ERE445/645:
HYDROLOGIC MODELING
SYLLABUS

PROFESSOR: Chuck Kroll 424 Baker Lab cnkroll@esf.edu

TEACHING ASSISTANT: Djibo Rapant 410 Baker Lab dfrapant@syr.edu

OFFICE HOURS: To be announced

MAILBOX: Outside Baker 402

LECTURES: Tuesdays and Thursdays, 9:30 – 10:50, Baker 437

COURSE PACKET/TEXT:

There is no text required. You will be provided numerous handouts and reading, but to supplement this some suggestion are:

An excellent reference book on hydrology and hydrologic processes.
A general book on hydrology
Any hydrology book would be useful.
A general book on probability and statistics
The *Handbook of Hydrology* provides excellent summaries, but a good probability and statistics text is useful.

PREREQUISITES: Some Computer Programming Skills (you can start from scratch, but it’s nice to have some background)
First Year Calculus (not totally necessary, but useful)
At least one Probability and Statistics Course (absolutely required)
A Good Attitude (preferred)

GRADING: 80% Assigned Problems, Projects and Presentations
20% Final Exam
COURSE OBJECTIVES:

To develop and improve your computer programming and data manipulation skills

To gain experience in the development and programming of stochastic and deterministic hydrologic models

To introduce you to commonly employed rainfall-runoff models and modeling techniques, and to investigate the performance of some of these models

To critically evaluate some hydrologic publications, models, and modeling results

To provide an introduction to physics based and empirical models for hydrologic phenomenon, such as:

- Precipitation
- Evapotranspiration
- Runoff Mechanisms
- Infiltration
- Groundwater Discharge
- Streamflow

To introduce you to various literature sources that may aid you in future modeling efforts

LEARNING OUTCOMES:

By the end of this course, students will have reinforced their ability to use the techniques, skills, and modern engineering/science tools necessary for engineering/science practice

PROBLEM SETS:

There will be a number of assigned programming/modeling problems throughout the semester

Most problems will require the development of a mathematical model, construction of an appropriate computer program, and use of the program to solve the problem

Your code must be well documented, with all variables clearly defined at the beginning of the program!

You may freely discuss methods, programs, and results with anyone. However, you must complete your own analyses, programming, and write-ups. This write-up should be professional (i.e. clear and concise), but does not need to be typed.