schedule 9th 2020.xls 1/7/2020

	FCH 361 Spring 2020	
	Reading assigments from the 9th Edition of	
	Atkins and de Paula	
Monday	Wednesday	Friday
1/13 INTRODUCTION	1/15 21.2-4	1/17 21.5
	Basics of Rate Laws	Basics of Rate Laws, Arrhenius
NO CLASS	1/22 21.6-7	1/24 21.2.d, 21.7
NO CLASS	Elementary Reactions	Pseudo-First Order and Steady State
1/27	1/29 Homework #1 22.5	1/31 22.1-2
Pseudo-First Order and Steady State	Arrhenius and Thermodynamics	Collision Theory & Diffusion Control
2/3 Homework #2	2/5 EXAM I	2/7 7.1-2
REVIEW		Failures of Classical Mechanics
2/10 7.3-5	2/12 7.6-7	2/14 8.1
The Wavefunction and Probability	The Wavefunction and Probability	Basics of Particle in a Box
2/17 Homework #3 7.5-7, 8.2	2/19	2/21 8.4-5
Meaning of Particle in a Box	Meaning of Particle in a Box	Basics of Simple Harmonic Oscillator (SHO)
2/24 12.9-11	2/26	2/28 Homework #4
Meaning of SHO	Meaning of SHO	REVIEW
3/2 EXAM II	3/4 8.3	3/6 8.3 12.2, 12.8-10, 12.11
	Classical versus Quantum Mechanics	Tunneling, Selection Rules
3/9 12.2	3/11 12.13-15	3/13 Homework #5 12.3-5
Origin of selection rules for SHO and 1-D box	Vibrations of Polyatomic Molecules	Basics of Rotational Spectra
Enjoy	Spring	Break!
3/23 12.11	3/25 10.3	3/27 10.4
Rotational Transitions	Molecular Orbital (MO) Theory: H ₂ ⁺	MOs for Homonuclear Diatomics
3/30	4/1 Homework #6	4/3 EXAM III
MOs for Homonuclear Diatomics	REVIEW	·
4/6 10.5	4/8	4/10 13.2c, 13.3-6
Heteronuclear Diatomics	MOs from quantum calculations	Electronic Spectroscopy
4/13 Homework #7 15.1-2	4/15 16.1-2	4/17 16.3
Statistical Mechanics - Probability & populations	Statistical Mechanics for molecules	Statistical Mechanics - some theory
4/20 22.4-5	4/22	4/24 Homework #8
Transition State Theory	Transition State Theory	REVIEW
4/27 EXAM IV		
	(tentative) Thursday 4/30	FINAL EXAM 3:00 - 5:00 p.m.