ESF Curriculum Proposal Form
Committee on Instruction - ESF Faculty Governance
Office of Instruction & Graduate Studies

Date: January 30, 2012
Department: GPES
Curriculum Title: Study Area in Biophysical and Ecological Economics

☒ New curriculum and/or degree program OR ☐ Changes in existing curriculum(check all that apply):

☐ new program title ☐ new courses added ☐ new accreditation
☐ revised courses ☐ change in total cr. hrs. ☐ new assessment plan
☐ new course sequence ☐ new program objectives ☐ other significant change

Justification Narrative: The study area in Biophysical and Ecological Economics will bring together ESF expertise in the relations between the money economy of goods and services and the biophysical networks of flows of energy and material resources. We expect that many students will be attracted to the prospect of addressing the many environmental problems that require characterizing and quantifying the social and ecological consequences of biophysical inputs and outputs to and from the human economy. These analyses are critical to understanding resilience, sustainability, environmental justice and other values that are largely determined by economic patterns and flows of energy and material resources. The study area will create opportunities for students and faculty to coordinate interests and activities related to biophysical resources and ecological economics.

Institutional Impact:
Anticipated Enrollment: 5-10 per semester Change from existing condition: 5 - 10

New Faculty or Staffing Requirements: 0

New Technology and Classroom Resource Demands: 0

New \Computing Resources Requirements: 0

New Accreditation Requirements: 0

New Assessment Requirements (explain & describe): 0

New Library Resources Requirements: 0
New Transportation Requirements: 0

New Forest Properties or Field Practicum Facilities Required: 0

Impacts on other Departments at ESF (please obtain and attach response from affected departments): There should be minimal impact. Relevant courses already exist and advisors are already working in this area.

Impacts on Admissions (particularly transfer requirements and articulation agreements; please obtain and attach response from Admissions if an impact is anticipated) We anticipate 5 - 10 new GPES students in this study area.

List courses taught outside the Department(s) at ESF: 0

List courses taught outside the Department at SU:
- Accessory Instruction credit hours at SU required per student in this curriculum: 0
- Accessory Instruction credit hours required per semester by this curriculum: 0
- Change in Accessory Instruction needs over current programs and curricula: 0

Catalog Curriculum Narrative:

Study Area Description

Students in the Biophysical and Ecological economics (BEE) study area develop an understanding of environmental problems and solutions through analyses of the relations between the human economy of goods and services and the biophysical economy of networks of energy and material resource flows. Drawing on insights from social and physical sciences, BEE helps students to develop critical thinking, intellectual approaches, measurement tools and modeling skills for analyzing increasingly important topics in environment and natural resource science and policy. Specific course work in biophysical and ecological economics is supplemented by course work in ecology, resource management, environmental economics, policy analysis and others.

Curriculum Transition Plan:

None needed.

Participating Faculty: C. Hall, Limburg, Luzadis, Manno, Diemont, Beier
List of Courses:

Core Courses for the MS, MPS and Ph.D. degrees in the Biophysical and Ecological Economics Study area in GPES

EFB 522 Biophysical Economics (3) (C. Hall)
FORE 770 Ecological Economics and Policy (3) V. Luzadis (MS and Ph.D. only)
EST 626 Concepts and Principles of Sustainable Development (3) Manno

Additional Related Courses:

ERE 796, Ecological Engineering and Designing for Sustainability (3) Diemont
EFB 687 Fisheries Science and Management (3) Limburg
FORE 670 Resource and Environmental Economics (3)
EST 627 Environmental and Energy Auditing (3)

Applied Social and Environmental Sciences. 15 credit hours including at least 6 in ENS coursework, selected from the following list:

EFB 513 Adirondack Forest Ecology and Management (2 - 3)
EFB 519 Geographic Modeling (3)
EFB 523 Tropical Ecology (3)
EFB 542 Freshwater Wetland Ecosystems (3) (3)
EFB 605 Indigenous Issues and the Environment (3)
EFB 623 Marine Ecology (5)
EFB 645 Plant Ecology and Global Change (3)
ENS 519 Spatial Ecology (3)
ENS 696 Special Topics in Environmental Science and Policy (1 - 3)
ERE 511 Ecological Engineering in the Tropics (3)
ERE 641 Biomass Energy (3)
ESC 525 Energy Systems (3)

EST 600 Foundations of Environmental Studies (3)

EST 609 Collaborative Governance Processes for Environmental and Natural Resource Management (3)

FCH 510 Environmental Chemistry I (3)

FOR 532 Forest Ecology (3)

FOR 533 Natural Resources Managerial Economics (3)

FOR 630 Agroforestry (3)

FOR 665 Natural Resources Policy (3)

FOR 687 Environmental Law and Policy (3)

FOR 689 Natural Resources Law and Policy (3)

FOR 690 Integrated Resources Management (3)

FOR 694 Writing for Scientific Publication (3)

FOR 753 Advanced Natural Resource and Environmental Policy (3)

LSA 621 Design Studio IV: Community Design and Planning

LSA 652 Community Development and Planning Process

Methods. 6 credit hours, usually selected from the following:

APM 510 Statistical Analysis (3)

APM 630 Regression Analysis (3)

APM 635 Multivariate Statistical Methods (3)

APM 645 Nonparametric Statistics and Categorical Data Analysis (3)

APM 653 Simulation Design and Analysis (3)

EFB 518 Systems Ecology (4)

EST 605 Qualitative Methods (3)
EST 603 Research Methods and Design (3)
EST 604 Social Survey Research Methods for Environmental Issues (3)
FOR 556 Spatial Modeling
FOR 557 Practical Vector GIS
FOR 558 Advanced Vector GIS
LSA 640 Research Methodology
LSA 696 Special Topics: GIS in Planning
FOR 607 Restoration Ecology (3)
FOR 642 Watershed Ecology and Management (3)
ERE 693 GIS-Based Modeling (3)
EST 550 Environmental Impact Analysis (3)
FOR 695 Research Methods for Natural Resources (3)
November 30, 2011

John P. Hassett
Chair, Committee on Instruction
SUNY ESF
321 Jahn Laboratory
Syracuse, NY 13210

Subject: Curriculum Proposal

Dear Professor Hassett,

Attached is a curriculum proposal for changes in pre/co-requisite courses and program mastery course requirements for the ERE graduate program's five areas of study.

I would appreciate your taking this proposal through the Committee on Instruction's approval process.

Any questions and comments on this proposal can be directed to me.

Sincerely,

Ted Endreny, Ph.D., P.H., P.E.
Professor and Chair
Environmental Resources Engineering
404 Baker Labs, 1 Forestry Drive
SUNY ESF, Syracuse, NY 13210
315-200-4006 te@esf.edu
www.esf.edu/ere/endreny
Justification Narrative: please provide an explanatory narrative outlining the need or rationale for the new curriculum or program, or justifying the need to significantly change an existing curriculum (i.e. addressing emerging or changing societal demand, addressing changing technology, focusing on a new interdisciplinary body of knowledge, etc.)

1. The New York State Education Department has recently disaggregated SUNY ESF M.S., M.P.S., and Ph.D. Environmental and Resources Engineering Programs and approved the Environmental Resources Engineering (ERE) Graduate Programs. The Education Department's approval letter dated September 12, 2011 noted that graduates of the new M.S. and M.P.S. ERE Programs are eligible to receive one year of education/experience credit toward the 12 credits required for professional engineer licensure.

The State Education Department administers professional regulation through its Office of the Professions. To align with the State Education Department's professional regulation on awarding one year of education/experience credit for P.E. licensure, we are proposing to change from 12 credit hours of graduate coursework that must be completed in engineering courses to 15 credit hours of graduate coursework that must be completed in engineering and applied science courses. This modification will strengthen ERE graduate recruitment because graduation from the ERE M.S. and M.P.S. Programs, and likely Ph.D. Program, carries one year of education/experience credit toward the 12 credits required for P.E. licensure.

2. The expectations for admission to the ERE graduate programs include specific prerequisite and co-requisite courses in addition to "the general course expectations for the Division of Engineering". However, the descriptions on "the general course expectations for the Division of Engineering" have been removed from the current ESF Catalog. We are proposing to delete "the general course expectations for the Division of Engineering" from the prerequisite and co-requisite courses for admission to the ERE graduate programs and directly describe the expectations under each area of graduate study.

Institutional Impact:

Anticipated Enrollment: 25 per semester

Change from existing condition: 1) Change from minimum 12 credit hours of engineering courses to 15 credit hours of engineering and applied science courses. 2) Modify the Catalog descriptions about prerequisite
and co-requisite courses for the ERE graduate programs.

New Faculty or Staffing Requirements: None

New Technology and Classroom Resource Demands: None

New Computing Resources Requirements: None

New Accreditation Requirements: None

New Assessment Requirements (explain & describe): None

New Library Resources Requirements: None

New Transportation Requirements: None

New Forest Properties or Field Practicum Facilities Required: None

Impacts on other Departments at ESF (please obtain and attach response from affected departments): None

Impacts on Admissions (particularly transfer requirements and articulation agreements; please obtain and attach response from Admissions if an impact is anticipated) None

List courses taught outside the Department at ESF: None required

List courses taught outside the Department at SU: None required

- Accessory Instruction credit hours at SU required per student in this curriculum: None
- Accessory Instruction credit hours required per semester by this curriculum None
- Change in Accessory Instruction needs over current programs and curricula None

Catalog Curriculum Narrative:
Please provide a narrative description of the program, the broad program objectives and learning outcomes, and a curriculum course outline using the precise format proposed for/or currently used in the ESF catalog (if revising an existing program or curriculum proposal, please attach a copy of the original MS Word file with revisions shown in "track changes"): Catalog revisions are attached at the end of this proposal

Curriculum Transition Plan:

Please provide a narrative description of your plan for transitioning from your existing curriculum to the proposed new curriculum. Please provide specific dates for implementing curriculum changes, overlap periods where old and new curricula may exist simultaneously, and final phase out of old curricula. Please also include impacts and mitigating considerations for students in mid-program during implementation, impacts of changes in semester delivery of existing courses, addition of new courses within a particular semester, etc.

These changes will be implemented for M.P.S., M.S., and Ph.D. students starting from the fall 2012 semester. Current students will not be affected. We will publish this curriculum change in the AY2012-2013 Catalog.

ESF Catalog 2011/2012 pages 104-106:

Graduate Programs

Graduate studies and research are primarily concerned with environmental and resource-related problems.

Students with a bachelor of science degree in engineering or in environmental sciences, physics, or mathematics have the opportunity to design an individual program of graduate study.

Facilities

The teaching and research facilities in Baker Laboratory were renovated in 2008 and support graduate study and research with modern laboratories and instrumentation. We have dedicated laboratories for ecological engineering, geospatial engineering, and water resources engineering research and instruction, supported by campus staff; wood and machine shops, and analytical and technical services. Research and analysis is facilitated by a powerful range of computing platforms and software. Off-campus facilities include the extensive ESF properties, and numerous field sites supported by an array of field equipment for environmental resource engineering measurements.

The ERE program in environmental and resources engineering offers options in:

Ecological Engineering (M.S., Ph.D.)

Participating Faculty: DALEY, DIEMONT, ENDRENY, KROLL, SHAW, TAO
Ecological Engineering is the design of ecosystems for the mutual benefit of humans and the environment. Ideal design considers humans to be part of nature rather than apart from nature. At SUNY–ESF we believe that ecological engineering education and research should meet local to global needs. We teach and research sustainable solutions and approach ecological engineering broadly, working in many areas of the world and in most major areas of ecological engineering. Graduates from the ecological engineering option commonly find employment or continue their advanced graduate education in any of the following areas of practice:

- Ecosystem restoration, including watershed, river, forest and wetland restoration
- Design of sustainable systems for wastewater treatment and stormwater management
- Environmental remediation
- Urban ecosystem design and development
- Industrial ecology, life cycle analysis and sustainability analysis

Ecological Engineering emphasizes engineering design of ecosystems consistent with ecological principles of natural, self-organizing, self-maintaining systems. This interdisciplinary field incorporates knowledge in engineering, ecology and social sciences to produce energy- and information-efficient solutions to environmental problems. Public policy, ethics and values are considered in the decision-making process. Students select between alternative solutions to ecological resource problems, in recognition of environmental, economic, legal, social and managerial constraints.

Program prerequisite or co-requisite courses include at least one semester of study in thermodynamics, fluid mechanics, or statics; probability and statistics; ecology; and hydrology. Applicants are required to have a bachelor’s degree in science or engineering with one year of study in calculus and one semester of study in computing methods, chemistry, and biology. These are in addition to general course expectations for the Division of Engineering.

Program mastery courses include at least one course (3+ credit hours per course) in each of the 4 areas of competence listed below (illustrative courses are listed in parenthesis).

- Ecosystem Restoration (e.g., Ecosystem Restoration Design, Sustainability Analysis, River Form and Process, Ecological Engineering in the Tropics)
- Pollutant Treatment (e.g., Methods in Ecological Treatment, Ecological Engineering for Waste Management, Stormwater Management)
Modeling (e.g., Hydrologic Modeling, Systems Engineering, Engineering Hydrology & Hydraulics)

Ecosystem Sciences (e.g., Microbial Ecology, Ecosystems, Systems Ecology, Tropical Ecology, Ecological Biogeochemistry, Plant Ecology and Global Change, Aquatic Ecosystem Restoration, Limnology, Environmental Chemistry)

At least 12-15 credit hours of graduate coursework must be completed in engineering and applied science courses. Research credits complete the degree requirements.

Environmental Management (M.P.S.)

Participating Faculty: DALEY, ENDRENY, IM, KROLL, QUACKENBUSH, SHAW

- Brownfield development
- Hazardous waste management
- Solid waste management
- Energy resources management
- Water resource management

Environmental Management combines environmental engineering with business management and environmental law or policy to provide breadth and perspective for the student aspiring to managerial responsibility in public or private employment. Student coursework is designed to enhance technical and problem-solving skills.

Program prerequisite or co-requisite courses include at least six 3-credit undergraduate courses from at least three of the following fields: chemistry, physics, geographic measurements, calculus, statistics, engineering mechanics, ecology, computer science, and economics.

Program mastery courses include at least 12-15 credit hours of graduate coursework completed in engineering and applied science courses; 3–6 credit hours in natural sciences; and 3-6 hours in resource management. A comprehensive project or practicum completes the M.P.S. degree requirements. Study programs are flexible and are tailored to the interests and strengths of individuals.

Geospatial Information Science and Engineering (M.S., Ph.D.)

Participating Faculty: IM, MOUNTRAKIS, QUACKENBUSH

- Remote sensing and digital image/video analysis
- Spatial and spatiotemporal databases
- Artificial intelligence/machine learning in spatial analysis and modeling
- Environmental resources monitoring, modeling and assessment

Geospatial Information Science and Engineering is designed for specialized research in spatial information acquisition, analysis, modeling and applications. This includes theoretical and applied study in sensing systems and the location, measurement, analysis and description of ground features and earth resources. It also includes use of geographic information systems (GIS) to incorporate spatial data into a wide range of environmental and engineering problems.

Program prerequisite or co-requisite courses include at least one year of physics and calculus, one course in statistics, and one engineering science course in surveying, numerical methods, or computer science. These are in addition to general course expectations for the Division of Engineering.

Program mastery courses include at least one course (3+ credit hours) in each of the four Geospatial Information Science and Engineering areas (illustrative courses are listed in parenthesis):

- Remote sensing (e.g., Principles of Remote Sensing, Remote Sensing of the Environment)
- Geographic information systems (e.g., Introduction to Spatial Information, GIS for Engineers, GIS-Based Modeling, Introduction to Global Positioning Systems,
- Spatial analysis and programming (e.g., Spatial Analysis, Digital Image Analysis, Numerical and Computing Methods, Systems Engineering, Design and Analysis of Algorithm, Introduction to Artificial Neural Networks, Introduction to Database Management Systems, Data Mining, Artificial Intelligence)
- Statistics (e.g., Statistical Analysis, Multivariate Statistical Methods, Nonparametric Statistics, Analysis of Variance, Regression Analysis, Map Accuracy Assessment, Sampling Methods)

Ph.D. students will take an additional course in at least two of these areas (6+ credit hours total). These areas of competence form the basis for your graduate coursework and are supplemented by studies in systems analysis, environmental sciences and management, and geography. Departmental and other seminars are also required. Of the total graduate coursework, at least 12-15 credit hours must be completed in engineering and applied science courses. Research credits complete the degree requirements.

Mapping Sciences (M.P.S.)

Participating Faculty: IM, MOUNTRAKIS, QUACKENBUSH

- Geographic information systems (GIS)
Global positioning systems (GPS)

Analytical and digital photogrammetry

Remote sensing and image processing

Mapping Sciences covers the development and practice of mapping technologies for environmental and engineering applications. Technologies used include GIS and GPS, as well as remote sensing and image processing tools.

Program prerequisite or co-requisite courses include at least one year of both physics and calculus, one course in statistics, and one course in either surveying or computer science. Students admitted without necessary background would be required to take additional prerequisite courses.

Program mastery courses are taken so students upon completion demonstrate competency in spatial data acquisition and fundamental spatial analysis concepts. This is typically achieved through completion of fundamental courses in remote sensing, geographic information systems, spatial analysis, and statistics. Students may specialize by taking advanced courses in the mapping sciences, statistics, computing, environmental sciences and management, or other fields.

A comprehensive project or practicum completes the M.P.S. degree requirements. Study programs are flexible and are tailored to the interests and strengths of individuals.

Water Resources Engineering (M.S., Ph.D.)

Participating Faculty: DALEY, ENDRENY, KROLL, SHAW

- Watershed hydrology monitoring, modeling, management
- Hydrologic and hydraulic experimentation and analysis
- Water resource systems engineering
- Stochastic and deterministic modeling
- Pollutant fate and transport
- River and watershed restoration

Water Resources Engineering deals with analysis and design of water resource systems through field, laboratory, and computer methods. Emphasis is placed on coordinating engineering to reduce impacts on human and natural systems. Students select among alternative solutions to water resource problems, in recognition of environmental, economic, legal, social and managerial constraints. Laboratory equipment includes soil columns, a river table and two tilting and sediment circulating flumes, all supported by
monitoring sensors. Analytical techniques using statistics, numerical analyses, and computer applications are emphasized. Modeling efforts include computational fluid dynamics, GIS, and remote sensing applications, distributed and real-time models, and model calibration and validation.

Program prerequisite or co-requisite courses include probability and statistics, fluid mechanics, and engineering hydrology. Applicants are required to have a bachelor’s degree in science or engineering with one year of study in calculus and one semester of study in computing methods. These are in addition to general course expectations for the Division of Engineering.

Program mastery courses include at least one course (3+ credit hours) in each of the four areas of competence listed below (illustrative courses are listed in parenthesis). These areas of competence form the basis for your graduate coursework. Departmental and other seminars are also required.

- Environmental Hydraulics (e.g., Engineering Hydrology and Hydraulics, Open Channel Hydraulics, Transport Processes, Environmental Sediment Transport)
- Water Resources Modeling (e.g., Hydrologic Modeling, Systems Engineering, Groundwater Modeling)
- Hydrologic Zones and Fluxes (e.g., River Form and Process, HydroMeteorology, Vadose Zone Physics, Limnology, Hydrogeology)
- Water Quality (e.g., Water Pollution Engineering, Ecological Biogeochemistry, Environmental Chemistry; Environmental Aqueous Geochemistry,

At least 12–15 credit hours of graduate coursework must be completed in engineering and applied science courses. Research credits complete the degree requirements.
MEMO

TO: Suzette Vandeburg, Assistant Dean, Instruction and Graduate Studies
John Hassett, Chair Committee on Instruction, Committee on Instruction members

FROM: Russ Briggs, Director of Division of Environmental Science

DATE: 8/26/11

The Division Environmental Science seeks formal recognition for program adjustments that have been incrementally accumulating but have not yet been officially recognized. These changes originate from 2009 revisions in general education requirements (from 9 to 7 areas). The B.S. in Environmental Science is well endowed with many math and natural science courses that meet Gen Ed criteria. The reduction in GE areas required to meet SUNY demands (from 9 to 7) allowed us to reassign 2 courses (six credit hours). Environmental Science students will select two among the following four areas: American History, Western Civilization, The Arts, Other World Civilizations.

The six credits gained from Gen Ed credit reallocation to natural science and math areas will be allocated to (i) EWP405 Writing for Science Professionals and (ii) one additional Advanced Science or Math (in addition to the two currently required).

Finally (iii), after adding up the minimum number of credit hours required for graduation, the total is 126 (core 61, Physical + Living + Social Environment 9, Two Additional Gen Ed 6, Advanced Science / Math 9, Option Area 15, Electives 15, Free Electives 6, Senior Synthesis 5). The number in the current catalog, 125, is incorrect. The accompanying revised and improved plan sheet reflects these changes.

Rationale:

Issue (i). Limited competency in technical writing has been a continuing challenge for students in our Division. Since all of our students are required to complete 5 credits of senior synthesis (which typically involves execution and presentation of a research project) this is particularly vexing, requiring excessive faculty mentor input in the writing process. In order to improve this situation, we are requiring a technical writing course. This course was tailored for ESC. We are meeting periodically with Benette Whitmore of the writing center to develop a section of technical writing that would specifically address our needs and we recommended a specific text book. The person assigned to teach this section is sensitive to our needs and objectives and will work in concert with Tim Knight to insure that the course outcomes meet our needs. In addition, this course will incorporate planning for the senior research project, with a research proposal as the final project in the course. In this way students will improve their technical writing as well as gain guidance in planning their projects.

Issue (ii). Our curriculum is science based. The addition of an advanced science or math (defined as having a prerequisite or a 300 level course) strengthens the program.
Issue (iii). Through many revisions and changes in the program over the past decade, an incorrect number appeared in a past edition of the catalog. We would like to correct that error.

Statement of impact on external or interdepartmental resources:

We worked closely with the writing center. They are aware of our class size and have included our needs (senior class cohort consists of ca 50 per year) in their planning and scheduling. Classroom space has been identified and staffing has been allocated. Existing computing resources will be adequate (those students will already be accessing computing facilities on campus).
Justification Narrative: please provide an explanatory narrative outlining the need or rationale for the new curriculum or program, or justifying the need to significantly change an existing curriculum (i.e. addressing emerging or changing societal demand, addressing changing technology, focusing on a new interdisciplinary body of knowledge, etc.)

The prime driver behind the attached course changes is the cancellation of a number of required courses for the Environmental Science degree. In most cases, canceled courses have been removed from the requirements and other classes have been substituted. Three new courses have been added to provide support for students.

First is a section of EWP 405 (Writing for Science Professionals, note that the course is listed as EWP, rather than CLL, because we have been told the departmental prefix will be changing). This course, modeled on an existing course currently taught, would be a special section of the course for Environmental Science students. The course would serve two purposes. First, it would teach specific scientific writing skills, building on the skills learned in CLL 290 and addressing a need for improved writing skills for Environmental Science students. Second, the students will explore possibilities for the research that will lead to their required capstone project. The final product of the class will be a proposal for their research, to be completed prior to graduation. This will improve the understanding and preparation of Environmental Science students for this important part of the curriculum. We have discussed this proposed course with Benette Whitmore in the writing program, and she has indicated that she expects resources to be available, and that the model is workable. We will continue to meet with her to develop the course.

Second is the formal creation of an ESC 498 course. This course, like the 498 courses in other departments, will be the designation for independent research with Environmental Science faculty. The creation of this course, with sections for each faculty member connected to the Environmental Science program, will simplify the record keeping for the research component of the capstone project.

Third is a one credit capstone writing seminar. This course, pioneered as FOR 496 in spring 2011, will serve a number of purposes. First, it will provide support for students completing their capstone projects. Students will be led through a series of exercises, breaking the writing of their capstone paper into manageable pieces and providing feedback along the way. Second, it will provide graduating students with practice and support in skills important in the next phases of their career (e.g., resume writing, interviewing, and public speaking). Third, the student presentations at the end of the course will provide valuable experience to the class participants as well as giving other students in the program insight into the types of projects available to complete the capstone project. Finally, it will allow greater oversight of
Environmental Science Revised Plan Sheet January 2012:

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Semester</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>APM 105</td>
<td>Survey of Calculus & its Applications I</td>
<td>FA/SP</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APM 106</td>
<td>Survey of Calculus & its Applications II</td>
<td>SP</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APM 391</td>
<td>Introduction to Probability and Statistics</td>
<td>FA/SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWP 190</td>
<td>Writing and the Environment</td>
<td>FA</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWP 290</td>
<td>Writing, Humanities, and the Environment</td>
<td>SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWP 405</td>
<td>Writing for Science Professionals</td>
<td>SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB 101</td>
<td>General Biology I</td>
<td>FA</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB 102</td>
<td>General Biology I lab</td>
<td>FA</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB 103</td>
<td>General Biology II</td>
<td>SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB 104</td>
<td>General Biology II lab</td>
<td>SP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB 120</td>
<td>The Global Environment</td>
<td>FA/SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFB 320</td>
<td>Ecology</td>
<td>FA</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENS 132</td>
<td>Orientation Seminar</td>
<td>FA</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESF 200</td>
<td>Information Literacy</td>
<td>FA/SP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESF 300</td>
<td>Introduction to Geospatial Information Technology</td>
<td>FA/SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCH 150</td>
<td>General Chemistry I</td>
<td>FA</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCH 151</td>
<td>General Chemistry I lab</td>
<td>FA</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCH 152</td>
<td>General Chemistry II</td>
<td>SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCH 153</td>
<td>General Chemistry II lab</td>
<td>SP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 207</td>
<td>Introduction to Economics</td>
<td>FA/SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNE 160</td>
<td>Computing Methods</td>
<td>SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 211</td>
<td>General Physics I</td>
<td>FA/SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 212</td>
<td>General Physics II</td>
<td>FA/SP</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHY 222</td>
<td>General Physics II lab</td>
<td>FA/SP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL LOWER DIVISION</td>
<td></td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Course Requirements (a list of courses fulfilling these requirements can be found in the Environmental Science Advising Manual and online at http://www.esf.edu/catalog/envsci.htm. The intent is 3 courses each with 3 or more credit hours for a minimum 9 credit hours.

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Semester</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL ENVIRONMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIVING ENVIRONMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCIAL ENVIRONMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Education Requirements (Choose 2 of 4 areas. Courses meeting Gen Ed requirements can be found online at http://www.esf.edu/catalog/2011-2012/pdf/AcademicPrograms.pdf pages 11-13). The intent is 2 courses each with 3 or more credit hours for a minimum 6 credit hours.

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Semester</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICAN HISTORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WESTERN CIVILIZATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE ARTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER WORLD CIVILIZATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advanced Science or Math. The intent is 3 courses each with 3 or more credit hours for a minimum 9 credit hours.

<table>
<thead>
<tr>
<th>Course 1</th>
<th>Offered</th>
<th>Credits</th>
<th>ID</th>
<th>Credits</th>
<th>Transfer College</th>
<th>Semester</th>
<th>ESF Grade</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option Area Courses (a list of courses fulfilling these requirements can be found in the Environmental Science Advising Manual and online at http://www.esf.edu/catalog/envsci.htm). The intent is 5 courses each with 3 or more credit hours for a minimum of 15 credit hours.

<table>
<thead>
<tr>
<th>Course 1</th>
<th>Offered</th>
<th>Credits</th>
<th>ID</th>
<th>Credits</th>
<th>Transfer College</th>
<th>Semester</th>
<th>ESF Grade</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upper Division Elective Courses. The intent is 5 courses each with 3 or more credit hours for a minimum of 15 credit hours. These courses must be upper division courses in science or otherwise related to the student’s career goals. They may be used to fulfill the requirements of a minor or may serve to augment the student’s option courses.

<table>
<thead>
<tr>
<th>Course 1</th>
<th>Offered</th>
<th>Credits</th>
<th>ID</th>
<th>Credits</th>
<th>Transfer College</th>
<th>Semester</th>
<th>ESF Grade</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Free Electives. The intent is 2 courses each with 3 or more credit hours for a minimum of 6 credit hours. These courses may be anything of interest to the student.

<table>
<thead>
<tr>
<th>Course 1</th>
<th>Offered</th>
<th>Credits</th>
<th>ID</th>
<th>Credits</th>
<th>Transfer College</th>
<th>Semester</th>
<th>ESF Grade</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior Synthesis

<table>
<thead>
<tr>
<th></th>
<th>Offered</th>
<th>Credits</th>
<th>ID</th>
<th>Credits</th>
<th>Transfer College</th>
<th>Semester</th>
<th>ESF Grade</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS 494</td>
<td>FA/SP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENS 498 (independent research)</td>
<td>FA/SP</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBTOTAL UPPER DIVISION + GEN ED 65
the projects being completed by Environmental Science students for their capstone requirement and will provide the opportunity for assessing the efficacy of the program in meeting our objectives. This one-credit course will count toward the five credits required to complete the capstone requirement.

Another change to the program is that all students will be required to take ESF 300 (Introduction to Geospatial Technology) instead of the existing Geographical Environment requirement (in which students can choose one from a list of courses). We believe that exposure to GIS technology and some proficiency in its use is vital for any Environmental Science professional. In practice, this will result in very little change to the actual curriculum for most students, as most already take that course to fulfill the Geographical Environment requirement. Thus, there is very little change expected to the enrollment in the course. We have discussed the change with Eddie Bevilacqua, who teaches the course in question, and he indicated that he felt it would not present an undue burden on his course.

We are also proposing to change the General Education requirements for Environmental Science students, under the new guidelines from SUNY. Students in Environmental Science will take will select two among the following four areas: American History, Western Civilization, The Arts, Other World Civilizations. The other six gen ed credits will come from APM 106 (Calc II) and FCH 152 (General Chemistry II).

Institutional Impact:

Anticipated Enrollment: 180 students in program

Change from existing condition: None

New Faculty or Staffing Requirements:

None

New Technology and Classroom Resource Demands:

Classroom for ~20 students in spring semester for ESC 494, Classroom for ~30 students for EWP 405.

New Computing Resources Requirements:

None

New Accreditation Requirements:

None

New Assessment Requirements (explain & describe):

None

New Library Resources Requirements:

None

New Transportation Requirements:

None

New Forest Properties or Field Practicum Facilities Required:

None

Impacts on other Departments at ESF (please obtain and attach response from affected departments):

None
Impacts on Admissions (particularly transfer requirements and articulation agreements; please obtain and attach response from Admissions if an impact is anticipated)

List courses taught outside the Department at ESF: None

List courses taught outside the Department at SU:

- Accessory Instruction credit hours at SU required per student in this curriculum:
- Accessory Instruction credit hours required per semester by this curriculum
- Change in Accessory Instruction needs over current programs and curricula

Changed courses: EWP 405, ESF 300,

No changes

Catalog Curriculum Narrative:

Please provide a narrative description of the program, the broad program objectives and learning outcomes, and a curriculum course outline using the precise format proposed for/or currently used in the ESF catalog (if revising an existing program or curriculum proposal, please attach a copy of the original MS Word file with revisions shown in “track changes”):

No changes

Curriculum Transition Plan:

Please provide a narrative description of your plan for transitioning from your existing curriculum to the proposed new curriculum. Please provide specific dates for implementing curriculum changes, overlap periods where old and new curricula may exist simultaneously, and final phase out of old curricula. Please also include impacts and mitigating considerations for students in mid-program during implementation, impacts of changes in semester delivery of existing courses, addition of new courses within a particular semester, etc.

Many of these changes have already been implemented for existing students by petition, as the courses listed on their plan sheets no longer exist. New courses will be taught, but not required of students already enrolled in the program. Those students who have already completed their General Education requirements will proceed as per the existing curriculum. Students who have not yet completed them will have the option of following the existing curriculum or using the petition process to make the substitutions in the new curriculum.
Date: January 30, 2012
Department: Environmental Science
Curriculum Title: MS and MPS in Environmental Science

☐ New curriculum and/or degree program OR ☑ Changes in existing curriculum(check all that apply):

☐ new program title ☐ new courses added ☐ new accreditation
☐ revised courses ☐ change in total cr. hrs. ☐ new assessment plan
☑ new course sequence ☐ new program objectives ☐ other significant change

Justification Narrative:

To allow greater flexibility for addressing interdisciplinarity in environmental science plus individual student needs, we propose changing the core course sequence from 9 credits of social science to one social science course, one natural or physical science course and one methods or tools course in both the MS and MPS curriculums.
Institutional Impact:

Anticipated Enrollment: 1-2 per semester
Change from existing condition: minimal

New Faculty or Staffing Requirements:
one

New Technology and Classroom Resource Demands:
one

New Computing Resources Requirements:
one

New Accreditation Requirements:
N/A

New Assessment Requirements (explain & describe):
one

New Library Resources Requirements:
one

New Transportation Requirements:
one

New Forest Properties or Field Practicum Facilities Required:
N/A

Impacts on other Departments at ESF (please obtain and attach response from affected departments):
May involve taking fewer Environmental Studies social science/policy courses

Impacts on Admissions (particularly transfer requirements and articulation agreements; please obtain and attach response from Admissions if an impact is anticipated)
Possibly slightly higher GPES graduate admissions

List courses taught outside the Department at ESF:
No change

List courses taught outside the Department at SU:
No required courses

- Accessory Instruction credit hours at SU required per student in this curriculum:
No change
- Accessory Instruction credit hours required per semester by this curriculum
No change
- Change in Accessory Instruction needs over current programs and curricula
No change
Curriculum Transition Plan:

We plan to implement for beginning environmental science MS and MPS applicants for fall 2012 and this will involve amending graduate handbooks and plan sheet accordingly.

Catalog Curriculum Narrative:

Please provide a narrative description of the program, the broad program objectives and learning outcomes, and a curriculum course outline using the precise format proposed for/or currently used in the ESF catalog (if revising an existing program or curriculum proposal, please attach a copy of the original MS Word file with revisions shown in “track changes”)

Master of Science

The master of science degree is designed as a two-year experience.

Core Requirements

A core of nine credit hours to include one social science course, one natural or physical science course and one methods or tools course. A core of nine credit hours in applied social sciences is required. In addition, a total of six credit hours is required in research methods. Course options which satisfy these requirements are designated by the area of study faculty.

Area of Study Requirements

A minimum of 15 credit hours (excluding ENS 899) is required in the area of study, as determined by the major professor and area of study faculty. Area of study subcommittees maintain advising lists of courses pre-approved to satisfy the 15-credit area of study requirement. The student’s major professor or steering committee may designate additional courses. Five study areas are available to M.S. students: environmental policy and democratic processes, environmental and community land planning, environmental systems and risk management, water and wetland resource studies, and environmental communication and participatory processes.

Thesis Requirements

A minimum of six credit hours of research is required resulting in a document that clearly demonstrates graduate-level accomplishments of the student, followed by a defense examination. Students must have an approved thesis proposal.

Master of Professional Studies

The master of professional studies degree is a 39-credit-hour experience aimed at professional applications of environmental knowledge.

Core Requirements

A total of 21 credit hours is required. These must include a core of nine credit hours to include one social science course, one natural or physical science course and one methods or tools course, nine credit hours of applied social sciences in environmental policy and regulation, and democratic processes. In addition, a total of six credit hours is required in environmental science and six credit hours is required in methods courses emphasizing applications of technical knowledge.

Area of Study Requirements
A minimum of 12 credit hours of coursework is required in the chosen area of study, as determined by the major professor and study area faculty. Students select a study area at the time of application for admission to the program. Five study areas are available to M.P.S. students: environmental policy and democratic processes, environmental and community land planning, environmental systems and risk management, water and wetland resource studies, and environmental communication and participatory processes.

Synthesis Requirements

Students select either an internship for three to six credit hours or prepare a synthesis paper for three credit hours. All students must present a capstone seminar in their final semester. No terminal comprehensive examination is required.

Applicants with a minimum of three years of post-baccalaureate, full-time professional experience directly related to the intended area of study may apply for six credit hours of advanced standing in the program, reducing their degree requirements to 33 credit hours. Partial credit for experience cannot be awarded. When awarded for prior work experience, the six credit hours are applied toward the synthesis requirement.
Suzette, John,

The following proposals were all approved by the GPES Faculty in December, by electronic ballot.

We have proposed three new Areas of Study:
1. Biophysical and Ecological Economics
2. Environmental Monitoring and Modeling
3. Ecological Restoration

We also have a revision to the GPES Curriculum.

Please let me know if you have any questions.

Ruth D. Yanai, Professor web: http://www.esf.edu/fnrm/faculty/yanai.asp
SUNY College of Environmental Science and Forestry, Syracuse, NY 13210
phone: 315 470-6955 fax: 315 470-6954 e-mail: rdyanai@syr.edu
Date: January 9, 2012
Department: GPES
Curriculum Title: Study Area in Ecosystem Restoration

☐ New curriculum and/or degree program OR ☐ Changes in existing curriculum (check all that apply):

☒ new program title ☐ new courses added ☐ new accreditation
☐ revised courses ☐ change in total cr. hrs. ☐ new assessment plan
☐ new course sequence ☐ new program objectives ☐ other significant change

Justification Narrative:

This new study area showcases SUNY ESF’s expertise in Ecosystem Restoration. Drawing on diverse faculty experience, a wide range of related course offerings, and numerous research projects, we expect this Study Area to be a popular option for those seeking an interdisciplinary approach to Ecosystem Restoration. The formation of this Study Area should not only help recruit new graduate students to SUNY ESF, but also help promote and coordinate ongoing SUNY ESF efforts related to Ecosystem Restoration.

Institutional Impact:

Anticipated Enrollment: 5-10 per semester Change from existing condition: 5 - 10

New Faculty or Staffing Requirements: 0

New Technology and Classroom Resource Demands: 0

New Computing Resources Requirements: 0

New Accreditation Requirements: 0

New Assessment Requirements (explain & describe): 0

New Library Resources Requirements: 0

New Transportation Requirements: 0
New Forest Properties or Field Practicum Facilities Required: 0

Impacts on other Departments at ESF (please obtain and attach response from affected departments): While this study area does not duplicate an existing graduate program at ESF, faculty working in this area have mentored graduate students in related areas (e.g. Ecological Engineering, Conservation Biology, etc.). This new Study Area may attract some graduates students who would otherwise have applied to either a different GPES Study Area or another SUNY ESF Department.

Impacts on Admissions (particularly transfer requirements and articulation agreements; please obtain and attach response from Admissions if an impact is anticipated) We anticipate 5 - 10 new GPES students in this study area.

List courses taught outside the Department at ESF: A minimum of 15 credit hours (excluding ENS 899) is required in the area of study, as determined by the major professor and area of study faculty. Area of study subcommittees maintain advising lists of courses pre-approved to satisfy the 15-credit area of study requirement. The student's major professor or steering committee may designate additional courses. A subsection of related ESF courses includes:
- EFB610: Ecological Biogeochemistry
- EFB645: Plant Ecology and Global Change
- EFB796: Vertebrate Conservation
- EFB797: Traditional Ecological Knowledge
- EFB796: Quantitative Modeling and Analysis
- EFB687: Fisheries Science and Management
- ERE596: Ecosystem Restoration Design
- ERE596: Sustainable Design
- ERE612: River Form and Processes
- ERE645: Hydrologic Modeling
- ERE665: Environmental Systems Engineering
- ERE675: Ecological Engineering for Waste Management
- ERE796: Quantitative Methods and Models in R
- ERE796: Phytotechnology
- EST626: Concepts and Principles of Sustainable Development
- FCH797: Stable Isotopic Tracers in the Environment
- FOR642: Watershed Ecology and Management
- FOR607: Restoration Ecology
- FOR796: Advanced Watershed Hydrology and Biogeochemistry

List courses taught outside the Department at SU: 0

- Accessory Instruction credit hours at SU required per student in this curriculum: 0
- Accessory Instruction credit hours required 0
Catalog Curriculum Narrative:

Participating Faculty: Boyer, Daley, Diemont, Dovciak, Endreny, Gibbs, Hussein, Kroll, Leopold, Limburg, Stella, Vidon.

Study Area Description: The ecosystem restoration study area focuses on the technical, biogeochemical, ecological, and cultural aspects of rehabilitating and restoring degraded ecosystems, habitats, and landscapes. The program is designed for graduate students who wish to take an interdisciplinary approach to ecosystem restoration, have access to multidisciplinary expertise, and develop advanced knowledge of ecological engineering, conservation biology, restoration ecology, forest and habitat restoration, landscape ecology, and eco-cultural restoration to address complex environmental problems. Current research includes urban ecology and renewal, aquatic restoration, invasive species, agroforestry, brownfields, traditional ecological knowledge, and the spatial monitoring, modeling, and analysis of integrated ecological processes. Field sites and study areas are located throughout the world and involve a wide variety of ecosystems, cultures, and landscapes. Specific course work in ecosystem restoration is supplemented by courses offerings in science, engineering, mathematics, natural resources, and environmental and social policy.

Curriculum Transition Plan:

None needed.
Date: January 30, 2012
Department: GPES
Curriculum Title: Study Area in Environmental Monitoring and Modeling

☐ New curriculum and/or degree program OR ☐ Changes in existing curriculum(check all that apply):
☐ new program title ☐ new courses added ☐ new accreditation
☐ revised courses ☐ change in total cr. hrs. ☐ new assessment plan
☐ new course sequence ☐ new program objectives ☐ other significant change

Justification Narrative:
This new study area showcases SUNY ESF's expertise in Environmental Monitoring and Modeling. Drawing on diverse faculty experience, a wide range of related course offerings, and numerous research projects, we expect this Study Area to be a popular option for those seeking an interdisciplinary approach to Environmental Monitoring and Modeling. The formation of this Study Area should not only help recruit new graduate students to SUNY ESF, but also help promote and coordinate ongoing SUNY ESF efforts related to this Study Area.

Institutional Impact:
Anticipated Enrollment: 5-10 per semester Change from existing condition: 5 - 10

New Faculty or Staffing Requirements: 0

New Technology and Classroom Resource Demands: 0

New Computing Resources Requirements: 0

New Accreditation Requirements: 0

New Assessment Requirements (explain & describe): 0

New Library Resources Requirements: 0

New Transportation Requirements: 0
New Forest Properties or Field Practicum Facilities Required:

Impacts on other Departments at ESF (please obtain and attach response from affected departments):

Impacts on Admissions (particularly transfer requirements and articulation agreements; please obtain and attach response from Admissions if an impact is anticipated)

List courses taught outside the Department at ESF:

While this study area has similarities to other graduate programs at SUNY ESF (e.g. Monitoring, Analysis and Modeling in FNRM, Water Resources Engineering in ERE, etc.), the interdisciplinary nature of this program is not duplicated. This new Study Area may attract some graduates students who would otherwise have applied to either a different GPES Study Area or another SUNY ESF Department. The proposed study not only is interdisciplinary (involving faculty from many ESF departments and not just a single department), but also is different than the FNRM program in 2 specific ways. First, the FNRM program focuses primarily on forest systems, while the proposed study area focuses on a much broader class of environmental systems and processes (e.g. water resources, air quality, temperature, wildlife, etc.). Secondly, the FNRM program focuses primarily on "the application of statistical and operations research methods and techniques", while the proposed study area focuses on both stochastic and deterministic approaches to environmental modeling.

If you have additional questions about this proposed study area, I'd be happy to address them. I think this study area provides an avenue to not only better market the wide range of expertise and ongoing research in environmental monitoring and modeling at ESF, but also should help build better collaborative relationships between ESF faculty.

Chuck Kroll

We anticipate 5 - 10 new GPES students in this study area.

A minimum of 15 credit hours (excluding ENS
List courses taught outside the Department at SU:

- Accessory Instruction credit hours at SU required per student in this curriculum:
- Accessory Instruction credit hours required per semester by this curriculum
- Change in Accessory Instruction needs over current programs and curricula

899) is required in the area of study, as determined by the major professor and area of study faculty. Area of study subcommittees maintain advising lists of courses pre-approved to satisfy the 15-credit area of study requirement. The student's major professor or steering committee may designate additional courses.

A subsection of related ESF courses includes:

- APM625: Sampling Methods
- APM635: Multivariate Statistical Methods
- APM620: Experimental Design and ANOVA
- APM630: Regression Analysis
- APM696: SAS For ANOVA
- EFB518: Systems Ecology
- EFB645: Plant Ecology and Global Change
- EFB796: Quantitative Methods and Models in R
- ENS519: Spatial Ecology
- ERE530: Numerical and Computing Methods
- ERE551: GIS for Engineers
- ERE621: Spatial Analysis
- ERE622: Digital Image Analysis
- ERE644: Hydro-Meteorology
- ERE645: Hydrologic Modeling
- ERE665: Environmental Systems Engineering
- ERE692: Remote Sensing of the Environment
- ERE693: GIS-Based Modeling
- ESC525: Energy Systems
- ESC535: Renewable Energy
- EST550: Environmental Impact Analysis
- EST603: Research Methods and Design
- EST605: Qualitative Methods
- EST627: Environmental and Energy Auditing
- FCH510: Environmental Chemistry I
- FCH511: Environmental Chemistry II
- FCH515: Methods in Environmental Chemistry Analysis
- FCH797: Stable Isotopic Tracers in the Environment
- FOR522: Forest Mensuration
- FOR524: Forest Biometrics
- FOR558: Practical Vector GIS
- FOR642: Watershed Ecology and Management
- GNE661: Air Pollution Engineering

Catalog Curriculum Narrative:
Participating Faculty: Beier, Be vilacqua, Boyer, Endreny, Gibbs, C. Hall, M. Hall, Hassett, Hussein, Im, Kroll, Quackenbush, Limburg, Mao, Mountrakis, Shaw, Stehman, Stella, Teece.

Study Area Description: This study area focuses on multidisciplinary approaches to measuring and modeling environmental systems and processes. Students address pressing environmental problems in an integrative manner by taking advantage of a broad range of faculty expertise, a variety of course offerings related to the environment, and access to advanced field equipment, study sites, and computational hardware. Current research in this area includes sustainable development, air quality, water resources, biogeography, terrestrial and aquatic ecosystems, climate and anthropogenic change, forest biometrics, and energy systems. Specific course work in environmental monitoring and modeling is supplemented by courses offerings in the fields of science, engineering, mathematics, natural resources, and environmental and social policy.

Curriculum Transition Plan:

None needed.
From: S S. Shannon
Sent: Thursday, January 05, 2012 4:44 PM
To: John P. Hassett
Cc: Donald J. Leopold; Gregory L. Boyer; Suzette Vandeburg; Bruce C. Bongarten; Thomas R. Horton; Kelley J. Donaghy
Subject: Proposal from OIGS to deactivate "joint" teacher education programs with SU

John-
Attached are formal proposals for Faculty Governance consultation and review (via CoC) of our intent to “deactivate” the NYSED registration for our Joint Teacher Education programs with SU. Before anyone jumps to conclusions, please note that this proposal is designed to have NO CHANGE in the way we currently offer teacher education coursework to our students; all the same policies and procedures will apply, all degree programs and titles will remain the same for ESF students participating in teacher education coursework at SU today (and in the past).

Thanks-
Scott

S. Scott Shannon, Associate Provost and Dean of the Graduate School
SUNY College of Environmental Science and Forestry
227 Bray Hall – 1 Forestry Drive
Syracuse, New York 13210

Phone: 315-470-6599
e-mail: sshannon@esf.edu
From: S S. Shannon
Sent: Thursday, December 15, 2011 2:46 PM
To: Suzette Vandeburg; John P. Hassett
Subject: new policy proposals

John & Suzette-
Attached are three proposed new or revised policies for CoC review. Each includes a brief background & introduction of the proposed policy suggesting why it is being brought to the CoC.

Thanks-
Scott

S. Scott Shannon, Associate Provost and
Dean of the Graduate School
SUNY College of Environmental Science and Forestry
227 Bray Hall – 1 Forestry Drive
Syracuse, New York 13210

Phone: 315-470-6599
e-mail: sshannon@esf.edu
OIGS Policy Proposal 2011.1

[revised per CoC: 1/31/12]

Background:
Several times in the past year questions have been raised regarding the potential of completing a degree after long separations from the college (one request was to complete degree requirements (9 credit hours of directed electives) after almost 40 years away from ESF). After conducting a quick review of policies at other institutions, it was determined that ESF would benefit from instituting a clear policy on resumption of a degree program after a period of separation from the institution. Following is a list of “statutes of limitations” published for those wishing to resume a “past” degree program after a period of separation; if a student inquires or applies for readmission subsequent to the published limits, they may still pursue a degree, but only under current curriculum requirements:

- HVCC: 5 years (from date of matriculation)
- U Cincinnati: 10 years (from date of separation)
- Johns Hopkins U: 10 years (from matriculation)
- Boston U: 7 years (from separation)
- Robert Morris: 12 years (from matriculation)
- Indiana U: 8 years (from matriculation)

The Office of Instruction and Graduate Studies requests the addition of a specific time limit on resuming degree programs and/or granting degrees under old curriculum requirements (proposed 10 years) [to be placed in catalog]

Proposed catalog language (in Undergraduate Academic Policies):

Resumption of Degree Programs
Students who have withdrawn from matriculated status in a degree program at ESF may seek to resume or complete a degree program with the following conditions:

1. A former student must apply for either:
 a. Readmission and resumption of the student’s original degree program and curriculum as described in the college catalog at the time of the student’s original matriculation; or transfer of additional credit from another university sufficient to complete content or credit hour requirements of the student’s original degree program.
 b. Readmission to complete a current ESF degree program and curriculum as described in the current college catalog; or transfer of additional credit from another university sufficient to complete content or credit hour requirements of a current ESF degree program.

2. Resumption and completion of original degree programs is permissible only if application for readmission is made no more than 10 years after the student’s last term of enrollment matriculation at ESF.
3. Degree completion will be posted to the academic record in the term when the last program requirement was completed. Degrees may not be conferred retroactively.

4. Students whose case exceeds the statute of limitation for degree resumption (i.e. 10 years as noted in (2.) above) will be advised by the department regarding those current programs that the student may pursue that most closely match his or her previously completed coursework. Past coursework may be accepted toward completion of a current degree program at the discretion of the department.

5. In the event of a dispute resulting from departmental or administrative review of a returning student’s academic record, final authority regarding the completion of curricular requirements for degree programs rests with the college President, within the limits prescribed by the NYS Dept. of Education (such as those requiring a minimum number of total credit hours, etc.).
OIGS Policy Proposal 2011.2
(revised per CoC: 1/31/12)

Background:

Several times in the past year questions have been raised concerning the existing graduate degree time limits policy and how it is enforced (or not enforced as the case may be...). After conducting a quick review of similar policies at other institutions, it was determined that a revision extending time limits in our existing policy to bring our practice more into line with peer institutions would facilitate future enforcement.

For example, graduate degree time limits at the following universities all allow significantly greater latitude:

- Cornell: 4yrs (MS), 7yrs (PhD)
- SUNY Albany: 4yrs (MS), 8yrs (PhD)
- U Minn.: 7yrs (MS), 12yrs (PhD)
- U Buffalo: 4yrs (MS), 7yrs (PhD)
- UMass: 5yrs (MS), 8yrs (PhD)
- NC State: 5yrs (MS), 10yrs (PhD)

The Office of Instruction and Graduate Studies requests the revision of existing graduate degree time limits [change to be reflected in new catalog language]

Proposed catalog language revision (to appear under Graduate Academic Policies):

Time Limits
Graduate students must complete all requirements for the master of forestry, master of professional studies, master of landscape architecture and master of science degree within three four years, and the master of landscape architecture within four years of the first date of matriculation, or they may be withdrawn from graduate study. For the doctoral degree, students must complete the candidacy exam within three years of the first date of matriculation. Students must pass the doctoral candidacy examination covering selected fields of study at least one year prior to dissertation defense and successfully defend the dissertation. Doctoral candidates must successfully defend the dissertation and complete all degree requirements within three years of passing the doctoral candidacy examination seven years of matriculation, or they will be required to retake the candidacy examination or be withdrawn from graduate study.
Justification Narrative: please provide a detailed explanatory narrative outlining the need or rationale for deactivation and/or discontinuance of an academic program (i.e. addressing changing societal demand; changing technology; declining enrollment; changing institutional setting, structure, or funding, etc.)

This program is listed as "jointly" delivered and administered by ESF and Syracuse University (SU), but is, in actual practice, solely under the control and oversight of SU. In terms of serving ESF's very small number of students who chose to pursue teacher education (on average, one per year), this relationship has worked reasonably well over the past several decades, but this has recently become administratively much more complex. The changes in administrative oversight are due to new federal reporting requirements that do not address the nature of a jointly registered program like ESF and SU's. Unfortunately, ESF's is not able to address the Title II reporting requirements (or the federal government contractor cannot understand and account for the unique relationship between ESF and SU, depending on one's perspective!).

In any case, ESF students have never actually been registered using the SED program codes noted above, and to the best of our knowledge, we have never graduated a student using one of these program codes. We do not award our students participating in teacher education coursework at SU with degrees or certificates in teacher education-- only in the discipline they have majored in (a BS in chemistry). Because of this, we feel we no longer have any real need to have the active "joint" teacher education programs listed at ESF. In fact, due to the Federal Title II requirement to report on our students' participation in teacher education, there is significant incentive to discontinue the registration of the program noted.

Institutional Impact:

Anticipated Enrollment Reduction: 0 per semester Change from existing condition: 0

Faculty or Staffing Impacts: none

Technology and Classroom Resource impacts: none

Library Resources Impacts: none

Transportation Resource Impacts: none
New Forest Properties or Field Practicum Facilities Impacts: none

Impacts on other Departments at ESF (please obtain and attach response from affected departments): none

Impacts on Admissions (please obtain and attach response from Admissions if an impact is anticipated) none

List required courses taught outside the Department at ESF: none

List courses taught outside the Department at SU:
- EDU 204 Principles of Learning in Inclusive Classrooms (4)
- EDU 304 Study of Teaching (4) Prerequisite: EDU 204 or equivalent
- RED 326 Literacy Across the Curriculum (4)
- EDU 310 The American School (3)
- SED 409 Adapting Instruction for Diverse Student Needs (3)
- SCE 413 Methods and Curriculum in Teaching (3)
- EDU 508 Student Teaching/Secondary Candidacy (3)
- EDU 508 Student Teaching/Science (9)
- SED 415 Teacher Development/Science (3)

- Accessory Instruction credit hours at SU required per student in this curriculum: 36
- Accessory Instruction credit hours required per semester by this curriculum: 3-12
- Change in Accessory Instruction needs over current programs and curricula: none

Catalog Curriculum Narrative:

Please provide changes to the ESF catalog using the precise format proposed for/or currently used in the ESF catalog (if deactivating or discontinuing an existing program or curriculum, please attach a copy of the original MS Word file with revisions shown in "track changes"):

Joint-Syracuse University Program in Science Teaching leading to Teacher Certification

ESF and, through the cooperation of the School of Education at Syracuse University, offers qualified undergraduate students an opportunity to prepare for initial New York state teacher certification in biology or chemistry, and general science. This opportunity is available through the following ESF bachelor of science (B.S.) degree programs: chemistry (leading to initial certification in chemistry in grades 7-12) and environmental biology (leading to initial certification in biology in grades 7-12). Students who earned at least a 3.000 grade point average during their first semester at ESF and transfer students who maintained a 3.0 or greater cumulative grade
point average at their previous college are eligible for admission to the program. Students who are interested in pursuing this opportunity should contact the assistant dean of Instruction and Graduate Studies, Associate Provost for Instruction at ESF for application materials.

Academic Requirements

Students must complete all requirements for their academic program as listed in this catalog that include the following:

To meet the standards for general education, students must complete at least 30 semester hours (credits) in the general education core. Students who transfer into an English writing course that is substantially different in purpose from CLL 290 must complete WRT 428 to meet the education literacy requirement. Included in this standard is a foreign-language requirement: one year of college-level foreign language study, or its equivalent established through appropriate high school study (Level III).

To meet the standards in content teaching, students complete at least 30 semester hours in the content core. For biology certification, content courses include cell biology, biochemistry, anatomy and physiology, comparative anatomy, genetics and evolution, biological diversity, human biology, botany, and zoology. Courses in nutrition are acceptable if the topics are cell nutrition, organic and inorganic chemistry, or physical chemistry. For chemistry certification, content courses include matter and atomic structure, energy, chemical bonds and molecular structure, chemical reactions, and quantitative relationships.

Students must also complete:

SED 340 Participation in the Professional Development School (0-1) (2-also known as “The Academy”) each semester. The non-credit online seminar, Child Health and Life Safety Seminar offered by the School of Education, examines six areas of concern to teachers: identifying and reporting child abuse; violence prevention/intervention; alcohol/tobacco/drug abuse prevention; child abduction prevention; fire and arson prevention; and highway safety/traffic regulations/safety patrols.

Students are required to complete the following professional education (pedagogy) core courses at Syracuse University in preparation for the candidacy semester:

- EDU 204 Principles of Learning in Inclusive Classrooms (4)
- EDU 304 Study of Teaching (4) Prerequisite: EDU 204 or equivalent
- RED 326 Literacy Across the Curriculum (4)
- EDU 310 The American School (3)

Candidacy Semester (Spring only):

prerequisites include a minimum 2.800 cumulative average and a minimum 2.800 average in both required education and science courses; completion of EDU 204, EDU 304, RED 326, and a significant number of science credits; successful review of the professional portfolio by The Academy; and satisfactorily meeting the assessment standards of the School of Education. The following courses are co-requisites for the candidacy semester:

- SED 409 Adapting Instruction for Diverse Student Needs (3)
- SCE 413 Methods and Curriculum in Teaching (3)
- EDU 508 Student Teaching/Secondary Candidacy (3)

Standard Student Teaching Semester (in the student’s final fall semester prior to the degree conferral):

prerequisites include a minimum 2.800 cumulative average and a minimum 2.800 average in both required education and science courses; successful completion of the candidacy semester and approval by The Academy; completion of a majority of the required credits on the science content area; and satisfactorily meeting the assessment standards of the School of Education. The following 12 credits are taken as co-requisites for the standard student teaching semester:

- EDU 508 Student Teaching/Science (9)
- SED 415 Teacher Development/Science (3)
Initial Certification and Professional Certification
The School of Education evaluates and recommends eligible candidates as having met the requirements for the certificate. Students must pay fees for certification and exam processing. Candidates for initial certification must apply for certification within two years of the completion of the degree program and they must successfully complete (a) the Liberal Arts and Sciences Test (LAST); (b) the Written Assessment of Teaching Skills (ATS-W); and (c) the Content Specialty Test (CST).

Deactivation/Discontinuation Transition Plan:
Please provide a narrative description of your plan for transitioning from the existing program curriculum to the proposed state of deactivation and/or eventual discontinuance. Please provide specific dates for implementing these changes, overlap periods where old and new programs may exist simultaneously, and final phase out of old programs/curricula. Please also include impacts and mitigating considerations for students in mid-program during implementation, impacts of changes in semester delivery of existing courses, etc.

None necessary; for current or future ESF students interested in teacher education, the Syracuse University School of Education has assured us that our students will still be able to access their teacher education courses, and they will remain eligible for "certification" should they complete the state requirements leading to eligibility to sit for NYS teacher certification examinations (36 credit hours of courses as listed above satisfies this requirement). SU will continue to track ESF students taking teacher education courses (with assistance from ESF regarding registration records and transcripts), and SU has agreed to report data on ESF students as their own for Title II compliance with federal regulators.
Date: January 6, 2012
Department: Environmental and Forest Biology
Program/Curriculum Title: Environmental Biology/Teacher Education (Jointly Registered Program with SU School of Education)
SED & HEGIS Code: SED – 24654; HEGIS – 0420.00

X Program to be deactivated AND/OR X Program to be discontinued

Justification Narrative: please provide a detailed explanatory narrative outlining the need or rationale for deactivation and/or discontinuance of an academic program (i.e. addressing changing societal demand; changing technology; declining enrollment; changing institutional setting, structure, or funding, etc.)

This program is listed as "jointly" delivered and administered by ESF and Syracuse University (SU), but is, in actual practice, solely under the control and oversight of SU. In terms of serving ESF's very small number of students who choose to pursue teacher education (on average, one per year), this relationship has worked reasonably well over the past several decades, but this has recently become administratively much more complex. The changes in administrative oversight are due to new federal reporting requirements that do not address the nature of a jointly registered program like ESF and SU's. Unfortunately, ESF's is not able to address the Title II reporting requirements (or the federal government contractor cannot understand and account for the unique relationship between ESF and SU, depending on one's perspective!).

In any case, ESF students have never actually been registered using the SED program codes noted above, and to the best of our knowledge, we have never graduated a student using one of these program codes. We do not award our students participating in teacher education coursework at SU with degrees or certificates in teacher education-- only in the discipline they have majored in (a BS in environmental biology). Because of this, we feel we no longer have any real need to have the active "joint" teacher education programs listed at ESF. In fact, due to the Federal Title II requirement to report on our students' participation in teacher education, there is significant incentive to discontinue the registration of the program noted.

Institutional Impact:
Anticipated Enrollment Reduction: 0 per semester Change from existing condition: 0

Faculty or Staffing Impacts: none
Technology and Classroom Resource impacts: none
Library Resources Impacts: none
Transportation Resource Impacts: none

New Forest Properties or Field Practicum Facilities Impacts: none

Impacts on other Departments at ESF (please obtain and attach response from affected departments): none

Impacts on Admissions (please obtain and attach response from Admissions if an impact is anticipated): none

List required courses taught outside the Department at ESF: none

List courses taught outside the Department at SU:
- EDU 204 Principles of Learning in Inclusive Classrooms (4)
- EDU 304 Study of Teaching (4) Prerequisite: EDU 204 or equivalent
- RED 326 Literacy Across the Curriculum (4)
- EDU 310 The American School (3)
- SED 409 Adapting Instruction for Diverse Student Needs (3)
- SCE 413 Methods and Curriculum in Teaching (3)
- EDU 508 Student Teaching/Secondary Candidacy (3)
- EDU 508 Student Teaching/Science (9)
- SED 415 Teacher Development/Science (3)

- Accessory Instruction credit hours at SU required per student in this curriculum: 36
- Accessory Instruction credit hours required per semester by this curriculum: 3-12
- Change in Accessory Instruction needs over current programs and curricula: none

Catalog Curriculum Narrative:

Please provide changes to the ESF catalog using the precise format proposed for/or currently used in the ESF catalog (if deactivating or discontinuing an existing program or curriculum, please attach a copy of the original MS Word file with revisions shown in “track changes”):

<table>
<thead>
<tr>
<th>Joint Syracuse University Program in Science Teaching leading to Teacher Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESF and, through the cooperation of the School of Education at Syracuse University, offers qualified undergraduate students an opportunity to prepare for initial New York state teacher certification in biology or chemistry, and general science. This opportunity is available through the following ESF bachelor of science (B.S.) degree programs: chemistry (leading to initial certification in chemistry in grades 7-12) and environmental biology (leading to initial certification</td>
</tr>
</tbody>
</table>
in biology in grades 7-12). Students who earned at least a 3.000 grade point average during their first semester at ESF and transfer students who maintained a 3.0 or greater cumulative grade point average at their previous college are eligible for admission to the program. Students who are interested in pursuing this opportunity should contact the assistant dean of instruction and graduate studies, Associate Provost for Instruction at ESF for application materials.

Academic Requirements
Students must complete all requirements for their academic program as listed in this catalog that include the following:

To meet the standards for general education, students must complete at least 30 semester hours (credits) in the general education core. Students who transfer into an English writing course that is substantially different in purpose from CLL 290 must complete WRT 428 to meet the education literacy requirement. Included in this standard is a foreign-language requirement: one year of college-level foreign language study, or its equivalent established through appropriate high school study (Level III).

To meet the standards in content teaching, students complete at least 30 semester hours in the content core. For biology certification, content courses include cell biology, biochemistry, anatomy and physiology, comparative anatomy, genetics and evolution, biological diversity, human biology, botany, and zoology. Courses in nutrition are acceptable if the topics are cell nutrition, organic and inorganic chemistry, or physical chemistry. For chemistry certification, content courses include matter and atomic structure, energy, chemical bonds and molecular structure, chemical reactions, and quantitative relationships.

Students must also complete:

SED 340 Participation in the Professional Development School (0-1) (also known as "The Academy") each semester. The non-credit online seminar, Child Health and Life Safety Seminar offered by the School of Education, examines six areas of concern to teachers: identifying and reporting child abuse; violence prevention/intervention; alcohol/tobacco/drug abuse prevention; child abduction prevention; fire and arson prevention; and highway safety/traffic regulations/safety patrols.

Students are required to complete the following professional education (pedagogy) core courses at Syracuse University in preparation for the candidacy semester:

EDU 204 Principles of Learning in Inclusive Classrooms (4)
EDU 304 Study of Teaching (4) Prerequisite: EDU 204 or equivalent
RED 326 Literacy Across the Curriculum (4)
EDU 310 The American School (3)

Candidacy Semester (Spring only): prerequisites include a minimum 2.800 cumulative average and a minimum 2.800 average in both required education and science courses; completion of EDU 204, EDU 304, RED 326, and a significant number of science credits; successful review of the professional portfolio by The Academy; and satisfactorily meeting the assessment standards of the School of Education. The following courses are co-requisites for the candidacy semester:

SED 409 Adapting Instruction for Diverse Student Needs (3)
SCE 413 Methods and Curriculum in Teaching (3)
EDU 508 Student Teaching/Secondary Candidacy (3)

Standard Student Teaching Semester (in the student's final fall semester prior to the degree conferral): prerequisites include a minimum 2.800 cumulative average and a minimum 2.800 average in both required education and science courses; successful completion of the candidacy semester and approval by The Academy; completion of a majority of the required credits on the science content area; and satisfactorily meeting the assessment standards of the School of Education. The following 12 credits are taken as co-requisites for the standard student teaching semester:

EDU 508 Student Teaching/Science (9)
Initial Certification and Professional Certification
The School of Education evaluates and recommends eligible candidates as having met the requirements for the certificate. Students must pay fees for certification and exam processing. Candidates for initial certification must apply for certification within two years of the completion of the degree program and they must successfully complete (a) the Liberal Arts and Sciences Test (LAST); (b) the Written Assessment of Teaching Skills (ATS-W); and (c) the Content Specialty Test (CST).

Deactivation/Discontinuation Transition Plan:

Please provide a narrative description of your plan for transitioning from the existing program curriculum to the proposed state of deactivation and/or eventual discontinuance. Please provide specific dates for implementing these changes, overlap periods where old and new programs may exist simultaneously, and final phase out of old programs/curricula. Please also include impacts and mitigating considerations for students in mid-program during implementation, impacts of changes in semester delivery of existing courses, etc.

None necessary; for current or future ESF students interested in teacher education, the Syracuse University School of Education has assured us that our students will still be able to access their teacher education courses, and they will remain eligible for "certification" should they complete the state requirements leading to eligibility to sit for NYS teacher certification examinations (36 credit hours of courses as listed above satisfies this requirement). SU will continue to track ESF students taking teacher education courses (with assistance from ESF regarding registration records and transcripts), and SU has agreed to report data on ESF students as their own for Title II compliance with federal regulators.
From: Charles M. Spuches [mailto:cspuches@esf.edu]
Sent: Thursday, October 27, 2011 5:04 PM
To: John P Hassett; Suzette Vandeburg
Cc: S S. Shannon
Subject: Summer Session Drop/Add Resolution

John – following our Faculty Governance Executive Committee meeting this afternoon, here (attached) is the resolution to change the add/drop procedure for ESF’s new Summer Session. Please let me know if I can be of any further help. Also, if you will please confirm the date/time of your Curriculum Committee meeting, I will do my best to join you as you wish.
Thank you.
Chuck
A RESOLUTION of the SUNY College of Environmental Science and Forestry Faculty
Introduced by Charles M. Spuches, Associate Provost for Outreach
Seconded by (if not sponsored by committee) Bruce C. Bongarten, Vice President for Academic Affairs and Provost

REQUESTING AN AMENDMENT TO
DROP/ADD PROCEDURES FOR SUMMER SESSIONS

WHEREAS SUNY-ESF has recently established a Summer Session as a third academic semester and that said Summer Session is using the drop/add procedures originally devised for Academic Year classes,

WHEREAS the procedures for Drop/Add at undergraduate level during the Academic Year require a hard copy form, in duplicate, bearing the original signatures of the student, the student’s advisor and the course instructor. During the summer of 2011, students, whether matriculated or visiting, had major difficulties in their attempts to drop or add a course. Many students intending to drop a class were no longer in the Syracuse area and, in the case of online students, may have never been in the Syracuse area. These students have difficulty obtaining a standard hard-copy registration form to drop or add a class. Students who were fortunate enough to be present on campus to obtain a form had extreme difficulties obtaining signatures of advisors, instructors, and/or department chairs. At graduate level, the procedures during the Academic year may involve utilizing the MySlice system. The MySlice system used for registration during the Academic Year is not available during the Summer Sessions.

A majority of faculty are on 10-month contract and are not required to be on campus after a mid-May date. During the Summer Sessions these faculty, along with other potential Summer Session instructors who have adjunct status, do not normally have a presence on campus outside their class commitments. When faculty members are absent or otherwise unobtainable, Department Chairs have the authority to sign registration and drop/add forms on their behalf. These extra duties were an unnecessary burden on the Department Chairs.

NOW, THEREFORE, BE IT RESOLVED that:

1. The only signature required to drop or add a class during the Summer Sessions will be that of the student (whether an ESF matriculated student or a visiting student).
2. ESF’s Registrar will make drop/add forms available on the web or institute a system in which emails are accepted as confirmation of withdrawal.
BE IT FURTHER RESOLVED that:

The Executive Chair of the SUNY College of Environmental Science and Forestry Faculty Governance convey in writing (email is acceptable) the contents of this resolution to the President of the College and Faculty Chair of this body, with copies to ____________, ____________, ____________, ____________, and ____________ within ten (10) days of the date of approval below. The contents of this resolution shall also be conveyed to the main body of the SUNY-ESF faculty via email, campus news, the faculty governance website, and shall be included verbatim in the minutes of the meeting at which it was passed.

Approved and adopted the __________day of __________ 20____.

Following Roll Call Vote: Ayes: _________
Nos: _________
Absent: _________

__
Secretary for the SUNY College of Environmental Science and Forestry Faculty