BCAP Project Area 10: New York Willow

Mike Buckley

ReEnergy Holdings

Tim Volk Justin Heavey SUNY-ESF

State University of New York College of Environmental Science and Forestry

- ~300 MWs of renewable energy generation
- ~ 300 employees; 5 states

Renewable Energy Facility
 Recycling Facility
 Headquartered in Latham, NY

Fast Facts: ReEnergy Holdings

- 80 employees
- 103 MW of installed capacity, or 738,000 MWh enough to serve 96,000 homes
- \$24 million in annual fuel purchases
- Support more than 300 indirect jobs, most in the forest

ReEnergy Facilities in NYS

- ReEnergy Black River: 60 MW
- ReEnergy Lyonsdale: 22 MW
- ReEnergy Chateaugay: 21 MW

ReEnergy Biopower

- Large demand for woody feedstocks
- Primarily forest residues
- Recent contract with Fort Drum Army post; 100% renewable electricity for next 20 years

Fuel Supply Program

- End-market for BCAP Shrub Willow
- Equipment Leasing Program
 - ReEnergy launched a program allowing loggers to gain access to state-of-the-art equipment and secure long-term agreements to provide fuel to ReEnergy

• SFI Certification

- First company solely devoted to electricity production to be certified by SFI
- Commitment to use best management practices and protect forest health

Commercial Willow Production

- More than 3,100 tons of willow delivered to Lyonsdale and Black River facilities over first two harvest seasons, 2013 and 2014. YTD 2015: 1,200 tons.
- Willow found to be suitable fuel in terms of moisture and ash content, now incorporated directly with other feedstocks upon delivery.
- Current willow plantings are planned to be harvested about 350-400 acres per year.
- This will produce roughly 8,000-9,000 green tons of feedstock annually

World Energy Use

Increasing exponentially, mostly non-renewable sources

Biomass Energy

- 43% of all renewables world in US

Projected Supply

- 1,500 million dry tons per year by 2030
- 600 million from energy crops like willow

Willow Genus (Salix spp.)

Salix purpurea, Salix miyabeana, Salix sachlinensis, Salix viminalis, Salix eriocephala, Salix caprea...

...and many cultivars of these species

(Salix babylonica)

Research on shrub willow since 1986

- Cropping methods
- Breeding
- Yield
- Economics
- Best practices
- Environmental sustainability
- Commercialization

Why Shrub Willow?

- ✓ Ease of establishment
- ✓ Regrows after each harvest
- ✓ 4-5 dry tons/acre/year
- ✓ Limited pests and diseases

-About 1,150 acres in the ground

-Harvesting about 350-400 acres per year

-Delivered to ReEnergy biopower facilities

-Mixed with forest residues

-Renewable electricity

Willow in Central and Northern NY

Willow Production Area

10

A ReEnergy Biopower Facility

Willow Crop Production Cycle

- -Specialized planter cuts large willow stems ("whips") to about 10 inch "cuttings" and plants in one pass
- -Equipment and planting services are available from Celtic Energy and Double A Willow
- -Improved willow varieties available from Double A Willow
- -Orders for spring planting must be placed several months in advance

Double-Row Planting Pattern

Three Years After Coppice

New Holland forage harvester and 130FB header

- ✓ Developed by Case New Holland and SUNY-ESF from 2008 2012
- Reduced harvesting costs by 35% (Eisenbies et al. 2014)
- Now available for purchase or rental

EcoWillow Model

- Cash flow model
 User-friendly & customizable
- Willow biomass crops

All phases of production

•

- Recently updated using..
 - Commercial operations
 - Latest research studies
 - Example production scenarios

Download at: www.esf.edu/willow

Base Case Scenario 2014

- Conservative estimates of profitability
- 22-year life cycle of the planting including tear-out
- Does not include best BCAP incentives or best practice targets

Model Outputs

- Break-even scenario
- Payback is entire life cycle of project

Model Input-Output Model Inputs								ESF
				Model Outputs				W.
General data	unit		Suggested Value 2018	Financial analysis		13 yrs 22 yrs		
Total field area (from Fields module)	80	100.0		NPV (Net Present Value)	8	(518,268)	\$3.049	
Total planted area (from Fields module)	80	90.0		NPV optimistic (R+10%; E-30%)*	5	\$23.457	\$61,625	
Average annual biomass yield (wet)	tona/ac/yr	10.6	10.0	NPV pensimistic (R.10%, E+10%)"	5	(\$59 597)	(\$65.527)	
Crop rotation length (harvest cycle)	yes.	3	3					
interest rate	56	8.00%	5.00%	IRR (Internal Rate of Return)	5	1.9%	5.4%	
Land costs (tax, lease, insurance)	Slaciye	36	35	IRR optimistic (R+10%; E-10%)"	*	8.8%	11.7%	
Internal administration costs	Slaciye	6	5	IRR penaimintic (R-10%; E+10%)"		4.7%	-5.9%	
Biomass price at plant gate (wet)	\$-ton	28.00	27.53	1/1 - Revenues (E - Experidizine)				
Stock removal at project and	\$/ac	400	400					
Moisture content at harvest (for dry outputs)	16	45%	45%					
				Production costs and revenues		13 915	22 yes	
Incentive Program				Annual production costs per acre	\$/ec/yr	\$240	\$235	
Years of enrollment in incentive program	yes.	11	11	Annual gross revenue per acre	\$96/yr	\$258	\$273	
Annual acreage incentive payments (AIP)	Slacityr		40	Annual net revenue per acre	Slectyr.	- \$18	\$38	
Percentage of AIP paid in harvest year	- 16	0%	0%					
Biomass incentive co-payments (wel)	Siton	0	0	Production cost per ton (wel)	\$Apr	\$26.60	\$24.59	
Establishment grants received	\$90		500	Break even price (including incentive		\$25.60	\$24.59	
				Biomass price at plant gate (wet)	\$100	\$28.00	\$39.00	
Crop Establishment			_	Net revenue per ton (wet)	Ston	\$1.40	\$3.41	
Vegetation removal (brush hogging)	\$/ac	25	25				and the second second	
Contact herbicide	\$/ac	30	30	Total startup costs prior to first harvest			\$95,855	
Plow	Slad	20	20	Startup costs per acre	Slacre		\$1,065	
Rock picking and site improvements	\$/ec			Costs for one commercial harvest	8		\$22,713	
Disc	Slac	20	20					
Plant cover crop	\$/ac	50	50	B-			44	
Kill cover crop	\$lac	30	30	Dry outputs (0% moisture)		13 yrs	22 yrs	
Planting costs (from Plant tab)	\$160	1596	1.1	Production costs per ton (dry)	\$100	\$48.36	\$44.71	
Cron Maintanana				Harveet costs per unit biomass (dry)	Stor		\$15	
· · · · Visicorre / Feife Input / Part	Harvest	tenipot	Cost detribution	Yearly cash flow Accumulated cash flow	Cash flow	Tutoret	07 11	
et C							1000 13 13 1000	IR I

Base Case Scenario + BCAP Incentives

2014 base case assumptions and 2015 BCAP funding

Model Outputs

- Positive NPV
- IRR 10%
- Payback...
 - 10 years after planting
 - Third Harvest
- All-in costs about \$25/ton

Improved Base Case + BCAP Incentives

Adds current BCAP incentives and best practice targets to base case

Model Outputs

- Positive NPV
- IRR 20%
- Payback
 - 7 years after planting
 - Second harvest
- All-in costs about \$20/ton

Willow Environmental Benefits

- ESF
- Carbon neutral lifecycle does not contribute to climate change
- Low lifecycle herbicide/pesticide/fertilizer requirements
- Perennial crop limits soil erosion and nutrient runoff
- Revitalize idle or marginal lands
- Wildlife habitat for birds and mammals
- Creates jobs and rural development

Potentially Available Land

- Recent GIS analysis
- 25-mile road network
- ReEnergy Black River
- 170,000 suitable acres
 - Hay/Pasture: 110,000 acres
 - Row Crops: 40,000 acres
 - Herbaceous/Scrub: 20,000 acres
- Can be grown on marginal lands
- Revitalize underutilized land base

Black River Plant 25 Mile Supply Shed

Land assessments & consulting services

Willow Extension Services

Training and education for BCAP willow...

- Technical assistance
- Outreach programs
- Crop monitoring
- Equipment access
- Analytical tools & research summaries

Willow Summary

- ✓ Promising source woody of biomass
- ✓ Years of research at SUNY-ESF
- ✓ Positive economic returns with BCAP
- ✓ 1,150 acres already established
- ✓ Secure market in ReEnergy
- ✓ Environmental benefits
- ✓ Extension services available
- $\checkmark\,$ BCAP incentives for a limited time

Thank You!

Please contact us at...

ReEnergy Holdings Michael Buckley <u>bcap@reenergyholdings.com</u> (518) 810-0200

Celtic Energy Farms Robert McDonagh <u>celticenergyfarm@verizon.net</u> (917) 796-7954 SUNY-ESF Justin Heavey jpheavey@esf.edu (315) 470-6775

Double A Willow Dennis Rak Dennis.Rak@doubleavineyards.com (716) 952-7023