METABOLIC RESPONSES TO GRADUAL COOLING IN CHICKEN EGGS TREATED WITH THIOUREA AND OXYGEN

H. TAZAWA,* G. C. WHITTOW,† J. S. TURNER‡ and C. V. PAGANELLI§

*Department of Electronic Engineering, Murosan Institute of Technology, Murosan 050, Japan; †Department of Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; ‡Department of Zoology, University of Cape Town, Rondebosch 7700, Republic of South Africa; and §Department of Physiology, Schools of Medicine and Dental Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA

(Received 17 October 1988)

Abstract—1. Late prenatal chicken embryos in eggs injected with saline showed a feeble homeothermic metabolic response to gradual cooling. This response was absent in thiourea-treated eggs. This suggests that the incipient homeothermic metabolic response before paranatal life may be attributed to thyroid development.
2. The compensatory metabolic response disappeared in embryos exposed to a hypoxic environment, while it was augmented in eggs in pure O₂, decreasing as ambient temperature fell.
3. These results may indicate that the homeothermic metabolic response in late embryos is O₂-conductance-limited and power-limited as previously suggested.

INTRODUCTION

The homeotherm produces heat at the same rate as it is lost to the surroundings. Avian embryos on the other hand need heat from their surroundings to maintain adequate metabolism for development. After about the midpoint of incubation in chicken eggs, the heat produced by metabolism, overtakes heat loss, raising the egg temperature above that of the surroundings (Romanoff, 1941; Romijn and Lokhorst, 1955, 1956, 1960; Tazawa and Nakagawa, 1985; Tazawa and Rahn, 1986). The thermal conductance of chicken eggs is about 72 mW/°C (Tazawa et al., 1988), while the rise in egg temperature above the environmental temperature is, for instance, about 0.5 and 2°C for young (12 days) and late (18 days) embryos, respectively. The metabolic heat required to produce these rises is about 35 and 140 mW in young and late embryos, respectively. This implies that when chicken eggs incubated at 38°C are exposed to an ambient temperature which is lowered by only 2°C, the heat lost through the egg becomes greater than that produced by metabolism; therefore the prenatal embryos cannot be homeothermic. Nevertheless, this does not necessarily mean that prenatal chicken embryos are not provided with some homeothermic capability, viz. a compensatory metabolic response to egg cooling. If the cooling temperature is very low, a feeble compensatory ability may be overwhelmed by the very much larger losses of heat (Tazawa et al., 1988).

Freeman (1964) reported the first indication of a homeothermic metabolic response on the 19th day of incubation; if the reduction in the ambient temperature is small (about 5°C), there is a transient rise in metabolic rate. It has been reported that there is an increase in carbohydrate catabolism in the 19-day-old embryo during cooling (Freeman, 1967) and the respiratory quotient of the late embryos is increased in response to cold exposure (Romijn and Lokhorst, 1955). In neonatal chicks, the importance of the thyroid in thermoregulation was suggested (Freeman, 1970, 1971).

In a previous report (Tazawa et al., 1988), developing chick embryos were examined for metabolic responses to a gradual cooling procedure which kept the imbalance between heat loss and heat production as small as possible. The results suggested that thermoregulatory mechanisms are “switched on” several days prior to external piping. This coincides with thyroid development during the late stages of prenatal life (Thommes and Ilyka, 1977; Decuyper et al., 1979; Ockelford et al., 1983), which has also been reported for Japanese quail embryos (McNabb, 1987). In addition, the previous report (Tazawa et al., 1988) suggested that the diffusive conductance of the eggshell to O₂ is a constraint on thermoregulatory mechanisms, i.e. “O₂-conductance limited”. The present study was therefore designed to investigate the effects of thiourea, which antagonized the metabolic effect of thyroid hormones, and of altered ambient O₂ on the metabolic response of late chick embryos to gradual cooling.

MATERIALS AND METHODS

Fertile eggs of the domestic fowl (Gallus domesticus) were incubated at 38°C in a forced-draft incubator and turned automatically every 3 hr.

The eggs were treated with thiourea; the quantity administered was similar to that reported by Wittmann et al. (1984). Eggs were removed from the incubator at 17 days of incubation and the eggshell was pierced with a sharp syringe needle. Fifty mg of thiourea was dissolved in 5 ml saline and 0.25 ml of this solution (32.8 μmol) was injected into the egg through the hole. The hole was then covered with epoxy glue. The eggs were replaced in the incubator until the
gradual cooling test was conducted some day after the following day to 24 days of incubation. In order to examine the possible adverse effect of saline injection on the metabolic response of embryos to cooling, other eggs (i.e. sham eggs) were subjected to injection of the same volume of thiourea-free saline at 17 days and to the gradual cooling test some day after the following day to 20 days.

Two series of experiments were designed to investigate the effect of ambient O$_2$ on the metabolic response to cooling. One was to expose the eggs to a small reduction of ambient O$_2$ and the other to pure O$_2$, before starting egg cooling. The metabolic chamber employed for the measurement of M_{O_2}, opened to air through a 3-way stopcock. In the hypoxic experiment, the stopcock was closed for about 5 min to reduce the O$_2$ concentration in the chamber due to consumption by the egg. For the pure O$_2$ environment, on the other hand, the metabolic chamber with the egg was vented by pure O$_2$ for 1 hr and then the M_{O_2} was determined.

The determination of M_{O_2} was made employing a modified volumetric microrespirometer (Scholander, 1942; Scholander and Edwards, 1942; Ackerman et al., 1980; Tazawa and Rahn, 1986). The respirometer consisted of two equal-size Plexiglas cylindrical chambers (volume of ca 300 ml) connected by a U-type glass manometer filled with water. The experimental egg was placed in one chamber (metabolic chamber) containing KOH solution and the other (compensating chamber) containing an infertile egg. Both chambers, immersed in a thermostatted water bath, were opened to the atmosphere through stopcocks and the metabolic chamber was vented with air or pure O$_2$ through conduits installed in the chamber. When the M_{O_2} was measured, all the air channels were closed and a glass syringe containing pure O$_2$ was connected to the metabolic chamber through the stopcock. As the egg consumed O$_2$ and the concomitantly produced CO$_2$ was absorbed by KOH, the pure O$_2$ in the syringe was infused to correct the displacement of water level in the manometer. The correction was made every 2 min for 8 min and the cumulative volume of O$_2$ infused was read. The slope of the regression line for the relationship between infused O$_2$ and time was corrected to the M_{O_2} of the egg at standard temperature and pressure. The M_{O_2} of individual eggs was measured first at 38°C for 1 hr, providing six determinations which were averaged for the control M_{O_2}. Then, the water bath thermostat was switched off and the bath containing the egg chamber was left to cool. The temperature inside the metabolic chamber was recorded with a thermometer probe sensitive to changes to 0.1°C. The cooling time constant was about 5.6 hr (Tazawa et al., 1988).

For eggs exposed to pure O$_2$, the M_{O_2} at 38°C was measured first in air and then over a period of 1 hr after 1 hr of O$_2$ exposure. The eggs were then cooled.

RESULTS

The M_{O_2}s in air at 38°C determined for intact control eggs, saline-injected sham eggs, thiourea-treated eggs, ambient O$_2$-deficient eggs, and that of eggs before and after exposure to pure O$_2$ are summarized in Table 1. The M_{O_2}s of individual experimental groups (B–E) measured in air are not significantly different from the O$_2$ consumption of intact control eggs (A) ($P > 0.1$ by Student's unpaired t-test). The increased availability of O$_2$ due to exposure to pure O$_2$ raised the O$_2$ uptake by about 18% on average (Table 1), which is intermediate between the previously reported values (Høiby et al., 1983; Stock et al., 1985).

The metabolic responses to gradual cooling in air were first determined for seven intact eggs 18–20 days old (group A in Table 1) to confirm the previous results (Tazawa et al., 1988). There was a “plateau phase” in metabolism at the beginning of cooling as previously reported for prenatal embryos aged 18 days onward (Fig. 2b of Tazawa et al., 1988). In this phase, metabolism remained essentially constant (i.e. within 95% of 38°C control M_{O_2}) until ambient temperature declined to about 35°C. The sham eggs injected with saline (group B in Table 2) presented metabolic responses identical to those of the control eggs (Fig. 1). The saline was given at 17 days of incubation and the metabolic responses to cooling were determined in 3, 3 and 1 embryos for 18, 19 and 20 days of incubation, respectively.

Two out of 12 embryos administered thiourea at 17 days pipped externally, but did not hatch, and the remainder neither pipped the egg, nor escaped from the eggshell up to the time when the embryo died or our measurements ceased at 24 days of incubation.

Table 1. Oxygen uptake (M_{O_2}, ml/day) at 38°C, in air, for intact control eggs (A), sham eggs (B), thiourea-treated eggs (C), ambient O$_2$-deficient eggs (D) and eggs subsequently exposed to pure O$_2$ (E)

<table>
<thead>
<tr>
<th>No.</th>
<th>Days</th>
<th>M_{O_2} ± SD (ml/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18-20</td>
<td>620 ± 66</td>
</tr>
<tr>
<td>B</td>
<td>18-20</td>
<td>634 ± 34</td>
</tr>
<tr>
<td>C</td>
<td>18-20</td>
<td>603 ± 81</td>
</tr>
<tr>
<td>D</td>
<td>18-20</td>
<td>606 ± 67</td>
</tr>
<tr>
<td>E</td>
<td>18-20</td>
<td>628 ± 83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>744 ± 94*</td>
</tr>
</tbody>
</table>

Values are mean ± SD. *M_{O_2} in pure O$_2$.

![Fig. 1. Oxygen uptake of prenatal embryos, aged 18–20 days, during gradual cooling, shown as a percentage of the 38°C control M_{O_2}](image1)

The eggs were injected with 0.25 ml saline at 17 days of incubation. Dotted area indicates the M_{O_2} maintained within 95% of the control value despite a 3°C fall in ambient temperature.

![Fig. 2. Oxygen uptake of embryos, aged 18-24 days, during gradual cooling, shown as a percentage of 38°C control M_{O_2}](image2)

The eggs were injected with 38.2 μmol thiourea in 0.25 ml saline at 17 days of incubation. Dotted area is the same as for Fig. 1.
Fig. 3. Oxygen uptake of prenatal embryos, aged 18–20 days, during gradual cooling, shown as a percentage of the 38°C control M_{O_2}. The embryos were exposed to O$_2$-deficient air. Dotted area is the same as for Fig. 1.

Fig. 4. Oxygen uptake of prenatal embryos aged 18–20 days, during gradual cooling, shown as a percentage of the 38°C control M_{O_2}. The embryos were exposed to pure O$_2$. Dotted area is the same as for Fig. 1.

Figure 2 represents 12 determinations of the metabolic responses of embryos aged from 18 to 24 days (group C in Table 1; one embryo each for 18 and 19 days old and two embryos for each day from 20 to 24 days). Two embryos pipped the egg externally at 20 days, and one was measured for its metabolic response the following day, and another at 23 days.

The O$_2$ deficiency in the environment was due to consumption by the egg. The metabolic response to cooling was measured in eight embryos (group D in Table 1; 5, 7 and 2 embryos for days 18, 19 and 20, respectively). While the O_2 uptake at 38°C was essentially the same as that of control eggs in air, the M_{O_2} of all eggs decreased as the ambient temperature fell, failing to reach a plateau phase (Fig. 3). The metabolic response to cooling in a pure O$_2$ environment was determined in 13 eggs (group E in Table 1; 5, 6 and 2 eggs for 18, 19 and 20 days of incubation, respectively). The M_{O_2} decreased to the control level in air when the ambient temperature was lowered below 34–32°C (Fig. 4).

DISCUSSION

In a previous report (Tazawa et al., 1988), developing chick embryos aged from 12 to 20 days and externally pipped embryos were measured for metabolic responses to gradual cooling in order to investigate if prenatal embryos are provided with a compensatory metabolic response to cooling. The responses of young (12 days to about 17 days old) and late embryos (about 18 days onward) were different (Fig. 2 of Tazawa et al., 1988). While the M_{O_2} of young embryos decreased with decreasing ambient temperature, late embryos maintained their M_{O_2} within 95% of the 38°C control until the ambient temperature decreased below 35°C; the metabolic rate was "uncoupled" from ambient temperature, forming a plateau in M_{O_2} response. The externally pipped embryos responded to gradual cooling by increasing the M_{O_2} above the control value. The results suggested that a feeble homeothermic metabolic response to egg cooling appears around 18 days of incubation and the response is strengthened after external pipping. The emergence of a compensatory metabolic response to cooling in late prenatal embryos was investigated in another way (Tazawa et al., 1989), where the embryo was measured for M_{O_2} at 38°C and after reaching a quasi-equilibrium state (5–9 hr) at lowered ambient temperature. While the Q_{10} for M_{O_2} was about 2 in young embryos (12 and 16 days old), the near-term embryos (18 days old) presented a Q_{10} of about 1.5 at moderately lowered temperature (32°C).

The previous report (Tazawa et al., 1988) further suggested that incipient endothermic homeothermy which precocial hatchlings in ovo may exhibit, may be prevented by a low gas conductance of the eggshell, effectively "throttling" the egg's heat production capacity. Therefore, in the present experiment, in addition to the gradual cooling test made in thiourea-treated eggs, the effect of the eggshell was examined indirectly by lowering or raising O$_2$ concentration in the surroundings.

The sham eggs which were injected with thiourea-free saline presented a plateau phase of M_{O_2} in response to gradual cooling similar to that of the intact eggs, indicating that the saline injection had little effect on the metabolic response (Fig. 1). When the eggs were then treated with thiourea, most embryos failed to pip the egg externally and none of the embryos hatched, as indicated previously (Wittmann et al., 1984). The M_{O_2} at control temperatures [603 ± 81 (SD) ml/day, Table 1] was insignificantly lower than that of intact control eggs (620 ± 66 ml/day), and there was no trend to change with age. The thiourea, antagonizing the metabolic effects of thyroid hormones, likely induced a hypothyroid state (Wittmann et al., 1984). The 20- and 23-day-old embryos (one embryo for each day) initially responded to cooling with increasing M_{O_2}, but thereafter failed to maintain it. The embryos which would have hatched in the absence of thiourea; i.e., those aged 21–24 days, also reduced their M_{O_2} as the ambient temperature fell, indicating that the homeothermic metabolic response to cooling was evidently blocked by the thiourea.

The feeble compensatory response was also impeded by a lack of O$_2$ in the environment (Fig. 3), while it was augmented by increasing ambient O$_2$ (Fig. 4). The diffusive conductance of the eggshell to O$_2$ is fixed (Paganelli et al., 1978), and hypoxia is the price the embryo must pay to increase its heat production. This would impose a limit on the amount of heat that an embryo in an enclosed egg can produce, which was previously defined as "O$_2$-conductance limited" (Tazawa et al., 1988). The
deficiency in ambient O2 produced in the present experiment was small enough not to reduce significantly the M02 at 38°C (606 ± 67 ml/day, N = 8) compared with control values for eggs in air (620 ± 66 ml/day, N = 7) (Table I). The O2 concentration in the chamber was not measured, but judging from the O2 consumption of the egg and the chamber volume, it was probably not less than 19.5%. The hypoxia, even if it is small, therefore prevents a feeble compensatory metabolic response, indicating indirectly that the eggshell O2 conductance limits the thermoregulatory function of late prenatal embryos.

While the compensatory metabolic response emerging in chicken embryos during the last stages of prenatal development disappears in O2-deficient air, the metabolic response to cooling is augmented in O2-rich air (Fig. 4). The O2 supply to the egg was improved by increasing the O2 tension gradient in the face of a fixed shell conductance. The M02 in air at 38°C (626 ± 83 ml/day, N = 13) increased by about 18% in pure O2 at 38°C (744 ± 94 ml/day) (Table I). After exposure to gradual cooling, the increase in M02 above the 38°C air control value did not fall until the ambient temperature was reduced below 34-32°C. While the metabolic response to cooling was strengthened by increasing the O2 supply, it could not be maintained as the ambient temperature fell further. This may be due to an O2 supply for the embryo limited by the blood O2 carrying capacity and physiological shunt in the allantoic circulation (Piper et al., 1980). Simultaneously, the thermoregulatory capacity of the embryo is "power-limited" as previously suggested for newly hatched neonates (Tazawa et al., 1988).

Acknowledgements—The present study was supported in part by the Japan Ministry of Education, Science and Culture Fund (No. 62550294) and the Hawaii Heart Association.

REFERENCES

