Thoughts on Steady State for Oxidation of a Small Alkane

Fill in the blanks and answer the questions below

1) Consider the mechanism below from Homework #5

$C_2H_6 + OH \rightarrow \bullet C_2H_5 + HOH$	\mathbf{k}_1
$\bullet C_2H_5 + O_2 \longrightarrow C_2H_5OO \bullet$	\mathbf{k}_2
$C_2H_5OO \bullet + NO \rightarrow C_2H_5O \bullet + NO_2$	k 3
$C_2H_5O \bullet + O_2 \rightarrow CH_3CH = O + HOO \bullet$	k4

Define L_{C2H6} as the rate of loss of C_2H_6 = Rate of reaction 1 (R₁)

Define P_{C2H5} as the rate of production of C_2H_5 = Rate of Reaction

Consider similar definitions of LC2H5, LC2H500, and LC2H50. Consider similar definitions of PC2H500 and PC2H50.

At steady state, $d([C_2H_5]/dt = P_{C2H5} - L_{C2H6} = _$ (Enter a number. No calculators!)

At steady state:

What is the relationship between P_{C2H5} and L_{C2H6}?

What is the relationship between P_{C2H5} and L_{C2H5}

What is the relationship between Pc2H500 and Lc2H500?

What is the relationship between PC2H50 and LC2H50?

What is the relationship between PC2H5O, LC2H6, R1, R2, R3, and R4?

 $[C_{2}H_{5}O\bullet]_{ss} = \frac{P_{C2H5O}}{k'_{loss of C2H5O}} = \frac{\text{Rate of reaction } N}{k'_{loss of C2H5O}} \qquad Why \ can \ we \ use \ N=1 \ here?$

2) To the mechanism above, add the reaction below, as in Homework #6.

$$C_2H_5O_2 + HOO \rightarrow C_2H_5OOH + O_2$$
 ks

Q2 What Rates are equal to each other, if any, once we add reaction 5?