress 
Objective 1: Three-year-old stems will be collected and used to expand the range of valid ages and diameters for 

which regression estimators can be applied. Additional validation of the regression estimators will be conducted 
by collecting plot biomass data at harvest (winter, 1998-99). Future measurement should include a selection 
procedure for collecting stems to be used in biomass equation development. In addition to the regression 
approaches considered, a weighted regression should be evaluated. 

Objective 2: A sampling scheme needs to be developed for use of regression estimators to assess standing biomass 
in larger (demonstration and commercial) plantings. 
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Table 1. Willow and poplar clones and their parentage and origin in various plantings in New York State. 

Clone Parentage, Origin 

NM6 Populus nigra x P. maximowiczii. Ontario Ministry of Natural 
Resources. 

S25 S. eriocephala 16 x S. eriocephala 276. University of Toronto. 

S301 S. exigua 62 x S. eriocephala 276. University of Toronto. 

S546 S. eriocephala 16 x S. eriocephala 24. University of Toronto. 

SA2 S. alba var. sanquinea. Novi Sad, Yugoslavia. 

SV1 Salix dasyclados. Brantford, Ontario, Canada 
 
Questions to be Addressed 
Considerable research in the area of biomass estimation techniques for short-rotation woody crops (SRWC), Salix 
in particular, has been conducted in Scandanavia (Telenius, 1997; Verwijst, 1991; Verwijst and Nordh, 1992; 
Telenius and Verwijst, 1995; Hytönen et al., 1987; Tahvanainen, 1996; Verwijst and Telenius, 1998).  Many of 
these researchers have suggested that it is both necessary (cost-effective) and adequate to develop and utilize 
regression estimators that predict stem weight based solely on stem diameter.  Using data collected in clone-site 
trials in New York State, this approach was evaluated by comparing regression estimators that included height as 
a predictor variable. 
 

Q: Does height add to the predictive capability of the estimators, and if so, is it cost effective?   
 
Biomass estimation is often conducted on a stem basis; however, the possibility of estimating biomass on a stool 
basis was considered in this study. 
 

Q: Can stool-based regression estimators be developed that are comparable to estimates obtained from 
stem-based models?   

 
Species, clone, age of the trees, stand (and sites), and degree of competition may all impact the allometric 
relationship between diameter and biomass (Telenius and Verwijst,1995). Additionally, cultural treatments likely 
influence the allometric relations. Using a very large database, Telenius and Verwijst (1995) found that allometric 
equations were highly age-specific and species-specific. However, when equations were developed for more than 
one clone or site combined (i.e., generalized), estimates generally deviated by less than 10% from estimates 
obtained from the stand-specific equations—a potentially reasonable loss of accuracy in commercial application. 
Site-specific equations for every age and clone are costly. It would be beneficial to develop generalized equations.   
 

Q: Can a single equation be used for more than one clone, or are individual equations necessary for each 
clone? What impact does age-generalization have on predictive ability?   

 
Log transformed variables are frequently used in tree biomass equations. The logarithmic regression model is: ln 
W = α + β ln D + ln(ε), ε ~N(0, σ2), where W is dry stem weight, and D is diameter, for example.  Whittaker and 
Marks (1975) have shown systematic errors in estimates of W resulting from logarithmic transformations of this 
sort. Baskerville (1972) and others (e.g., Beauchamp and Olson, 1973 and Snowdon, 1991) have proposed various 
corrections for the transformational bias (negative) when predicted values on the log scale are transformed back to 
the original units (e.g., Baskerville’s (1972) multiplicative correction: exp(Sε

2/2), where Sε
2 is the error mean 

square from the logarithmic regression).  However, Snowdon (1991) indicated that these correction terms 
themselves may be biased. Snowdon therefore recommended the use of the ratio estimation technique familiar in 
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sampling theory (see Cochran, 1977; estimate of true biomass of population = true biomass of sample/predicted 
biomass of sample x estimated biomass of population). 
 

Q: Do either of the bias corrections help the logarithmic regression estimators in this situation? Can any 
general statements be made about situations when the correction should be used?   

 
Due to these difficulties with the logarithmic regression approaches, Telenius (1997) and Telenius and Verwijst 
(1995) proposed using non-linear regression, since computer facilities allow fitting non-linear models as easily as 
linear models.   
 

Q: How does the predictive ability of the non-linear regressions compare to the logarithmic regressions?   
 
In research plots a census of stems is usually operationally feasible; however, in larger demonstration and 
commercial plantings of bioenergy crops, the estimation of biomass using regression estimators will require 
sampling a portion of the trees.  
 

Q: How many stems and/or stools must be measured to adequately assess standing biomass using the 
regression estimators in a given plantation?  How should these be sampled?  

 
METHODS 
 
Collection of Biomass Equation Data 
Stem samples for biomass equation development were collected in late winter 1996 using stratified random 
sampling. Three stools per clone were selected at each of two or three sites from unfertilized areas (Figure 1). All 
stools in the buffer area were assigned a number on a map frame.  One large, medium, and small stool each was 
selected randomly from the available numbers in the map frame.  The first stool selected was assigned to a size 
class based on relative size for that clone and site.  The remaining two size classes were filled by randomly 
selecting stools until stools meeting the size criterion were selected. Additional stools were selected in 1997 at the 
Tully site (three stools per clone, via a stratified random sample) and the Somerset site (one medium stool) for 
expanding the range of diameters used in developing the biomass equations. 

Figure 1.  Location of the fertilization trial plantings in New York State: King Ferry, Somerset, and Tully.  Base 
map from Microsoft© Automap Streets Plus. 

Tully
King Ferry

Somerset
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Six to nine stools per clone or 39 total stools were collected.  The number of stems collected for a given clone 
ranged from 57 to131 (Table 5; note: several outliers were removed—e.g., rabbit damage, or stems that had been 
classified and noted as “unusual” in the field).  Stem diameter at 30 cm from the base of the stump (Figure 2), 
average stem height by stool (first year only), and number of stems per stool were measured in the field.  Stems 
were then severed 5 cm above the ground. Corresponding stem oven-dry weights (dried at 65oC to a constant 
weight) were measured in the laboratory for use in establishing the allometric relationships between biomass and 
diameter, average stool height, and/or number of stems per stool. 

A B
30 cm

C

 
Figure 2. Measurement of stem diameter was made at 30 cm from the base of the stool following the curvature of 
the stem (A). Secondary branches forking below 30 cm were measured from the base of the fork (B), while the 
main stem of a fork was measured from the base of the stool (C). 

 
Data Management 
The complete data set was used for final model equations, whereas a random subset of the data was used to decide 
which model was best. Data splitting was used for reserving an independent sample from the complete stem data 
set to be used for model validation. The complete data set was split by randomly selecting half of the data by 
clone for equation selection and validation. One-half of the complete data set was referred to as the validation set 
and the other half was referred to as the model-selection set (see Appendix Table 1 and 2 for split data set 
statistics).  

 
Model Development and Selection  
Model development and selection were conducted using the model-selection set. Initially, several regression 
estimators were considered. Regressions were considered for two generalized equations (all clones, including 
NM6, and all willow clones) and for clone-specific equations. Additionally, stem-based and stool-based (SV1 was 
used for illustration) regressions were considered. Linear regressions using untransformed (raw) data were 
evaluated for stem and stool-based data, primarily for illustration and completeness, since the relationship 
between stem diameter and biomass is not linear. Logarithmic regressions, regressions with D2 as an explanatory 
variable, and non-linear regressions (stem-based only) were run for individual clones and for the two generalized 
cases for stems and stools.  
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Model development and selection employed typical regression evaluation criteria, including R2, adjusted R2, 
Mean Square Error (MSE), and Prediction Sum of Squares (PRESS).  Multiple regression was performed using 
stepwise and R2 selection procedures for predictor variables in Statistica (StatSoft, 1997). The Quasi-Newton non-
linear estimation procedure in Statistica (StatSoft, 1997) was used to fit the non-linear models considered. 
Assumptions were tested using residual analysis techniques, including normal probability plots and residual plots.  
Tests for outliers were conducted using standardized residuals and deleted residuals.  
 
Validation 
The validation data set was used to evaluate the predictive capacity of the various regression estimators. The 
Mean Square Error of the Prediction (MSEP = Σ(yi – ýi)2 / m, where m is the number of observations used in the 
validation set, and the yi’s are observed and predicted biomass for observation i ) was calculated based on the 
prediction equations applied to the independent validation data set.  The MSEP measures the predictive ability of 
the models and serves as a basis for comparing model predictions.  Neter et al. (1996) suggest that the MSEP is a 
good evaluation criterion for the predictive ability of regression equations. The MSEP was calculated for the data 
used to develop the prediction equations for reference.  
 
Clone-specific and generalized stem-based equations were compared, as were the “best” non-linear and 
logarithmic regressions. Comparisons of “biased” and “unbiased” logarithmic regression predictions for the 
clone-specific, stem-based estimators were made using the validation data set(s). Two methods were examined for 
bias correction:  

a) Baskerville’s (1972) multiplicative correction: exp(Sε
2/2),  

where Sε
2 is the error mean square from the logarithmic regression;  

 
b) Snowdon’s (1991) ratio estimator bias correction factor:  
 

BCF=
w
w
ˆbiomass sample predicted ofmean 

biomass sample ofmean  =  

 
The biomass estimates were corrected by a) multiplying the estimates by the correction factor exp(Sε

2/2), and b) 
multiplying estimates by the BCF. 
 
After the initial validation of the “best” stem-based regression estimators, the complete (original) data set was 
used to re-estimate the regression coefficients. These final versions of the regression equations were compared to 
the model-selection versions, by clone, for the purpose of “final” validation and creating the useable biomass 
equation. 
 
NOTE: Stool based models were not validated because there were not enough observations to create a validation 
data set. 

 
RESULTS AND DISCUSSION 

 
There was a strong allometric relationship between tree diameter and dry aboveground, leafless biomass (Figure 
3). This relationship allows equations to be developed for predicting biomass of willow bioenergy crops. 
 
Many researchers have studied these relationships for the purpose of estimating tree biomass (e.g., Telenius and 
Verwijst, 1995, Telenius, 1997, Tahvanainen, 1996, Baskerville, 1972, Hytönen et al., 1987) and have proposed 
several reasonable models.  Most of the “best” models are exponential (non-linear form: W = aDbε), linearized 
versions of the exponential model (log-transformed variables: ln W = ln a + b •  ln D + ln(ε), and other 
modifications thereof (Tahvanainen, 1996). 
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Figure 3.  Oven-dry stem biomass (g) versus stem diameter (mm) measured at 30 cm from the base of the stool 
for samples of clone SV1 collected in research plantings in New York State in winter, 1996 and 1997. 

 
Simple Linear Regression Model Using Raw Data 
The untransformed variables were first considered in a simple linear regression model (e.g., W = a + bD). It is 
rather obvious, and not surprising, that this model is not appropriate, as the relationship depicted in Figure 3 is not 
linear. Though the regressions had relatively high R2 values (e.g., R2 = 0.85 to 0.96, for stem and stool-based 
models, respectively), the residual plot in Figure 4 clearly shows the inappropriateness of the linear model with 
raw data.  The residual plots clearly indicated that the model is not correct and that transformation of the data, or a 
model with a higher-order predictor variable, is necessary. 
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Figure 4. Residual plot (residuals vs. predicted values) of the non-transformed regression for stems of clone SV1. 

 
Linear Regression Models Using D2 and H as Predictor Variables 
The second type of linear regressions considered were those that used diameter-squared (D2) as a predictor 
variable.  Predictor variables considered in the stem-based regressions were diameter (D), height (H), D2, and D2 • 
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height (D2H).  Using a stepwise selection procedure in Statistica (StatSoft, 1997), D, D2, and D2H were selected 
and significant in the model.  Again, the regressions have relatively high R2 (e.g., 0.96 for stem-based models).  
However, this data failed to meet the homogenous error variance assumption (i.e., error variance increased with 
increasing values of D, see Figure 5). These observations were valid for the generalized and clone-specific stem-
based regressions, as well as for the stool-based regressions. 
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Figure 5. Residual plot (residuals vs. predicted) of the regression using D2 as the predictor variable for stems of all 
clones. 

 
Logarithmic Regressions 
The logarithmic regression (ln W = ln a + b • ln D + ln(ε)) appears to remedy the issues associated with the 
previous linear regressions (i.e., models with D2 predictors and the untransformed models with regard to the 
homoscedacity assumption and the use of an “incorrect model”). The stem-based logarithmic regression models 
had a high R2 and fit the data well in the generalized case as indicated by residual analysis (Figure 6).  
The results of the stem-based model selection indicated that diameter alone resulted in a good fit. For clones 
NM6, S301, S546, and SV1 and the generalized (all clones) regression estimator, height was not significant in the 
model already containing diameter. For the other two clones, S25 and SA2, height contributed little to the 
explanatory power of the regression (i.e., <1%, or 0.01 addition to the R2 value). The residual analysis of the 
logarithmic regression models evaluated suggested that they were more appropriate than the previous models 
(e.g., error variance was homogeneous, and residuals were normally distributed, Figure 6 A & B). 
 
The fact that height was not significant in the models agrees with findings by Tahvanainen (1996), though it 
should be noted that the height measurements used in the analysis were the average height of stems on each stool, 
not measurements of individual stems. Taking individual stem heights may improve the regression. The cost of 
obtaining height measurements for individual stems may be prohibitive, though cost was not evaluated in these 
analyses. 
 
The stool-based logarithmic regression models had a high R2 (e.g., 0.98) and fit the data well in the generalized 
case as indicated by residual analysis. The residual analysis was favorable, and resembled that of the stem-based 
models. The number of stems per stool (ln(number of stems)) was not significant in the model (p = 0.15), but 
ln(stool sum of diameters) and ln(average stool height) were both significant in the model.  
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Figure 6. Residual plots for the stem-based logarithmic regression for clone SV1: (A) residual versus predicted values and 
(B) normal probability plot. 

 
The disadvantage of the stool-based approach was that in order to predict biomass, stool height and diameter of all 
stems on a stool had to be measured (to obtain the sum of stool diameters). One difficulty in this analysis was that 
there was not a straightforward method for validating the stool-based model due to the small number of stool 
observations (e.g., cross-validation or data splitting was not a viable option).  This was particularly true of the 
clone-specific, stool-based models.  Clone SV1, with the largest number of stools (nine), had a high R2 value 
(0.98) and met the regression assumptions.  Obviously, with so few observations, the SV1 stool data set could not 
be split for validation.  The stool-based approach should not be completely abandoned.  However, better 
prediction can be made using the stem-based approach.  Since all stems on a stool would have to be measured in 
order to use the stool-based equation, it is more efficient to use the stem-based equations (e.g., development and 
modification of stem sampling approaches for biomass estimation increases the attractiveness of the stem-based 
approach). 
  
As suggested in the discussion above, height was not a necessary variable for predicting biomass in stem-based 
equations.  Height did not add to the predictive ability of the equations—at least not the stem-based versions, 
since it was not even significant in the model—but it could add to the predictive ability of the stool-based 
estimators.   
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Non-linear Regression 
The non-linear model that was considered (W = aDb + c + ε, recommended by Telenius, 1997) fit the data well. 
Compared with other possible functions this has been found to be both robust and simple (Verwijst, 1991). The 
residual analysis did suggest that error variance was non-homogeneous (i.e., increased as D increased; Figure 7). 
The pattern seen for clone SV1 in Figure 7 was representative of the other clones as well. The estimator was not 
discarded since it performed reasonably well in predictions (see the MSEP in Table 2) and a weighted version of 
the nonlinear fit could be considered in the future.  
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Figure 7. Residual plot (residuals versus predicted) of the non-linear regression for stems of clone SV1. R2 for regression 
was 0.95. 

Two versions of this non-linear model were considered: W = aDb + c + ε (with an intercept) and W= aDb + ε (c = 
0; regression passes through the origin). Generally, it is not desirable, nor recommended, to force the regression 
through the origin (Neter et al., 1996). However, the attractive aspects of such an equation is that there are no 
negative predictions of biomass for small diameter stems, as the intercept of willow biomass equations is often 
negative (Telenius, 1997).  Only two clones in this analysis did not have negative intercepts: S546 and S25.  The 
benefit is minor, however, because negative biomass predictions for small diameters can easily be set equal to 
zero, as they would likely contribute little to biomass anyway.   
 
Validation 
The MSEP was used as an indicator of predictive ability and served as a basis for the comparisons made between 
clone-specific versus generalized stem-based models, non-linear versus logarithmic regression estimators (Table 
2) , and bias correction methods (Table 3). 
 
Clone-specific versus Generalized Logarithmic Regression Estimators 
As indicated in Table 2, clone-specific models were far better than the generalized equations for NM6 and SV1 
based on the MSEP (calculated from the validation data).   The generalized equation underestimated biomass for 
clone SV1 and overestimated biomass for NM6, particularly as diameter increased (positive and negative 
residuals, respectively (Figure 8). The generalized logarithmic regression estimator (that included NM6) 
performed better than the clone-specific equations for clones S25 and S301, based on MSEP. The generalized 
willow regression estimator performed well for SA2 and S546. For example, the generalized willow equation 
increased the accuracy of the predictions for SA2; residuals of the predictions were more evenly distributed 
around zero, though accuracy still decreased as diameter increased (Figure 9). In all cases, as would be expected, 
the accuracy of the predictions decreased as diameter increased (e.g., Figure 8 and Figure 9). 
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The clone-specific equations had the lowest MSEP when calculated using the model-selection data (with the 
exception of clone NM6 and S546).  The fact that overall performance of the clone-specific versus generalized 
estimators was inconsistent may have been the result of the level of generalization in the model-selection data set.  
Specifically, the model-selection data sets comprised data from two or three sites and include one and two year 
old stems (with a greater number of observations for one year old stems).  Telenius and Verwijst (1995) found 
that species, clone, site, and age all influence the relationship between stem weight and stem diameters. They 
suggest that clone-specific, site specific regression equations are necessary. 
 
Age Generalization 
There was insufficient data to accurately assess the impact that age-generalization had on the predictive ability of 
the equations. Additional work should be done in this area. 
 
Comparisons of Bias Correction Methods 
Neither of the two methods of bias correction, Baskerville’s (1972) Se

2/2 correction nor Snowdon’s (1991) ratio 
estimator correction, significantly improved the predictive power of the logarithmic regressions on a consistent 
basis (see Table 2). Plots of prediction errors when the model-selection equations were applied to the validation 
data set (Figure0) clearly indicated that there was little, if any, improvement in accuracy of the estimates by using 
either of the correction approaches.  
 
The intrinsic bias in the back-transformation of predictions from logarithmic regression should be corrected, in 
theory, but the impact on predictions made with these logarithmic regression estimators of willow biomass is 
relatively small in comparison to other errors of prediction (e.g., MSEP is much greater than the MSE of the 
regressions).  For example, the accuracy of the predictions for clone SA2 was improved more by using the 
generalized equation than it was by either bias correction method.  Prediction errors remained essentially 
unchanged by using the bias correction methods (Figure), but they were more evenly distributed around zero 
when using the generalized equation (Figure 9).  
 
Non-linear versus Logarithmic Regressions 
With the exception of poplar clone NM6, the non-linear and logarithmic regressions performed equally well (see 
Table 2), suggesting that both models are reasonable.  Overall, the MSEP was slightly lower for the logarithmic 
regressions. The non-linear model had increasing error variance as D increased, as indicated in the previous 
discussion (see Figure 7), but could be corrected using a weighting procedure. For NM6, the logarithmic 
regression performed better much than the non-linear model (MSEP of 607 versus 1343, respectively). 
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Table 2. The mean square error of the prediction (MSEP) was calculated for the following stem-based models using 
verification data: (1) clone-specific logarithmic regressions, (2) generalized (all clones, including poplar) and (3) willow only 
logarithmic regressions: (4) non-linear clone-specific models: W = aDb and (5) W = aDb + c. The MSEP was also calculated 
using the model-selection data set (on the model-selection equations) and is reported for reference. 

Mean Square Error of the Prediction 
(MSEP) calculated using: 

Validation Data Set on 
Model Selection Equations 

 Model Selection Data Set on  
Model Selection Equations 

   
CLONE / REGRESSION (number of obs. in parentheses) (number of obs. in parentheses) 

(1) NM6/NM6 Logarithmic Regression 607 998 
(2) NM6/General Logarithmic Regression 1744 842 
(3) NM6/Willow Logarithmic Regression 3253 1527 
(4) NM6 / Non-linear: W=aDb 1359 573 
(5) NM6 / Non-linear: W=aDb+c 1342 573 
 (n =  33) (n =  24) 
   
(1) S25 / S25 Logarithmic Regression 485 146 
(2) S25 / General Logarithmic Regression 458 172 
(3) S25 / Willow Logarithmic Regression 569 191 
(4) S25 / Non-linear: W=aDb 602 138 
(5) S25 / Non-linear: W=aDb+c 668 132 
 (n =  39) (n =  34) 
   
(1) S301 / S301Logarithmic Regression 146 117 
(2) S301 /General Logarithmic Regression 135 126 
(3) S301 /Willow Logarithmic Regression 157 131 
(4) S301 / Non-linear: W=aDb 169 112 
(5) S301 / Non-linear: W=aDb+c 171 111 
 (n =  33) (n =  27) 
   
(1) S546 / S546 Logarithmic Regression 74 72 
(2) S546 /General Logarithmic Regression 68 72 
(3) S546 /Willow Logarithmic Regression 63 73 
(4) S546 / Non-linear: W=aDb 81 66 
(5) S546 / Non-linear: W=aDb+c 89 63 
 (n =  51) (n =  50) 
   
(1) SA2 / SA2 Logarithmic Regression 54 12 
(2) SA2 / General Logarithmic Regression 34 19 
(3) SA2 / Willow Logarithmic Regression 28 25 
(4) SA2 / Non-linear: W=aDb 61 12 
(5) SA2 / Non-linear: W=aDb+c 63 11 
 (n =  49) (n =  45) 
   
(1) SV1 / SV1 Logarithmic Regression  570 670 
(2) SV1 / General Logarithmic Regression 2065 1496 
(3) SV1 / Willow Logarithmic Regression  1721 1312 
(4) SV1 / Non-linear: W=aDb  493 619 
(5) SV1 / Non-linear: W=aDb+c  478 609 
 (n =  63) (n =  68) 
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Figure 8. Prediction errors of the generalized logarithmic equation for the SV1 validation data set.  (Note: prediction error = 
observed – predicted). 
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Figure 9. Prediction errors of the logarithmic regression for the SA2 validation data set: A) clone-specific (SA2) prediction 
equation, MSEP = 54.0 and B) generalized (willow) prediction equation, MSEP = 33.8.  
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Table 3. The mean square error of the prediction (MSEP) was calculated for the clone-specific, stem-based logarithmic 
regression models using verification data: (a) “uncorrected” logarithmic regression estimates, (b) bias corrected regression 
estimates using Baskerville’s multiplicative correction (exp(Se

2/2)) and (c) Snowdon’s ratio estimator correction; The MSEP 
was also calculated using the model-selection data set (on the model-selection equations) and is reported for reference.  

 
Mean Square Error of the 

Prediction (MSEP) 
calculated using: 

Validation Data Set on 
Model Selection Equations 

(number of obs. in parentheses) 

Model Selection Data Set on  
Model Selection Equations 

(number of obs. in parentheses) 
 Regression 

Estimate 
Estimate with Bias 
Correction Applied 

 Regression 
Estimate 

Estimate with Bias 
Correction Applied 

CLONE  (a) Snowdon Baskerville (a) Snowdon Baskerville 
  (b) (c)  (b) (c) 

NM6 607 592 535 998 608 814 
 (n =  33)   (n =  24)   

S25 485 501 513 146 144 143 
 (n =  39)   (n =  39)   

S301 146 156 159 117 118 119 
 (n =  33)   (n =  27)   

S546 74 70 69 72 71 71 
 (n =  51)   (n =  51)   

SA2 54 50 49 12 13 13 
 (n =  49)   (n =  45)   

SV1 570 499 537 670 624 649 
 (n =  63)   (n =  68)   
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Figure 10. Plot of prediction errors of the clone-specific equations for the SA2 validation data set: A) 
Logarithmic regression estimate; B) Logarithmic regression estimate with Baskerville’s (1972) bias correction; C) 
Logarithmic regression estimate with Snowdon’s (1991) bias correction. 

 
Additional Validation 
In addition to the predictions made with the validation data (i.e., MSEP evaluation), the statistics for the 
logarithmic regressions using the model-selection and the complete data sets were compared to validate the 
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regression estimators. The comparison indicated that by adding the verification set back into the model-selection 
set(s), the coefficients of the regression equations did not change greatly; the greatest change was for the 
coefficients of clone SA2 (Table 4).  The changes in regression coefficients for SA2 resulted from a few stems 
with large dry weights randomly reserved in the validation data set (see Table 5). Another method for future 
validation of the biomass estimators would be to compare harvested biomass of research plots with predictions 
made from the regression estimators.  This approach will be applied following harvests in the winter of 1998/99. 
 
Equation Coefficients for the Logarithmic Regressions 
The final biomass equation coefficients for the logarithmic regression equations are summarized in Table 5.  The 
general form of the final logarithmic regression equation is:  
Dry stem biomass (W) = [e a + b ln (Stem Diameter)]  
Example: General (all clones) W = [e -2.536 + 2.666 ln (Stem Diameter)] 

 

Table 4. Statistics of the generalized logarithmic regressions using the model-selection, the validation, and the complete 
data sets. BCF is from Snowdon (1991). 

    
CLONE ALL (GENERAL)  CLONE ALL WILLOW 

Statistic 
 

Model- 
Selection 

Validation Complete  Statistic Model- 
Selection 

Validation Complete 

n 248 268 516  n 224 235 459 
a -2.455 -2.610 -2.536  a -2.485 -2.653 -2.571 
s{a} 0.0537 0.0506 0.0369  s{a} 0.0568 0.0544 0.0393 
b 2.634 2.696 2.666  b 2.654 2.722 2.689 
s{b} 0.0239 0.0222 0.0163  s{b} 0.0257 0.0241 0.0176 
MSE (S�

2) 0.036 0.035 0.035  MSE (S�
2) 0.034 0.034 0.034 

R-square 0.9823 0.9802 0.9812  R-square 0.9821 0.9796 0.9808 
BCF (ratio) 1.030 1.007 1.019  BCF (ratio) 1.040 1.031 1.036 
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Table 5. Statistics of the clone-specific logarithmic regressions using the model-selection, the validation, and the 
complete data sets for each clone. BCF is from Snowdon (1991). 

CLONE NM6   CLONE S546  
Statistic 

 
Model- 

Selection  
Validation  Complete  Statistic Model- 

Selection 
Validation  Complete  

n 24 33 57  n 50 51 101 
a -2.605 -2.547 -2.570  a -2.517 -2.522 -2.523 
s{a} 0.1665 0.1127 0.0929  s{a} 0.0806 0.0842 0.0579 
b 2.642 2.620 2.629  b 2.652 2.669 2.663 
s{b} 0.0646 0.0461 0.0371  s{b} 0.0375 0.0380 0.0265 
MSE (S�

2) 0.036 0.025 0.029  MSE (S�
2) 0.019 0.017 0.018 

R-square 0.9905 0.9870 0.9891  R-square 0.9902 0.9905 0.9903 
BCF (ratio) 1.049 1.041 1.043  BCF (ratio) 1.008 1.011 1.009 

    
CLONE S25   CLONE SA2  

Statistic 
 

Model- 
Selection 

Validation  Complete  Statistic Model- 
Selection 

Validation  Complete  

n 34 39 73  n 45 49 94 
a -2.853 -2.844 -2.850  a -2.590 -2.924 -2.807 
s{a} 0.1766 0.1432 0.1102  s{a} 0.1343 0.1035 0.0825 
b 2.756 2.771 2.765  b 2.663 2.813 2.761 
s{b} 0.0733 0.0593 0.0457  s{b} 0.0643 0.0504 0.0399 
MSE (S�

2) 0.027 0.030 0.029  MSE (S�
2) 0.021 0.023 0.022 

R-square 0.9833 0.9779 0.9810  R-square 0.9851 0.9755 0.9812 
BCF (ratio) 1.008 0.971 0.988  BCF (ratio) 1.008 1.025 1.014 

    
CLONE S301   CLONE SV1  

Statistic 
 

Model- 
Selection 

Validation  Complete  Statistic Model- 
Selection 

Validation  Complete  

n 27 33 60  n 68 63 131 
a -2.269 -2.325 -2.288  a -2.442 -2.570 -2.499 
s{a} 0.1238 0.1162 0.0860  s{a} 0.0918 0.1062 0.0694 
b 2.574 2.561 2.561  b 2.695 2.740 2.716 
s{b} 0.0550 0.0499 0.0375  s{b} 0.0415 0.0461 0.0308 
MSE (S�

2) 0.030 0.023 0.027  MSE (S�
2) 0.027 0.034 0.030 

R-square 0.9884 0.9887 0.9877  R-square 0.9830 0.9846 0.9837 
BCF (ratio) 1.013 1.036 1.029  BCF (ratio) 1.040 1.039 1.041 
 



 

 

18

 

CONCLUSION 
 
After evaluating the various regression estimators for the prediction of biomass for one poplar and five willow 
bioenergy crops it was determined that regression equations based solely on diameter could adequately estimate 
tree biomass. Height was not a significant predictor variable in the stem-based regression models. Stool-based 
estimators were an exception; height was a significant predictor variable in the regression. The disadvantage of 
including height in any regression estimation procedure is the added cost of measuring the variable, particularly 
on a commercial basis.   
 
The disadvantages of using stool-based regressions include the cost of measuring height and the requirement that 
all stems on a stool be measured (to obtain the sum of stool diameters) in order to predict biomass.  In general, 
stem-based regression estimators are easier to use and provide reasonable biomass predictions.  Since all stems on 
a stool have to be measured in order to use the stool-based equation, it is more efficient to use the stem-based 
equations (without the need for height measurement). There is the possibility of developing or modifying stem 
sampling approaches to improve the efficiency of collecting data for biomass estimation. 
 
The generalized (all-clone) logarithmic regression estimator performed well for several clones. However, clone-
specific models were far better than the generalized equations for NM6 and SV1. Overall, the improvements in 
the predictive ability (MSEP) for a given clone using the generalized equation were relatively small.  Clone-
specific equations should be used whenever possible; though, generalized equations may yield reasonable 
approximations. For example, when regression equations were generalized for clone or site, estimates generally 
deviated by less than 10% from the stand-specific equations (Telenius and Verwijst, 1995).  
 
Of the two correction methods evaluated for the intrinsic negative bias associated with log-transformed variables 
in tree biomass equations, neither the multiplicative error term (exp(Sε/2) proposed by Baskerville (1972), nor the 
multiplicative ratio estimator advocated by Snowdon (1991), consistently decreased MSEP.  Neither method 
consistently improved the accuracy of the predictions.  The impact the bias corrections had on predictions made 
with the logarithmic regression equations was relatively small in comparison to other errors of prediction (e.g., 
MSEP>>MSE).  The use of bias corrections should be considered in more detail if the logarithmic regression is 
used in practice.  
 
Overall, the results suggested that logarithmic and non-linear regressions were both reasonable. The performances 
of the two approaches were comparable (MSEP was only slightly better for the logarithmic regressions), with the 
exception of poplar clone NM6.  For NM6, predictive ability of the clone-specific logarithmic regression was 
superior to that of the non-linear approach. Error variance increased as diameter increased when using the non-
linear regression model suggesting that a weighting procedure should be considered in the future. The logarithmic 
regression was selected as the final model. 
 
There are many questions that have not yet been addressed, including, how many stems or stools must be 
measured to apply the regression equations to obtain a reasonable estimate of yield in a given plantation or plot 
and how should these be sampled. In addition, future work should include more intensive sampling of stems of 
various ages to develop age-specific estimators and quantify the loss of accuracy by using age-generalized 
estimators.  



 

 

19

 

LITERATURE CITED 
 
Baskerville, G. L.  1972. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. (1): 49-53.   
 
Beauchamp, J. J. and Olson, J. S.  1973.  Corrections for bias in regression estimates after logarithmic transformation.  Ecology 

54(6): 1403-1407. 
 
Cochran, W. G.  1977.  Sampling techniques.  3rd ed.  John Wiley & Sons, New York. 
 
Hytönen, J., Lumme, I., and Törmälä, T.  1987.  Comparison of methods for estimating willow biomass.  Biomass, 14:39-49. 
 
Kopp, R.F., Abrahamson, L.P., White, E.H., Volk, T.A., and Peterson, J.P. 1997. Willow Bioenergy Producer’s Handbook. New 

York State Energy Research and Development Authority (NYSERDA). Albany, NY.  
 
Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W.  1996.  Applied Linear Regression Models.  Third Ed.  Richard 

D. Irwin, Inc., Chicago. 
 
Snowdon, P.  1991.  A ratio estimator for bias correction in logarithmic regressions.  Can. J. For. Res. 21: 720–724. 
 
StatSoft, Inc. (1997). STATISTICA for Windows [Computer program manual]. Tulsa, OK: StatSoft, Inc., 2300 East 14th Street, 

Tulsa, OK 74104, phone: (918) 749-1119, fax: (918)749-2217, email: info@statsoft.com, WEB: http://www.statsoft.com 
 
Tahvanainen, L.  1996.  Allometric relationships to estimate above-ground dry-mass and height in Salix.  Scand. J. For. Res. 

11:233-241. 
 
Telenius, B.  1997.  A software tool for standardised non-destructive biomass estimation in short rotation forestry.  Bioresource 

Technology v.60(3):267-268. 
 
Telenius, B. and Verwijst, T.  1995.  The influence of allometric variation, vertical biomass distribution and sampling procedure 

on biomass estimates in commercial short rotation forests.  Bioresource Technology v.51(2/3):247-253. 
 
Verwijst, T. 1991.  Logarithmic transformations in biomass estimation procedures: Violation of the linearity assumption in 

regression analysis.  Biomass and Bioenergy Vol. 1, No. 3:175-180. 
 
Verwijst, T. and Nordh, N.-E.  1992.  Non-destructive estimation of biomass of Salix dasyclados. Bioresource Technology v.41: 

59-63. 
 
Verwijst, T. and Telenius, B.  1999.  Biomass estimation procedures in short rotation forestry. Forest Ecology and Management 

121: 137-146.   
 
Whittaker, R.H and Marks, P. L.  1975.  Methods of assessing terrestrial productivity.  In: H. Lieth and R.H. Whittaker (Eds.). 

Primary Productivity of the Biosphere.  Pp. 55-118. Springer-Verlag, New York.  
 



 

 

20

 

APPENDIX 

Appendix Table 1.  Basic statistics of stem diameter (mm), measured at 30 cm from the base of the stool, for the 
complete, model-selection, and validation data sets. 

   Stem Diameter (mm)  
CLONE/Data Set VARIABLE Valid N Mean Minimum Maximum Std. Error 

GENERAL (All) Diameter 516 10.35 2.91 43.41 0.24 
GENERAL (Model-selection) Diameter 248 10.14 2.93 36.59 0.34 
GENERAL (Validation) Diameter 268 10.53 2.91 43.41 0.35 
NM6 (All) Diameter 57 13.60 3.81 43.41 1.16 
NM6 (Model-selection) Diameter 24 14.49 3.81 36.59 1.69 
NM6 (Validation) Diameter 33 12.95 3.93 43.41 1.58 
S25 (All) Diameter 73 11.72 3.05 25.12 0.57 
S25 (Model-selection) Diameter 34 11.59 4.85 24.61 0.77 
S25 (Validation) Diameter 39 11.83 3.05 25.12 0.83 
S301 (All) Diameter 60 10.68 3.02 23.30 0.69 
S301 (Model-selection) Diameter 27 10.35 3.02 22.67 1.10 
S301 (Validation) Diameter 33 10.94 3.17 23.30 0.90 
S546 (All) Diameter 101 9.44 2.93 19.99 0.45 
S546 (Model-selection) Diameter 50 9.16 2.93 19.89 0.66 
S546 (Validation) Diameter 51 9.71 2.95 19.99 0.62 
SA2 (All) Diameter 94 8.23 2.91 18.88 0.34 
SA2 (Model-selection) Diameter 45 8.32 4.12 17.81 0.45 
SA2 (Validation) Diameter 49 8.15 2.91 18.88 0.51 
SV1 (All) Diameter 131 10.23 2.97 27.14 0.47 
SV1 (Model-selection) Diameter 68 9.72 2.97 25.99 0.60 
SV1 (Validation) Diameter 63 10.77 3.13 27.14 0.73 
WILLOW (All) Diameter 459 9.94 2.91 27.14 0.23 
WILLOW (Model-selection) Diameter 224 9.68 2.93 25.99 0.31 
WILLOW (Validation) Diameter 235 10.19 2.91 27.14 0.33 
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Appendix Table 2.  Basic statistics of oven dry weight (g, 65oC) for the complete, model-selection, and 
validation data sets. 

   Dry Weight (g)  
CLONE/Data Set VARIABLE Valid N Mean Minimum Maximum Std. Error 

GENERAL (All) Dry Weight 516 71.00 1.18 1572.7 5.86 
GENERAL (Model-selection) Dry Weight 248 65.70 1.45 1084.8 7.28 
GENERAL (Validation) Dry Weight 268 75.90 1.18 1572.7 9.05 
NM6 (All) Dry Weight 57 152.76 2.42 1572.7 38.92 
NM6 (Model-selection) Dry Weight 24 157.82 2.42 1084.8 51.06 
NM6 (Validation) Dry Weight 33 149.07 3.04 1572.7 56.70 
S25 (All) Dry Weight 73 74.18 1.29 412 9.69 
S25 (Model-selection) Dry Weight 34 68.85 3.65 412 14.32 
S25 (Validation) Dry Weight 39 78.82 1.29 340.72 13.29 
S301 (All) Dry Weight 60 68.07 1.45 316.04 10.48 
S301 (Model-selection) Dry Weight 27 69.39 1.45 316.04 16.10 
S301 (Validation) Dry Weight 33 66.99 1.71 310.01 13.99 
S546 (All) Dry Weight 101 49.10 1.35 246.24 5.76 
S546 (Model-selection) Dry Weight 50 46.19 1.54 246.24 8.32 
S546 (Validation) Dry Weight 51 51.95 1.35 202.29 8.04 
SA2 (All) Dry Weight 94 29.37 1.18 213.91 3.75 
SA2 (Model-selection) Dry Weight 45 27.87 3.6 153.77 4.52 
SA2 (Validation) Dry Weight 49 30.75 1.18 213.91 5.92 
SV1 (All) Dry Weight 131 81.76 2.49 665.4 11.69 
SV1 (Model-selection) Dry Weight 68 69.55 2.49 564.13 13.99 
SV1 (Validation) Dry Weight 63 94.95 2.58 665.4 19.04 
WILLOW (All) Dry Weight 459 60.85 1.18 665.4 4.28 
WILLOW (Model-selection) Dry Weight 224 55.83 1.45 564.13 5.62 
WILLOW (Validation) Dry Weight 235 65.63 1.18 665.4 6.41 
 


