Foliar N and P concentrations and resorption indicate P limitation in a northern hardwood forest

Kara E Gonzales\(^1\),² and Ruth D Yanai\(^1\)

\(^1\)State University of New York College of Environmental Science and Forestry; \(^2\)California Department of Transportation

Background

- **Resorption:**
 - Process by which trees translocate nutrients from tissues prior to senescence
 - Important nutrient conservation mechanism
- **Ways to measure:**
 - **Proficiency:**
 - Concentration to which nutrients are reduced in leaf litter
 - Efficiency:
 - Ratio of green leaf concentrations to the amount resorbed (expressed as percentage)
 - Efficiency = \(\frac{\text{Element}_{\text{green}} - \text{Element}_{\text{litter}}}{\text{Element}_{\text{green}}} \times 100\)
- **Why it matters:**
 - Nitrogen (N) and phosphorus (P) are most limiting nutrients to plant growth
 - Attempts to link resorption of a nutrient with availability of that nutrient have yielded mixed results
 - Possibility that trees are co-limited by multiple elements so that resorption of, e.g., N, depends on availability of both N and P
 - Co-limitation may occur at multiple scales
 - Resorption of P was previously shown to depend upon the availability of both N and P in these forests

Objectives

- Compare green leaf and litter N and P concentrations and resorption efficiency
 - What can green leaf concentrations tell us about limitation?
 - Is relative resorption related to limitation status?
 - Can we see N and P interactions in resorption?
 - How does resorption and limitation differ among species, site, and age class?

Site Background

- Four mid-aged and four mature stands in three sites [Bartlett Experimental Forest (BEF), Hubbard Brook (HB), Jeffers Brook (JB) in the White Mountains, NH]
- Four 50x50m (BEF) or 30x30m (HB and JB) plots, fertilized annually since 2011 with either:
 - N (30 kg N ha\(^{-1}\) y\(^{-1}\) as NH\(_4\)NO\(_3\), P (10 kg P ha\(^{-1}\) y\(^{-1}\) as Na\(_2\)HPO\(_4\), N and P together (same rates), or no treatment

Methods

Field:
- We collected green leaves in August and leaf litter in October from:
 - American beech (Fagus grandifolia) in all stands
 - Red maple (Acer rubrum) in mid-aged stands
 - Sugar maple (A. saccharum) in the mature stands

Lab:
- All leaves oven dried at 60°C to constant mass and ground
- For N concentrations:
 - Dry combustion in a CN analyzer
- For P concentrations:
 - Ashing, hot-plate digestion, ICP-OES

Statistical:
- ANCOVA for a randomized complete block design:
 - Covariate = pre-treatment (2008-2010) values
 - Blocking factor = stand nested within age and site
 - Other predictor variables = age; site; factorial of N treatment, P treatment, and species

Results and Conclusions

- These stands were assumed to be N-limited, but appear to be P-limited based on N:P ratios (Fig. 2) and a greater response to P than to N (Fig. 1)
- By manipulating N and P availability, we can observe greater effort allocated to acquisition and conservation of the more limiting nutrient(s)
- Surprisingly, nutrient conservation through resorption was highest at the most fertile site (JB, Fig. 1)
- We can also see the influence of species-specific nutrient demands (Figs. 2 and 3) – is this a consequence of successional stage? Phylogeny?
- Future ideas to investigate: the N:P ratio of the concentration resorbed by trees was remarkably consistent between stands pre- and post-treatment and among treatments both pre- and post-treatment (Fig. 3). Is this an example of a stoichiometric control on resorption?