Biomass and Bioenergy

Renewable Energy · Rural Development · Environmental Benefits

Justin Heavey - Senior Research Support Specialist SUNY College of Environmental Science and Forestry

My Background

Education

- B.S. Environmental Studies (Renewable Energy)
- M.S. Natural Resources Management

Experience

- 2008-2011
 - Office of Sustainability at SUNY-ESF (Analyst)
- 2011-2013
 - Research Foundation of SUNY (Research Assistant)
- 2013-2015
 - Willow Project Research Group (Research Support Specialist)
 - NEWBio Project (Extension Staff)
 - Office of Sustainability at SUNY-ESF (Fellow)
 - Instructor Environmental and Energy Auditing

Overview

1. Biomass & Bioenergy

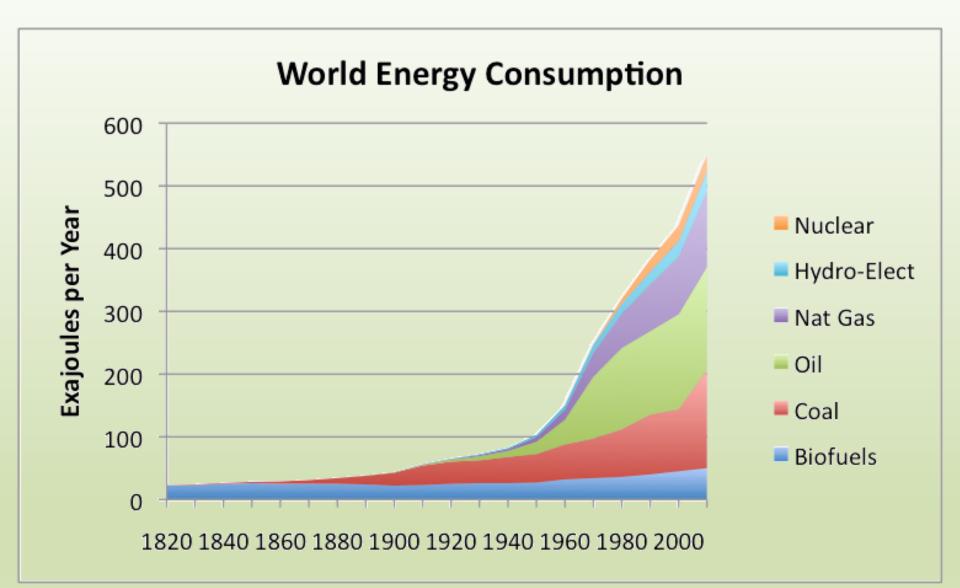
2. The Willow Project at SUNY-ESF

3. Willow Production and Management

4. Environmental & Other Benefits

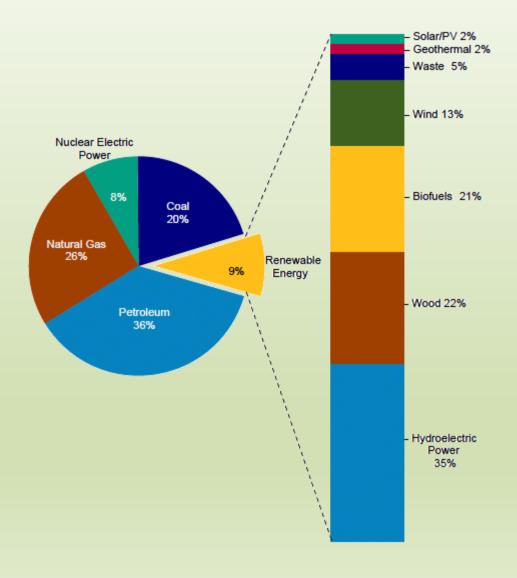
Biomass and Bioenergy

Bioenergy


Energy from the sun stored in plants (biomass)

- Agricultural Crops
 - Corn, soybeans, sunflower

- Herbaceous Crops
 - Switchgrass, Miscanthus, ag residues
- Woody Biomass
 - Fire wood, forest residues
 - Short rotation woody crops...
 - Poplar, southern pine, shrub willow

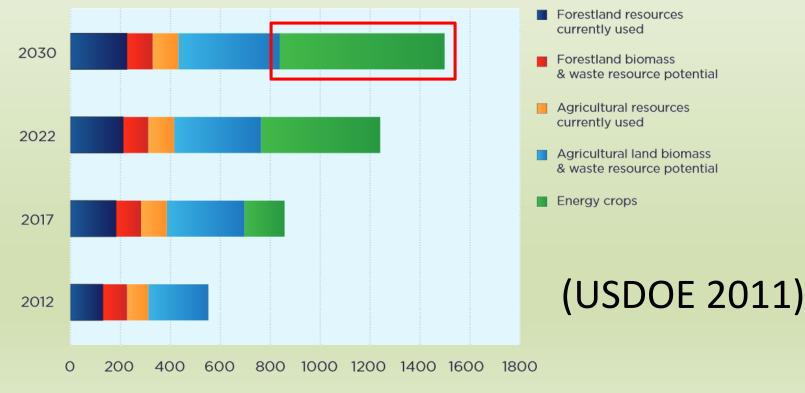


(EIA, 2011)

US Energy Use

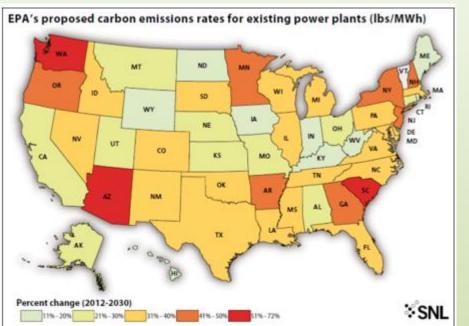
Renewable Energy=

• 9% of total supply


Biomass/Bioenergy =

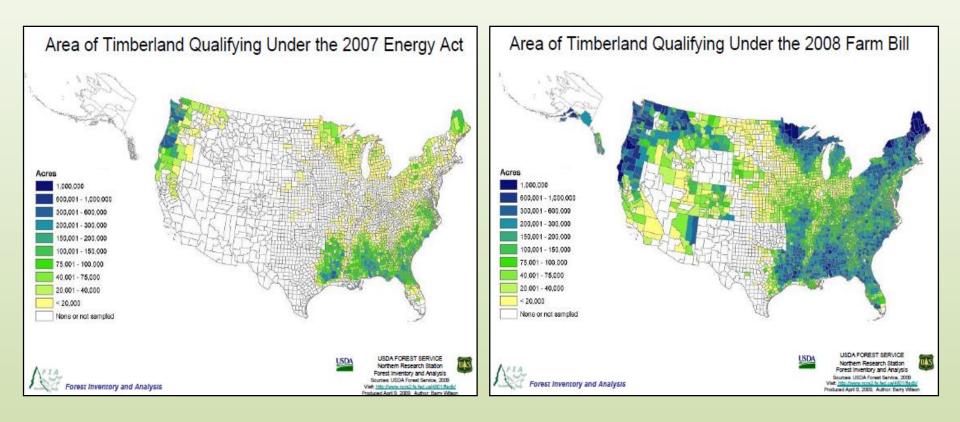
- 43% of renewables
- Wood & Biofuels

(EIA, 2011)


Projected Biomass Supply

- Potentially large increase over next 15 years
- Largest percentage from energy crops
- i.e. Shrub willow and others
- 600 Million tons/year (dry) from energy crops alone

Million dry tons


Policy Uncertainty

CO₂ reduction plans will be developed on a state by state basis.

- 31% of U.S. CO₂ emissions come from power plants
- Federal Clean Power Plan (Aug. 2015) reduces CO₂ power plant emissions by 32% (2005 base) by 2030
- May generate new interest in biomass, but the US EPA has not defined biomass or if it is C neutral, low C fuel or something else.

Impact of Biomass Definitions

 Amount of timberland that could be included as acceptable biomass is up to 70% lower in the EISA 2007 definition compared to the Farm Bill

SUNY-ESF Willow Project ESF

Research on shrub willow since 1986

- ✓ Breeding
- ✓ Yield trials
- ✓ Economic analysis
- ✓ Harvesting & Logistics
- ✓ Sustainability
- ✓ Multiple uses & benefits

Commercialization of shrub willow for biomass energy and alternative applications

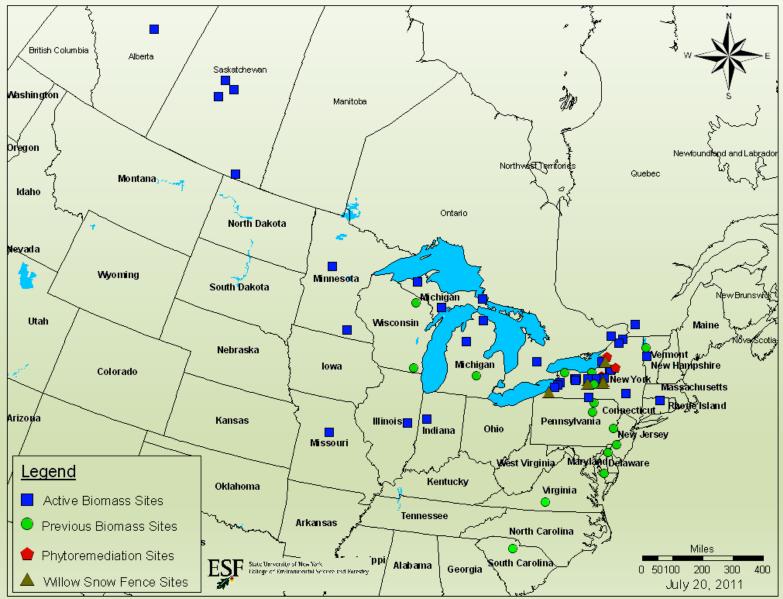
Funding and Collaborators

celtic energy farm

2

U.S. Department of Transportation

United States National Institute Department of of Food and Agriculture Agriculture



PENNSTATE.

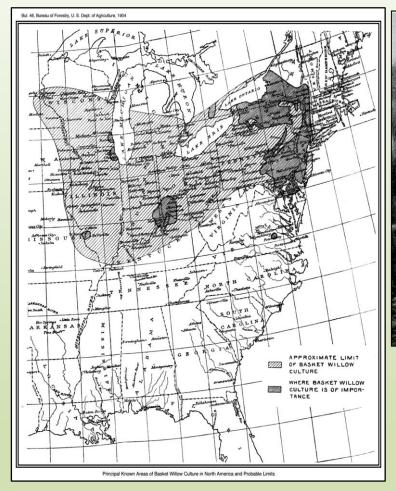
...and many others

Willow Research Trials

Salix purpurea, Salix miyabeana, Salix sachlinensis, Salix viminalis, Salix eriocephala, Salix caprea...

...and many cultivars of these species

(Salix babylonica)


Ecology of Shrub Willow

- Occurs naturally around rivers, wetlands and other fresh water ecosystems
- Wide geographic range including most of New York, US and Canada



- Hundreds of species world wide Salix spp.
- Pioneer species adapted to wide range of conditions

Regional History

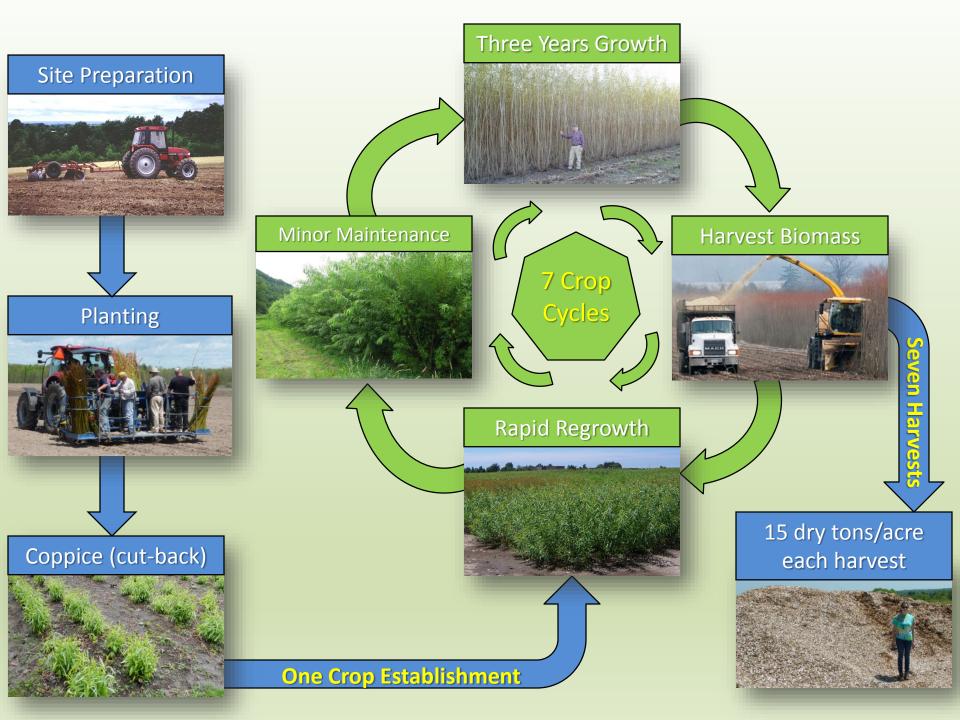
Hubbard, W. 1904.

- Onondaga County was the center of the U.S. willow basket industry in the early 1900s
- ESF initiated willow biomass research in 1986

Shrub Willow

- ✓ 5 dry tons/acre/year
- Adaptable to various sites
- Clonal Propagation
- Rapid Growth Rates
- Coppice Ability
- Limited pests & diseases

Forestry


- Woody plantsHardwood biomass
- Perennial species
- •Multi-year harvest cycle

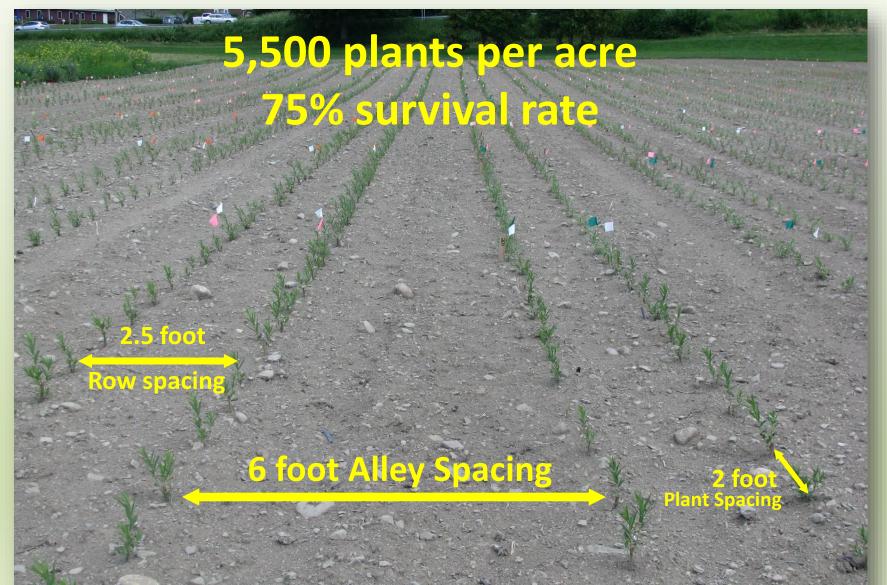
Shrub Willow

Bioenergy Crops

Agriculture

- Agricultural lands
- •Agricultural machinery
- •Cultivation practices
- Intensive crop management

Mechanized Planting


Unrooted Stem Cuttings

Just Planted

Double-Row Pattern

Few Weeks After Planting

End of First Growing Season

Coppice

Mid-Summer

Five to ten feet per year

Five to Ten Feet per Year

Large Woody Stems

1 to 2 inch diameter

Mechanized Harvesting

Cut Stools

The Following Spring

Repeat seven times

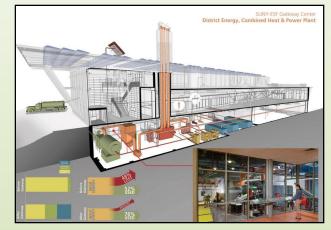
Biomass Energy Feedstock

Forest Residues/Slash

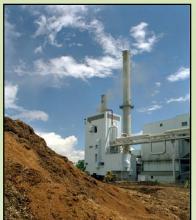
- Logging byproduct
- Harvest and thinning
- Tree tops and branches
- Non-Merchantable logs
- Woody biomass feedstock



Multiple Pathways


Biopower

Thermal


Combined Heat & Power

Co-firing

Gasification

Biorefinery

Biodegrad

³postable

X20°C 00ml±1m 100

> Ex20°c 50/1.0n =0.5m

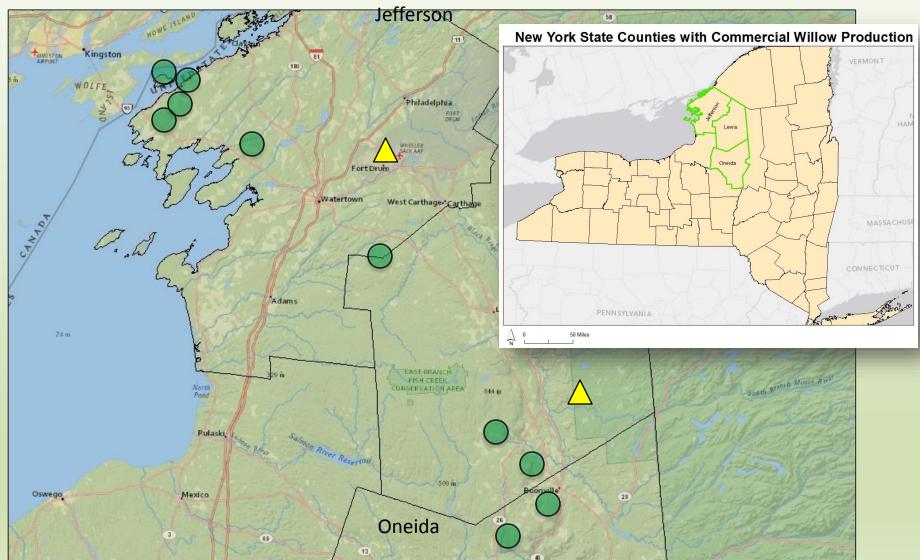
GLUE

State of the Willow Industry

- 60 80 thousand acres in Europe (AEBIOM, 2011)
 - Development since 1970's
 - Higher fuel and biomass prices
 - More renewable energy mandates and incentives
- Commercial production in US
 - Less incentives, lower biomass prices
 - Previous (unsuccessful) efforts
 - Now 1200 acres established in northern NY
 - Dedicated end user, 11 year contracts
 - USDA BCAP
 - SUNY-ESF, Cornell University, NEWBio

Willow in Northern NY

-About 1200 acres in the ground


-Harvesting about 100 - 200 acres per year

-Delivered to ReEnergy biopower facilities

-Mixed with forest residues

-Renewable electricity

Northern New York Willow Biomass Production and Biopower

Willow Production Area

Miles

10

0

A ReEnergy Biopower Facility

Biomass Crop Assistance Program

Catalyze commercial adoption & innovation...

- Partial establishment grants
- Land rental payments
- Purchasing contracts

Committed to the future of rural communities.

Lasting funding opportunity was 2013


- Possible future funding
- Included in current farm bill
- Successful production and end use in Northern NY
- Project Sponsor ReEnergy Holdings LLC

~300 MWs of renewable energy generation

• ~ 300 employees; 5 states

ReEnergy Holdings

Renewable Energy Facility
 Recycling Facility
 Headquartered in Latham, NY

- 80 employees
- 103 MW of installed capacity, or 738,000 MWh enough to serve 96,000 homes
- \$24 million in annual fuel purchases
- Support more than 300 indirect jobs, most in the forest

ReEnergy Facilities in NYS

- ReEnergy Black River: 60 MW
- ReEnergy Lyonsdale: 22 MW
- ReEnergy Chateaugay: 21 MW

ReEnergy Biopower

- Large demand for woody feedstocks
- Primarily forest residues
- Recent contract with Fort Drum Army Base
- 100% renewable electricity for next 20 years

Fuel Supply Program

End-market for BCAP Shrub Willow

- Equipment Leasing Program
 - ReEnergy launched a program allowing loggers to gain access to state-of-the-art equipment and secure long-term agreements to provide fuel to ReEnergy

• SFI Certification

- First company solely devoted to electricity production to be certified by SFI
- Commitment to use best management practices and protect forest health

- Over 5,900 tons of willow delivered to Lyonsdale and Black River facilities 2013-2015
- Willow found to be suitable fuel in terms of moisture and ash content, now incorporated directly with other feedstocks upon delivery.
- Current willow plantings are planned to be harvested about 350-400 acres per year.
- This will produce roughly 8,000-9,000 green tons of feedstock annually

Willow Chip Quality

Monitoring commercial willow chip quality since 2012... (Eisenbies et al. 2014, Conable et al. 2014, Heavey et al. 2015)

Quality characteristics that meet or exceed end user specifications with low variability

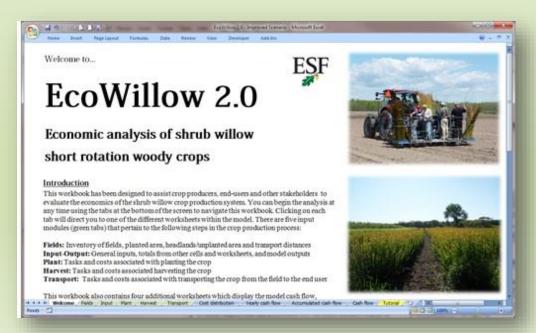
Suitable for mixing with forest residue chips for biopower

Specifically....

Moisture: 43% ± 2%

Ash: 3% ± 0.5%

Energy: 8200-8300 btu/lb


EcoWillow Model

- Cash flow model
 User-friendly & customizable
 - Willow biomass crops

All phases of production

•

- Recently updated using.
 - Commercial operations
 - Latest research studies
 - Example production scenarios

Download at: www.esf.edu/willow

Economics of Production

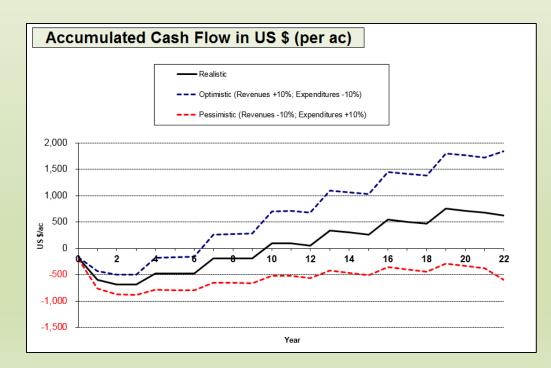
Base Case Scenario 2014

- Conservative estimates of profitability
- 22-year life cycle of the planting including tear-out
- Does not include best BCAP incentives or best practice targets

Model Outputs

- Break-even scenario
- Payback is entire life cycle of project

Model Input-Output Model Inputs								ESF
				Model Outputs				1
General data	usit		Suggested Value 2018	Financial analysis		13 yrs	ZZ yrs	
Total field area (from Fields module)	ac.	100.0		NPV (Net Present Value)	8	(518,268)	\$3.049	
Total planted area (from Fields module)	80	90.0	1	NPV optimistic (R+10%; E-30%)*	5	\$23.457	\$61.625	
Average annual biomass yield (wet)	tota/ac/y/	10.6	10.0	NPV penalmintic (R.50%, E+10%)*	5	(\$59 997)	(\$85,527)	
Crop rotation length (harvest cycle)	yes.	3	3					
interest rate	5. 1	5.00%	E-00%	IRR (Internal Rate of Return)		1.9%	5.4%	
Land costs (tax, lease, insurance)	Slaciye	36	35	IRR optimistic (R+10%; E-10%)*	*	8.8%	11.7%	
Internal administration costs	Slaciye	6	5	IRR penaimintic (R-10%; E+10%)*	~	42%	-5.9%	
Biomass price at plant gate (wet)	Siton	28.00	27.63	10 - Revenues (E - Experietures)				
Stock removal at project and	S/ac	400	400					
Moisture content at harvest (for dry outputs)	16	45%	45%					
				Production costs and revenues		13 915	22 yrs	
Incentive Program				Annual production costs per acre	\$/ec/yr	\$240	\$236	
Years of enrollment in incentive program	yes.	11	11	Annual gross tevenue per acre	\$laclyr	\$258	\$273	
Annual acreage incentive payments (AIP)	Siscipe		40	Annual net revenue per acre	\$40yr	\$18	\$38	
Percentage of AIP paid in harvest year	1.16	0%	0%	10 m				
Biomass incentive co-payments (wel)	Siton	0	0	Production cost per ton (wel)	\$Apr	\$26.60	\$24.09	
Establishment grants received	\$/ac		500	Break-even price (including incentives)	Ston.	\$25.60	\$24.59	
				Biomass price at plant gate (wet)	\$100	\$28.00	\$29.00	
Crop Establishment				Net revenue per ton (wet)	Ston	\$1.40	\$3.41	
Vegetation removal (brush hogging)	\$/ac	25	25				1.42010	
Contact herbicide	\$/ac	30	30	Total startup costs prior to first harvest	5		\$95,855	
Plow	Slac	20	20	Startup costs per acre	Slacre		\$1,065	
Rock picking and site improvements	5/ec	- 0		Costs for one commercial harvest	- 1		\$22,713	
Disc	Slac	20	20					
Plant cover crop	\$/ac	50	50					
Kill cover crop	\$lac	30	30	Dry outputs (0% moisture)		13 yrs	22 ym	
Planting costs (from Plant tab)	\$160	1596		Production costs per ton (dry)	\$100.	\$48.36	\$44.71	
				Harvest costs per unit biomass (dry)	\$100		815	
Cron Maintanana / Felle Input / Plant	station 7	hansont -	Cost dehibution	Tearly cash flow Accumulated cash flow O	and them	Tutoria	op The	
W 3							100 13 13 100	102

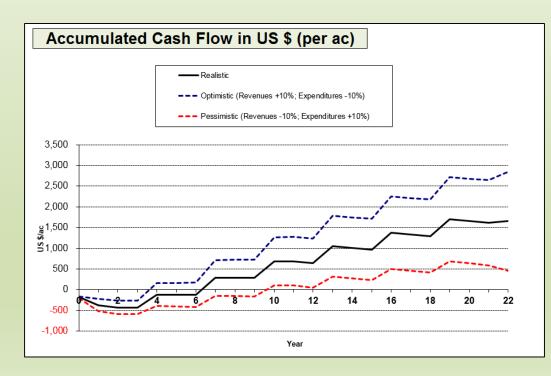

Economics of Production

Base Case Scenario + BCAP Incentives

2014 base case assumptions and 2015 BCAP funding

Model Outputs

- Positive NPV
- IRR 10%
- Payback...
 - 10 years after planting
 - Third Harvest
- All-in costs about \$25/ton


Economics of Production

Improved Base Case + BCAP Incentives

 Adds current BCAP incentives and best practice targets to base case

Model Outputs

- Positive NPV
- IRR 20%
- Payback
 - 7 years after planting
 - Second harvest
- All-in costs about \$20/ton

Environmental Benefits

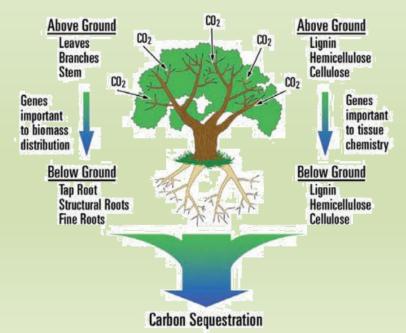
... is renewable enough?

Marginal and Idle Lands

Can be grown on lower quality soils

- Idle land Not profitable for ag in current markets
- 1 million acres in NYS poorly drained, wet soils
- Tap underutilized resource
- Rural development
- Productive ecosystems
- Not compete with food/feed

Carbon Neutral Lifecycle


✓ Net-zero GHG emissions (Caputo et al. 2014)

Does not contribute to climate change

✓ CO₂ sequestered above- and belowground

✓ Offsets +100% of emissions

- All phases of lifecycle
 - Power plant construction

Energy Return on Investment

It Takes Energy to Make Energy!

Willow Energy Return

 Between 15:1 and 45:1 (Caputo et al. 2014)
 Other Renewable Sources

- Wind ~20:1
- Solar PV ~10:1
- Corn Ethanol ~2:1 or less

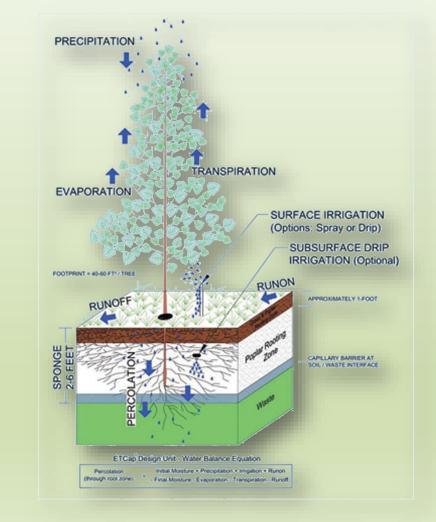
Wildlife

Willow increases habitat & biodiversity

(Campbel et al. 2012)

- Birds and small mammals
- Bees and pollinators
- Beneficial soil organisms

Deer, turkeys, other game

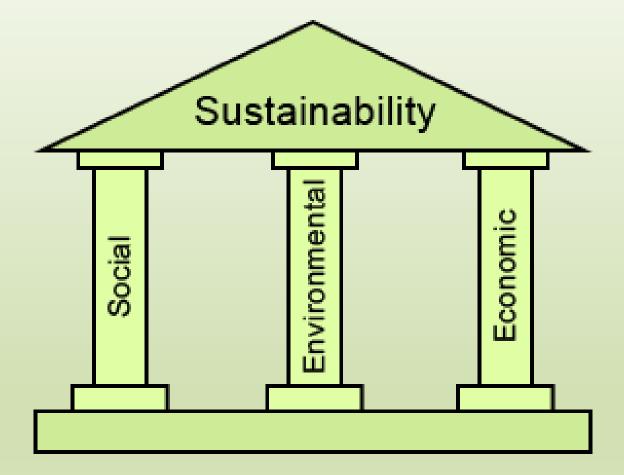

Bioremediation

Plants do work of machines & industrial processes....

- ✓ Water filtration
- ✓ Soil remediation
- ✓ Landfill caps
- ✓ Pollution control

Same traits as bioenergy..

- ✓ High growth rate
- ✓ Coppice ability
- ✓ Fibrous root system
- ✓ Stress tolerances


Numerous Benefits

- 1. Alternative landfill cap cheaper and more effective
- 2. Produces bioenergy from willow stems
- 3. Protects local watershed and ecosystems
- 4. Documented increase in wildlife and biodiversity
- 5. Recreation opportunities nature trails, bird watching, etc

Willow systems can produce multiple-benefits...

For comprehensive sustainability

Other Environmental Benefits

Low Impact...

- Natural weed control (Heavey & Volk 2014)
 - limits the need for herbicides once crop is established
- Disease and pest resistance (Abrahamson et al. 2010)
 - limits the need for pesticides
- Low nutrient requirement, high nutrient cycling
 - limits need for fertilizers (energy/GHG/cost intensive)
 - (Quaye et al. 2014, Hang et al. 2014)
- Perennial cover and root system (Kloster, 2014)
 - Limits soil erosion and nutrient loading dramatically compared to annual crops

Jobs and Rural Development

Previous estimates (NYSERDA 2010, Proakis et al. 1999)...

10,000 acres of bioenery crops...

- ~40 50 direct jobs
- ~20 30 indirect/induced jobs
- Biomass production, transport and end-use

Other Multifunctional Systems

Living Snow Fences

Municipal/Organic Wastes

Stream Bank Stabilization

Landscape/Ornamental

Careers in Bioenergy

- Researcher
- Educator
- Extension
- Producer
- End User
- Entrepreneur
- Manager
- Technician
- Policy Maker

Summary

- Bioenergy is an important source of renewable energy
- ✓ Shrub willow is an ideal biomass feedstock
- ✓ Economics can be favorable
- ✓ More than just energy
- ✓ Rural development and careers
- Environmental benefits

Thank You

Justin Heavey ESF Willow Project WWW.esf.edu/willow jpheavey@esf.edu

