BACHELOR OF SCIENCE IN BIOTECHNOLOGY

What is Biotechnology?

Biotechnology is the application of biological organisms, cells, or molecules to produce a product or service for the betterment of humankind. This area of study includes aspects of molecular biology, microbiology, cell biology, biochemistry, and genetic engineering, among other related disciplines.

The Biotechnology Curriculum

The curriculum builds on introductory courses in the sciences including biology, chemistry, calculus, and physics, creating a strong foundation for more advanced upper-level courses. This degree program prepares students to use molecular and biochemical approaches to tackle environmental, natural resource, agricultural, or medical questions, and provides sufficient breadth for students interested in careers veterinary and human medicine. Students who complete this major will be qualified to enter the growing biotechnology job market or continue their studies in graduate or professional school.

The Biotechnology curriculum requires a minimum of 126 total credits. The core requirements are listed in the typical schedule. There are also 12 credits of directed electives that can be chosen from a list of approved courses. Twenty open elective credits can be selected depending on a student’s individual interests. There are also many courses offered at Syracuse University or the SUNY Upstate Medical University that could be used to fill these electives and open electives.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>APM 105</td>
<td>Survey Of Calc & Appl I</td>
<td>4</td>
</tr>
<tr>
<td>APM 106</td>
<td>Survey Of Calc & Appl II</td>
<td>4</td>
</tr>
<tr>
<td>APM 391</td>
<td>Intro/Probability&Stats</td>
<td>3</td>
</tr>
<tr>
<td>BTC 132</td>
<td>Orientation Seminar:BTC</td>
<td>1</td>
</tr>
<tr>
<td>BTC 401</td>
<td>Molecular Biol Techniques</td>
<td>3</td>
</tr>
<tr>
<td>BTC 420</td>
<td>Internship in Biotechnology</td>
<td>1 - 5</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTC 498</td>
<td>Resrch Prob/Biotechnology</td>
<td>1 - 9</td>
</tr>
<tr>
<td>BTC 497</td>
<td>Research Dsgn&Prof Develop</td>
<td>1</td>
</tr>
<tr>
<td>BTC 499</td>
<td>Senior Project Synthesis</td>
<td>1</td>
</tr>
<tr>
<td>EFB 101</td>
<td>Gen Bio I:Organismal Bio&Ecol</td>
<td>3</td>
</tr>
<tr>
<td>EFB 102</td>
<td>General Biology I Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EFB 103</td>
<td>Gen Bio II:Cell Bio & Genetics</td>
<td>3</td>
</tr>
</tbody>
</table>

SUNY ESF | 1 | Course Catalog
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFB 104</td>
<td>General Biology II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EFB 303</td>
<td>Intro Envrn Microbiology</td>
<td>4</td>
</tr>
<tr>
<td>EFB 307</td>
<td>Principles Of Genetics</td>
<td>3</td>
</tr>
<tr>
<td>EFB 308</td>
<td>Prin Of Genetics Lab</td>
<td>1</td>
</tr>
<tr>
<td>EFB 311</td>
<td>Principles of Evolution</td>
<td>3</td>
</tr>
<tr>
<td>EFB 320</td>
<td>General Ecology</td>
<td>4</td>
</tr>
<tr>
<td>EFB 325</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>EWP 190</td>
<td>Writing And The Envrnment</td>
<td>3</td>
</tr>
<tr>
<td>FCH 150</td>
<td>General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>FCH 151</td>
<td>General Chemistry I Lab</td>
<td>1</td>
</tr>
<tr>
<td>FCH 152</td>
<td>General Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>FCH 153</td>
<td>General Chemistry II Lab</td>
<td>1</td>
</tr>
<tr>
<td>FCH 221</td>
<td>Organic Chemistry 1</td>
<td>3</td>
</tr>
<tr>
<td>FCH 222</td>
<td>Organic Chemistry Lab 1</td>
<td>1</td>
</tr>
<tr>
<td>FCH 223</td>
<td>Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>FCH 224</td>
<td>Organic Chemistry Lab II</td>
<td>1</td>
</tr>
<tr>
<td>FCH 430</td>
<td>Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>FCH 432</td>
<td>Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 101</td>
<td>Major Concepts of Physics I</td>
<td>0 - 8</td>
</tr>
</tbody>
</table>

NOTE: BTC 420 (Internship in Biotechnology) is typically done in the summer.

NOTE: 5 credits of BTC 498 or BTC 420 are required.

Electives

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Code*</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education Course in two of the following categories: US History</td>
<td>G</td>
<td>6</td>
</tr>
</tbody>
</table>
Directed Electives - Biotechnology

A minimum of 12 credits of directed elective courses required. New biotechnology related courses not currently on the list may also fulfill this requirement with permission of your advisor.

Although any combination of courses below may satisfy the minimum 12 credits required, the following list has been categorized into 4 of the most common subject areas of interest to BTC students, as well as those courses that would be suitable for multiple subject areas of interest. These groupings of elective courses are guidelines. Probably no two students in the biotechnology program have exactly the same career goals or interests. Consult your advisor if your subject interests vary.

Courses that fit multiple areas of interest

- FCH 380 Analytical Chemistry I (2 cr.) F
- FCH 381 Analytical Chemistry II (3 cr.) S
- FCH 382 Analytical Chemistry I Laboratory (1 cr.) F
- FCH 510 Environmental Chemistry (3 cr.) S
- FCH 531 Biochemistry lab (3 cr.) F
- MCR 480 Fundamentals of Microscopy (3 cr.) F
- MCR 484 Scanning Electron Microscopy (3 cr.) F
- MCR 485 Transmission Electron Microscopy (3 cr.) S
- BIO 422 Bioinformatics for Life Scientists (3 cr.) – SU course
- BIO 442 Seminar in Model Organism Genetics (3 cr.) – SU course
- BIO 443 Seminar in Epigenetics (3 cr.) – SU course
- BIO 450 Seminar in Evolutionary Genetics (3 cr.) – SU course
- BIO 463 Molecular Biotechnology (4 cr.) – SU course
- BIO 464 Applied Biotechnology (4 cr.) – SU course
- BCM 477 Proteins and Nucleic Acids Lab (3 cr.) – SU course
- BCM 484 Biomolecular Modeling (3 cr.) – SU course
- BEN 541 Principles of Tissue Engineering (3 cr.) – SU course

Pre-health (Pre-Veterinary, Pre-Medical, etc.)

- EFB 360 Epidemiology (3 cr.) F
- EFB 385 Comparative Vertebrate Anatomy (4 cr.) S
- EFB 400 Toxic Health Hazards (3 cr.) F
- EFB 453 Parasitology (3 cr.) F
• EFB 462 Animal Physiology: Environmental & Ecological (4 cr.) F
• EHS 320 Disease Prevention (3 cr.) S
• FCH 390 Drugs from the Wild (3 cr.) F
• BIO 211 Introduction to Neuroscience (3 cr.) S – SU course
• BIO 216 Anatomy and Physiology I (4 cr.) F – SU course
• BIO 217 Anatomy and Physiology II (4 cr.) S – SU course
• BIO 316 Anatomy & Physiology I for Biology Majors (4 cr.) – SU course
• BIO 317 Anatomy & Physiology II for Biology Majors (4 cr.) – SU course
• BIO 355 General Physiology (3 cr.) S – SU course
• BIO 396 Stem Cells and Society (3 cr.) – SU course
• BIO 441 Seminar in Infectious Diseases (3 cr.) S – SU course
• BIO 447 Basic Immunology (3 cr.) – SU course
• BIO 448 Evolutionary Medicine (3 cr.) – SU course
• BIO 501 Biology of Cancer (3 cr.) – SU course
• BIO 503 Developmental Biology (3 cr.) – SU course

Plant Biotechnology

• BTC 425 Plant Biotechnology (3 cr.) S
• BTC 426 Intro. Plant Tissue Culture (3 cr.) F
• EFB 427 Plant Anatomy and Development (3 cr.) F
• EFB 530 Plant Physiology (3 cr.) S
• EFB 531 Plant Physiology Lab (2 cr.) S
• FCH 630 Plant Biochemistry (3 cr.) S

Microbial Biotechnology

• EFB 340 Forest & Shade tree Pathology (3 cr.) S
• EFB 440 Mycology (3 cr.) F
• EFB 505 Microbial Ecology (2 cr.) S

Bioprocess Engineering

• PSE 200 Introduction to Papermaking (3 cr.)*
• PSE 202 Pulp and Paper Laboratory Skills (1 cr.)*
• PSE 223 Introduction to Lignocellulosics (4 cr.)*
• PSE 361 Engineering Thermodynamics (3 cr.)*
• PSE 370/570 Principles of Mass and Energy Balance (3 cr.)**
• PSE 371 Fluid Mechanics (3 cr.)*
• BPE 300 Introduction to Industrial Bioprocessing (3 cr.)*
• PSE 350/550 Fiber Processing (3 cr.)**
• PSE 450/650 Pulping and Bleaching Processes (3 cr.)**
• PSE 465/665 Fiber and Paper Properties (3 cr.)**
• PSE 438/638 Biorenewable Fibrous and Nonfibrous products (3 cr.)**
• BPE 310 Colloid and Interface Science (3 cr.)*
• BPE 420/620 Bioseparations (3 cr.)**
• BPE 438/638 Introduction to Biorefinery Processes (3 cr.)**
• PSE 510 Introduction to Polymer Coatings (3 cr.)
• BPE 536 Radiation Curing of Polymer Technologies (3 cr.)
• BPE 658 Advanced Biocatalysis (3 cr.)
• BEN 364/664 Quantitative Physiology (4 cr.) – SU course**
• BEN 421/621 Biochemical Engineering (3 cr.) – SU course**
• BEN 433/633 Drug Delivery (3 cr.) – SU course**
• BEN 462/662 Biofuels, Bioproducts, and Biorefining (3 cr.) – SU course**
• BEN 468/668 Biomaterials & Medical Devices (3 cr.) – SU course**
• BEN 473/673 Biomanufacturing (3 cr.) – SU course**
• BEN 481 Bioinstrumentation (3 cr.) – SU course
• BEN 561 Polymer Science & Engineering (3 cr.) – SU course
*Useful background and prerequisite courses if you are planning on entering the MPS program in Paper and Bioprocess Engineering.

**The graduate level course may be applicable to the MPS program in Paper and Bioprocess Engineering.

Total Minimum Credits For Degree: 126