To get full credit: Show your work and EXPLAIN answers not based on calculation.

Exercises 3.1.-3.3, 3.5, 3.8

Exercise A. Given one mole of an ideal gas with $C_v=5R/2$, initially at 300. K and 30 bar. A process carries it to a final pressure of 1 bar. Calculate ΔS (in J/K) for the following processes from Homework #2.:

Part	Type of Expansion	Final T (K)	q (J)
А	adiabatic and reversible	113 K	0
В	adiabatic into an evacuated container	300 K	0
С	isothermal against a constant opposing pressure of one bar	300 K	+2400

So that you will not have to recalculate answers to these problems which are from Problem Set #3, some of the data you might need are provided.

Part	Type of Expansion	Final T (K)	q (J)
D	isothermal and reversible	300 K	+8480
Е	isothermal into an evacuated container	300 K	0
F	adiabatic against a constant opposing pressure of one bar	217 K	0
F	at constant volume	10. K	-6020
Н	heating at constant pressure to a volume ten times the initial volume followed by cooling at constant volume until the final pressure falls to 1 bar	100. K	+18200

Exercise B: What is $\Delta S_{universe}$ for the three questions in Exercise A, assuming the surroundings are at 300 K?

Problem 2. What is $\Delta S_{universe}$ for the five questions in Problem 1, assuming the surroundings are at 300 K?

Problem 3. Look up the data on the fusion (melting) of cyclohexane from the NIST WebBook at <u>https://webbook.nist.gov/chemistry/form-ser/</u>

- a) enter the molecular formula for cyclohexane on line 1
- b) check the box for Thermodynamic Data / Phase Change in section 4
- c) click Search
- d) select cyclohexane

Are the data listed for the melting point (T_{fus}) , enthalpy of fusion, and entropy of fusion (at T_{fus}) of cyclohexane consistent with each other?

Problem 4. 1.00 moles of an ideal gas undergoes an isothermal compression at 298 K from $V_1 = 0.200 \text{ m}^3$ to an unknown V_2 . The work for the process is $+2.00 \times 10^3$ Joules. What is the value of V_2 ?

Exercise C. ΔS_{vap}° of cyclohexane is +83.9 kJ/mole at its normal boiling point of 353.9 K.

a) What is ΔH_{vap}° for cyclohexane?

b) The molar heat capacity of liquid cyclohexane is roughly described as:

$$C_{Pm} (J/(mole K)) = 57.2 \pm 0.333 \times T$$
 (where T is in Kelvin)

 $C_{P,m}(J/(mole K)) = 57.2 + 0.333 \times 1$ (where 1 is in Kelvin) How much does the entropy of *liquid* cyclohexane change between 298 K and 353.9 K?

Problem 5. Consider the following process for 1.00 moles of water at Pext = 1 atm: H₂O (ice, 263 K) \Rightarrow H₂O (liquid, 263 K)

 $C_{P,m} (ice) = 36.9 J/(mole K)) C_{P,m} (liquid water) = 75.3 J/(mole K)$ $\Delta H_{fus}^{\circ} (273 \text{ K}) = 6000. \text{ J/mole} (fusion = melting)$

Use a thermodynamic cycle to compute ΔH_{fus}° and ΔS_{fus}° of water at 263 K.

Exercise D. Use the data in Table 2.8 in the back of the book for this question.

- a) Show that ΔG_f° for H₂O (liq) is not equal to ΔH_f° -T S_m° at 298.15 K.
- b) Compute ΔS_r° at 298.15 K for the reaction H₂ + $\frac{1}{2}$ O₂ (g) \Rightarrow H₂O (liq)

Problem 6.a Show that ΔG_f° for H₂O (liq) <u>does</u> equal $\Delta H_r^{\circ} - T\Delta S_r^{\circ}$ at 298.15 K, where ΔH_r° and ΔS_r° are for the reaction in part b.

Problem 6.b Using the data for H₂O (liq) and H₂O (g) in Table 2.8 in the back of the book, compute ΔG_{vap}° of H₂O at 298.15 K.