Exercises

A. The graph below shows concentration versus time for the consecutive elementary reactions:

 $A \rightarrow B \rightarrow C \rightarrow D$ with rate constants $k_a \quad k_b \quad k_c$ Initial concentrations are $[A]_0=1$ molar, and $[B]_0=[C]_0=[D]_0=0$

Estimate the values of ka, kb, and kc from the data in the graph.

B. Given the information below, calculate [NO₃]_{ss}:

$N_2O_5 \rightarrow NO_2 + NO_3$	$k_1 = 3.2 \times 10^{-4} \text{ sec}^{-1}$
$NO_2 + NO_3 \rightarrow N_2O_5$	$k_{-1} = 8.3 \times 10^{-13} \text{ cm}^{3}$ (molecules sec)
$NO_3 + NO \rightarrow 2 NO_2$	$k_2 = 3.3 \times 10^{-11} \text{ cm}^3/(\text{molecules sec})$
$NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$	$k_3 = 1.4 \times 10^{-16} \text{ cm}^3/(\text{molecules sec})$
$[NO_2] = [NO] = 1 \times 10^9$	$[N_2O_5] = 1.0 \times 10^{10} \text{ molecules/cm}^3$

C. Consider the elementary reaction $X \rightarrow Y = k_1$ $E_a = 4.0 \text{ kcal/mole} \qquad \Delta H^\circ_r = -5.0 \text{ kcal/mole} \qquad \Delta S^\circ_r = -15 \text{ cal/(mole K)}$ A-factor = $1.00 \times 10^{-11} \text{ cm}^3/(\text{molecules sec})$

For $Y \rightarrow X$ (reaction -1), what is E_a ? The A-factor?

Problems

1) Consider elementary reactions below and constant concentrations of Cl, CH₄, O₂, and NO.

 $\begin{array}{ll} \mbox{Cl} + \mbox{CH}_4 \rightarrow \mbox{HCl} + \mbox{\circ}\mbox{CH}_3 + \mbox{O}_2 \rightarrow \mbox{CH}_3 \mbox{OO} \mbox{\circ} & \mbox{k}_1 = 1.0 \times 10^{-13} \mbox{ cm}^3/(\mbox{molecules sec}) \\ \mbox{k}_2 = 3.5 \times 10^{-12} \mbox{ cm}^3/(\mbox{molecules sec}) \\ \mbox{CH}_3 \mbox{OO} \mbox{\circ} + \mbox{NO} \rightarrow \mbox{CH}_3 \mbox{O} \mbox{\circ} + \mbox{NO}_2 & \mbox{k}_3 = 8.7 \times 10^{-12} \mbox{ cm}^3/(\mbox{molecules sec}) \\ \mbox{[CH}_4] = 4.4 \times 10^{16} & \mbox{[Cl]} = 1.0 \times 10^4 \mbox{ molecules/cm}^3 \\ \mbox{[O}_2] = 5.0 \times 10^{18} & \mbox{[NO]} = 1.0 \times 10^{10} \mbox{ molecules/cm}^3 \end{array}$

What are the steady state concentrations of •CH3 and CH3OO•?

Explain whether or not you have sufficient information to compute [CH₃O•]_{ss}.

2) GIVEN: the two different expressions given below for the rate constant for the reaction: $C_4H_9O \bullet + \bullet NO \rightarrow C_4H_9ONO$

 $k = 7.8 \times 10^{-12} \exp(+2.85 \text{ kJ/mol/RT}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

- a) In the first expression, what, <u>if anything</u>, is the relationship between 7.8×10^{-12} and the rate constant for collisions?
- **b)** In the first expression, what, <u>if anything</u>, is the relationship between and 2.85 kJ/mol and the enthalpy barrier separating reactants and products?
- 3) Consider the elementary reactions at right and the data: $k_2 = 1.8 \times 10^{13} \exp(-12.2 \text{ kcal/mole/RT}) \text{ s}^{-1}$ $\Delta \text{H}^\circ_r = +1.7 \text{ kcal/mole}$ $\Delta \text{S}^\circ_r = +11.5 \text{ cal/(mole K)}.$ What is the Arrhenius expression for k-2?

4) Explain why the reaction below could not be an elementary reactions:

A gas phase reaction $A + B \rightarrow$ products follows the rate law v = k[A][B]

with $k = 1.4 \times 10^{-11} e^{-1000/T} cm^3$ molecule⁻¹ s⁻¹ and $\Delta H^\circ_r = +20 kJ/mole$

FCH 361

Homework #2

5) The graph below shows concentration versus time for the elementary reactions:

Initial concentrations are $[A]_0 = 1$ molar, and $[B]_0 = [C]_0 = [D]_0 = 0$

Estimate the values of k_a, k_b, and k_{-b} from the data in the graph.

6. This question does not count towards your grade. Concentrations of O₂ in the atmosphere are controlled by the following processes. τ , of O₂ in the atmosphere is 4.5×10^3 years

<u>Inputs (kg/year)</u>		
Photosynthesis on land	1.65×10^{14}	
Photosynthesis in ocean	1.35×10^{14}	

Removal (kg/year)	
Aerobic Respiration	2.3×10^{14}
Microbial Oxidation	5.1×10^{13}
Fuel combustion	1.2×10^{13}
Other	0.7×10^{13}

a) Show from this data that [O₂] in the atmosphere is at (or close to) steady state.b) Calculate the mass of O₂ in the atmosphere.