Exercise A The reaction A \rightarrow B with $\Delta G_r^{\circ} = -2000$. J/mole at 298 K.

- i) Compute Q and ΔG_r when $P_A = 0.1$ bar and $P_B = 1.5$ bar.
- ii) Is the reaction spontaneous when $P_A = 0.1$ bar and $P_B = 1.5$ bar?
- iii) If the reaction starts with $P_A = 1.00$ bar and $P_B = 0$, and P_{Total} is constant, what is the value of P_B at equilibrium?

Problem 1 For the system in Exercise A starting at $P_A = 1.00$ bar, $n_A = 1.00$ moles and $P_B = 0$, sketch a <u>quantitative</u> plot of G versus ξ . Assume $G_{A,molar} = +3000$. J/mole

Problem 2 The reaction C \rightarrow D with $\Delta G_f^{\circ}(C) = +5000$. J/mole and $\Delta G_r^{\circ} = +3000$. J/mole.

- a) Compute $\Delta G_f^{\circ}(D)$
- b) At $P_C = P_D = 1$ bar, does the reaction need to shift to reactants or to products to reach equilibrium?
- c) At $P_C = 25$ bar and $P_D = 15$ bar, does the reaction need to shift to reactants or products to reach equilibrium?
- d) $\Delta G_r = -2447$ J/mole in a system where $P_C + P_D$ always equals 1.000 bar. What are the values of P_C and P_D ?

Exercise B For the reaction 2 NH₃ \rightarrow 2 N₂ + 3 H₂, K_p = 1.6 × 10⁻⁴ at 673 K.

- i) Compute ΔG_r° at 673 K.
- ii) Compute Q and ΔG_r if the pressure of each compound is 1.00 bar
- iii) Compute Q and ΔG_r if the pressure of each compound is 0.01 bar
- iv) Compute Q and ΔG_r if the pressure of each compound is 1 Torr
- v) Is the reaction spontaneous under either condition (ii) or (iii)?

Exercise C For the reaction $A \to B + 2C$, $K_p = 5.0 \times 10^5$ at 298 K. The reaction starts with P(A) = 3.0 bar and P(B)=P(C) = 0 bar.

- a) compute the pressure of all three gases at equilibrium if the system is at constant volume
- b) compute the pressure of all three gases at equilibrium if the system is at constant pressure at an initial volume of 0.200 m³.

Problem 3 From the data given in Exercise B, for the reaction starting with $P(NH_3) = 2.0$ bar and $P(N_2)=P(H_2)=0$ bar (at 673 K):

- a) compute the pressure of all three gases at equilibrium if the system is a constant volume
- b) compute the pressure of all three gases at equilibrium if the system is a constant pressure at an initial volume of 0.015 m^3 .

Problem 4

From the data given in Exercise B, compute the value of K_p and ΔG_r° for the reaction: NH₃ $\rightarrow \frac{1}{2} N_2 + \frac{3}{2} H_2$

Exercise D. The dissociation of $I_2(g)$ into atomic iodine has been studied at various temperatures. Given the data below, f ind ΔH^o and ΔS^o for the dissociation of I_2 .

T(K)	K
872	1.81×10^{-4}
973	1.80×10^{-3}

Problem 5. From the data in Exercise E, estimate K at 1000 K.

Exercise E Consider the reaction A (g) \rightarrow 2B (g) + C(s), for which $\Delta H_r^{\circ} = +50$ kJ/mole. If the reaction starts at equilibrium, which way will the reaction shift (if it shifts at all) if:

- a) The temperature is increased
- b) The volume of the reaction container is doubled.
- c) some B is selectively removed
- d) a little C is selectively removed while maintaining the total volume of gases constant

Problem 6 Consider the gas-phase reaction $Cl + O_2 \rightarrow ClOO$, for which $\Delta H_r^{\circ} < 0$. If the reaction starts at equilibrium, which way will the reaction shift (if it shifts at all) if:

- a) The temperature is increased
- b) The volume of the reaction container is doubled.
- c) Cl is selectively removed.