Exercises

- A. In the blackbody model, how much would the Earth's surface temperature change if the surface albedo was 0.40 instead of 0.31?
- B. What is the relative GWP (Global Warming Potential) of CO₂?
- C. Explain what causes the annual rise and fall of $[CO_2]$ shown in Figure 22.3 of the 2nd and 3rd editions of the textbook?
- D. How many kg of CO₂ does a person's driving produce in one year, if they drive 12,000 miles/year at 25 miles/gallon. Treat gasoline as C_8H_{18} with $\rho = 0.7$ g/ml.
- E. List two feedback mechanisms related to CO₂ concentration.
- F. What is the mechanism by which some particles exert a direct negative radiative forcing? What is the mechanism by which some particles exert a direct positive radiative forcing? What is the mechanism by which particles may exert an indirect radiative forcing?
- G. Consider the statement "The <u>climate</u> in Syracuse today is warm for this time of year." From your reading of Section 1.2 of the text, explain what is wrong with the statement.
- H. Consider Species A absorbs at λ_1 in the IR with a cross-section of 1×10^{-19} cm²/molecule. Species B absorbs at λ_1 with a cross-section of 4×10^{-18} cm²/molecule.
 - Compute the %Transmittance (aka %T) and %Absorbed (%A = 100-%T) at λ_1 for a pathlength of 10 km for the following conditions:

a) an atmosphere with only species A, and [A] = 2.5×10^{13} molecules/cm³

- b) an atmosphere with $[A] = 2.5 \times 10^{13}$ molecules/cm³ and $[B] = 2.5 \times 10^{11}$ molecules/cm³
- I. On the graph on the next page:
 - i) what is the instantaneous radiative forcing of compound Y at t=10 years (the first data point)
 - ii) what is the AGWP of compound Y for a time horizon of 10 years? (in W years $m^{-2} kg^{-1}$)
- J. In the handout I gave you on energy balances, what energy flux of IR emitted from the Earth's surface passes the atmosphere to escape into space?

Problems

- 1. The figure on the next page shows the instantaneous radiative forcing (IRF) for substances X and Y. The units of IRF are W m⁻² kg⁻¹.
- A) Calculate (approximately) the GWP of X relative to Y for a time horizon of 200 years.
- B) Estimate the time at which the relative GWP of X equals 1.0 (relative to Y)

HINT: Start by calculating the lifetime, τ , of each species from the data in the graph and the equation $\ln([X]_t/[X]_0) = -t/\tau_X$ and then using the equations for AGWP and relative GWP. Use the calculus formula employed in lecture. Alternatively, you can get the AGWP of X and Y by adding up the areas of a bunch of polygons to get the area under each curve.

2. Does the GWP of CFC-115 increase or decrease with increasing time horizon? Why?

Does the GWP of CFC-11 increase or decrease with increasing time horizon? Why?

<u>Type of Answers</u>: Quantitative reasoning. Use Table 21.4 from the 2^{nd} edition of the textbook, which is also posted to Blackboard as the second page of the file with the curves of IRF, AGWP, and GWP versus time horizon.

3. <u>Given the molecules and results from Exercise H</u>, and:

Species B also absorbs at λ_2 in the IR with a cross-section of 1×10^{-18} cm²/molecule

<u>Question</u>: Does this addition of species B to an atmosphere <u>already containing A</u> have a greater effect on the amount of energy of the Earth's IR emission by the atmosphere at λ_1 or at λ_2 ?

- (Assume the emission power, I₀, from the Earth's surface is the same at λ_1 and λ_2 , and that these are the only absorbers one need account for.)
- Prompt a) Which quantity in Exercise H is proportional to the radiative forcing of these compounds at λ_1 and λ_2 : Absorbance, %T, or %A ?

Prompt b) What is the baseline at λ_1 to determine the effect of adding compound A? At λ_2 ?

Type of Answer: Calculation. Note: this is really a question about window regions!