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An invasive fungal pathogen has reduced the American chestnut (Castanea dentata), once a 
keystone tree species within its natural range in the eastern United States and Canada, to 
functional extinction. To help restore this important canopy tree, blight-tolerant American 
chestnut trees have been developed using an oxalate oxidase-encoding gene from wheat. 
This enzyme breaks down oxalate, which is produced by the pathogen and forms killing 
cankers. Expressing oxalate oxidase results in blight tolerance, where the tree and the fungus 
can coexist, which is a more evolutionarily stable relationship than direct pathogen resis-
tance. Genetic engineering (GE) typically makes a very small change in the tree’s genome, 
potentially avoiding incompatible gene interactions that have been detected in some chestnut 
hybrids. The GE American chestnut also retains all the wild American chestnut’s alleles for 
habitat adaptation, which are important for a forest ecosystem restoration program. 

Forest ecosystems are being transformed by College of Environmental Science and Forestry 
invasive species through the elimination or (SUNY-ESF), with the help of many collabora-

broad degradation of ecological function of tree tors from various universities, nongovernmental 
species (Lovett et al. 2006, 2016).Theseproblems organizations, and the general public, have used 
may be exacerbated by climate change (Dukes GE to develop blight-tolerant American chest-
et al. 2009). We believe the ability to mitigate nut trees. Pending approval from regulatory 
this unprecedented threat to the biodiversity agencies, we hope to facilitate introgression of 
and economic value of these ecosystems will re- this blight tolerance trait into the surviving rem-
quire the integration of multiple approaches, in- nant American chestnut populations through 
cluding genetic engineering (GE) (Woodcock controlled breeding and restoration plantings. 
et al. 2018). A model for this approach is provid- The ultimate goal is a diverse, self-sustaining 
ed by the American chestnut (Castanea den- population of blight-tolerant American chestnut 
tata), which was devastated by a chestnut blight in the forests of eastern North America. This is 
caused by an invasive fungal pathogen. Re- an exciting and unique endeavor because, to 
searchers at the State University of New York’s our knowledge, this is the first bioengineered 
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organism developed specifically with the goal of 
ecological restoration. It also exemplifies the 
unique potential for this technology to be used 
for environmental and cultural benefits outside 
agriculture. This review will describe the eco-
logical problem of chestnut blight, our search 
for solutions, scientific progress and success, 
and current efforts to put this solution into 
practice. 

THE PROBLEM 

The American chestnut (Fig. 1) was once a key-
stone tree species within its natural range in the 
eastern United States and Canada. In many ar-
eas, it was either the dominant or codominant 
canopy tree species (Anagnostakis 1982; Smith 
2000; Dalgleish et al. 2015; Collins et al. 2017). It 
was a fast-growing and long-lived tree that pro-
duced a uniquely consistent mast crop of nuts 
for both human and wildlife consumption (Di-
amond et al. 2000), could be harvested for valu-
able lumber and tannins, and was considered a 
foundational species for wildlife habitat (Hardin 
et al. 2001; Paillet 2002). The American chest-
nut’s ecological role even extended to carbon 
sequestration and biomass conversion (Jacobs 
et al. 2009). The American chestnut also has a 
unique social value (Davis 2005), memorialized 
in songs (e.g., “Chestnuts Roasting on an Open 
Fire”), street and place names (the near-ubi-
quitous Chestnut Street), and literature (as in 
this excerpt from Thoreau’s Walden): 

When chestnuts were ripe I laid up half a bushel 
for winter. It was very exciting at that season to 
roam the then boundless chestnut woods of Lin-
coln,—they now sleep their long sleep under the 
railroad,—with a bag on my shoulder, and a stick 
to open burs with in my hand, for I did not always 
wait for the frost, amid the rustling of leaves and 
the loud reproofs of the red squirrels and the jays, 
whose half-consumed nuts I sometimes stole, for 
the burs which they had selected were sure to 
contain sound ones. Occasionally I climbed 
and shook the trees. They grew also behind my 
house, and one large tree, which almost over-
shadowed it, was, when in flower, a bouquet 
which scented the whole neighborhood, but the 
squirrels and the jays got most of its fruit; the last 
coming in flocks early in the morning and pick-

Figure 1. Large American chestnut tree (Paul farm) in 
Hurley, NY. (Photo provided by Gail Whistance. Pho-
to credit William Cressy Vrooman (1857–1939); im-
age entitled “American Chestnut Tree c. 1889–1895.” 
Print from glass plate negative. Location: Ten Eyck 
bouwerie [Bouwerie is the Dutch word for farm]. 
Hurley Mountain Road, Hurley, NY. Original image 
and information courtesy of the Hurley Heritage So-
ciety. Collection of Marguerite Veeder Yates Parker, 
granddaughter of John Wynkoop Veeder. Gift of her 
granddaughter Ellen McCoy Messick.) 

ing the nuts out of the burs before they fell, I 
relinquished these trees to them and visited the 
more distant woods composed wholly of chest-
nut. These nuts, as far as they went, were a good 
substitute for bread. 

Unfortunately, a little over a century ago, an 
invasive fungal pathogen called Cryphonectria 
parasitica was introduced from Asia into the 
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Figure 2. Example of a pure American chestnut stand a few years after the chestnut blight went through. (Photo: A 
ghost forest of blighted American chestnuts in Virginia provided by the Library of Congress Prints and Photo-
graphs Division.) 

United States though the port of New York 
(Anagnostakis 1987). Within about 50 years of 
its discovery in 1904, the chestnut blight spread 
throughout the American chestnut’s natural 
range, killing around 90% of the population 
(Fig. 2). Survivors were reduced from a keystone 
canopy species to an insignificant understory 
tree that rarely produces viable nuts, making 
the American chestnut functionally extinct. 

SEARCHING FOR A SOLUTION 

Many approaches to address chestnut blight 
have been tried over the years without significant 
success. One interesting approach is a biocon-
trol method that causes the fungus to become 
hypovirulent (less aggressive). Hypovirulence, 
caused by a virally compromised strain of the 
fungus, can spread by hyphal anastomosis (a 
fusion where the hyphae share cytoplasm) in 
cankers on infected trees, slowing or stopping 
the growth of the fungal infection (see Milgroom 
and Cortesi 2004 and Van Alfen 2018 for re-
views of hypovirulence). This approach has had 

better success in Europe with Castanea sativa 
than in the United States with C. dentata. Prob-
lems include the limited success of viral transfer 
between different vegetatively incompatible 
strains of the fungus, and the ability of the fun-
gus to establish new, uncompromised infections. 
This approach is still being pursued in the 
United States. Recent research has described a 
new modification using genetically engineered 
“super donor” fungal strains that help to over-
come some of these difficulties (Stauder et al. 
2019). Hypovirulence may assist in keeping sur-
viving trees alive long enough to breed with 
blight-tolerant strains of American chestnut, 
but using current methods is unlikely to provide 
meaningful blight control in the United States 
on a landscape scale. 

Asian Chestnut Plantings 

Asian chestnut species such as Japanese chest-
nut (Castanea crenata) and Chinese chestnut 
(Castanea mollissima) coevolved with C. para-
sitica and have varying levels of quantitative re-
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sistance to the chestnut blight. These chestnuts 
trees, primarily Chinese chestnut, have been 
widely distributed for over 100 years and many 
are planted in orchards throughout the United 
States for nut production (Hunt et al. 2012). 
There are few reports of natural regeneration 
of these introduced species in unmanaged for-
ests (Jaynes 1967; Anagnostakis and Hillman 
1992; Miller et al. 2014). The few areas where 
Chinese chestnuts have been established were 
not optimal American chestnut sites, with shal-
low soils that stunt the growth of the competitive 
tree species allowing the shorter Chinese chest-
nut trees to reach the canopy. 

Hybrid Breeding Programs for Blight 
Resistance 

In 1921, A.H. Graves started crossing American 
chestnut with a variety of Asian chestnut species, 
which was continued by the Connecticut Agri-
cultural Experiment Station in 1950. This even-
tually produced what has become known as the 
“Graves” tree used by The American Chestnut 
Foundation (TACF) in their backcross breeding 
program, as well as other genetic lines derived 
from Chinese x American chestnut hybridiza-
tion (Graves 1940; Anagnostakis 2012). 

In 1922, breeding work for blight resistance 
also began under the United States Department 
of Agriculture (USDA) Office of Forest Pathol-
ogy, with American chestnut and Chinese chest-
nut hybrids selected for timber-type growth 
form (tall and straight, a hallmark of the Amer-
ican chestnut) and blight resistance (Burnham 
et al. 1986). From that effort, several promising 
first-generation Chinese x American hybrid 
trees were generated, including what has become 
known as the “Clapper” tree, which for several 
decades did exhibit good growth and slower pro-
gression of chestnut blight, yet eventually did die 
from it. Like the “Graves” tree, the “Clapper” was 
later used as starting material for the TACF 
backcross breeding program. The USDA hybrid 
breeding program was abandoned in 1960 (Dil-
ler and Clapper 1965). 

None of these early programs succeeded in 
producing a fast growing, timber-type tree with 
good blight resistance; every candidate fell short 

in at least one of these respects (Diller and Clap-
per 1969; Burnham et al. 1986; Anagnostakis 
2012). Hybrid breeding can also result in com-
plications, with respect to a restoration tree, such 
as internal kernel breakdown (IKB) (Fulbright 
et al. 2014), male sterility (Sisco et al. 2014), and 
intermediate traits (Cipollini et al. 2017). 

Mutational Breeding for Blight Resistance 

Starting in the 1950s and proceeding into the 
1970s, W. Ralph Singleton and Albert Dietz ex-
posed chestnut seeds to radiation, with the hope 
of inducing a mutation that would confer blight 
resistance to the resulting tree (Dietz 1978; 
Burnworth 2002; Curry 2014). This technique 
had been used by Singleton and others on a wide 
variety of crops, in many cases resulting in dis-
ease resistance or other desirable traits, some of 
which are still agriculturally important today. 
Chestnut seeds collected by Dietz were irradiat-
ed at Brookhaven National Laboratory and other 
facilities, and over 10,000 resulting trees were 
planted in orchards ranging over seven states 
(Dietz 1978), but no measurable resistance to 
chestnut blight has been reported in these trees 
or their offspring. Because this technology was 
and is not regulated, offspring and re-sprouts 
from some of these irradiated trees may still be 
present at various locations today. 

Backcross Breeding of Hybrids 

In 1983, TACF was founded as a coalition of 
plant scientists and laypersons interested in 
the preservation of the species. Soon thereafter, 
three of the foundation’s scientists published an 
extensive paper describing the foundation’s 
breeding plan to incorporate resistance genes 
from the Chinese chestnut (Burnham et al. 
1986). Although earlier programs had the goal 
of replacing American chestnuts with simple 
hybrids or pure Asian species (Hepting 1974), 
the “Burnham plan” proposed a systematic pro-
gram of backcrossing F1 hybrid trees with pure 
American chestnut trees, selecting for blight re-
sistance and American phenotype at each step. 
To get a jump start, they began with the “Graves” 
and “Clapper” hybrid trees from the two previ-
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ous hybrid breeding programs. The goal was a 
population of trees with the phenotype of Amer-
ican chestnut and the blight resistance of the 
Chinese chestnut. 

The original plan was based on a hypothesis 
of two resistance genes (Burnham et al. 1986). 
Under that assumption, the resistance alleles 
could be preserved through backcrossing, and 
selected trees from an intercross generation 
would be homozygous at both resistance loci, 
giving them resistance matching Chinese chest-
nuts. However, updated data suggests that three 
or more separate loci contribute to quantitative 
blight resistance. Each additional gene involved 
reduces the probability that all resistance alleles 
will be inherited and therefore increases the 
number of trees needed at each generation. 
Although the breeding program has had success 
in capturing many of the morphological features 
of the American chestnut (Diskin et al. 2006), to 
date the best candidate trees have achieved a 
level of blight resistance intermediate between 
the two parent species, greater than wild-type 
American chestnut controls but less than Chi-
nese chestnut controls (Steiner et al. 2017). 
These trees are continuing to be improved 
with further breeding to other sources of resis-
tance, including some with the blight-tolerant 
transgenic American chestnut trees. 

INCORPORATING THE TOOLS OF GENETIC 
ENGINEERING 

History of the Project 

The effort to genetically engineer American 
chestnut had an unusual beginning. In 1989, 
two members of the newly formed New York 
chapter of TACF-NY, Herb Darling and Stan 
Wirsig, met with Dr. Charles Maynard and Dr. 
William Powell (faculty at SUNY-ESF). The 
TACF members represented laypeople seeking 
researchers who could use the latest tools of 
GE to complement the ongoing TACF backcross 
breeding program. Dr. Maynard had experience 
in forestry and black cherry tissue culture (Tri-
coli et al. 1985; Fuernkranz et al. 1990; Maynard 
1994) and Dr. Powell had experience in molec-
ular biology and virulence of the chestnut blight 

fungus (Hansen et al. 1985; Powell and Van Al-
fen 1987a,b; Gobbi et al. 1990). Encouraged by 
the interest from TACF-NY members, in 1990, 
Dr. Maynard and his students, collaborating 
with Dr. Scott Merkle at the University of Geor-
gia (Merkle et al. 1991), began to develop the 
tissue culture and transformation methods 
needed to add genes to the chestnut genome. 
Dr. Powell and his students sought and tested 
putative resistance genes. This chapter will focus 
on the search for resistance genes; further infor-
mation on tissue culture methods has been de-
scribed previously by Dr. Maynard and his stu-
dents (Xing et al. 1997, 1999; Polin et al. 2006; 
Rothrock et al. 2007; Oakes et al. 2016a,b). 

One significant advantage of GE compared 
to traditional hybrid and backcross breeding is 
that there is a much smaller change to the ge-
nome with respect to gene alleles that can influ-
ence traits that make the American chestnut 
adapted to its habitat. This means that all the 
gene alleles normally found in given American 
chestnut trees are retained. For example, the 
American chestnut’s height at maturity allows 
it to compete for light in a dense forest canopy, 
whereas the Chinese chestnut, often used in 
breeding programs, has a much shorter stature. 
TACF’s backcross breeding program selects trees 
for American phenotype using features such as 
leaf, twig, and bud morphology (Diskin et al. 
2006). However, trees are selected at a young 
age in an orchard; other important ecological 
attributes cannot be tested until these trees reach 
maturity in a forest setting. Insertion of a small 
segment of DNA through GE, without inter-
rupting any existing genes, allows the offspring 
to retain all the alleles for height and other ad-
aptations. 

Searching for Genes 

There are two general approaches to identifying 
putative resistance-enhancing genes. One is to 
search for the genes that confer resistance in the 
related, blight-resistant Asian species of chest-
nut. This approach requires significant genomic 
and bioinformatics capabilities that were not 
available in the early 1990s. In addition, no sin-
gle gene from the blight-resistant Asian species 
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would likely confer full resistance, as the resis-
tance in that species is quantitative and requires 
multiple genes working together (Kubisiak et al. 
1997; Steiner et al. 2017). Instead, we took a 
functional approach, focusing the mechanism 
of fungal infection. Knowing the basics about 
how the fungal pathogen attacks the tree (Havir 
and Anagnostakis 1983; Chen et al. 2010), we 
sought out genes that would protect the tree 
from blight infections. Using this approach, it 
was the function of the gene, not the source, that 
was important. The goal was to find a single, 
dominant gene that would protect the tree 
from the blight at a level equal to, or possibly 
higher than, the Asian chestnut species. 

In the early 1990s, there were few identified 
genes available for testing resistance to fungal 
pathogens. At the time, the most common genes 
used in transgenic plants were chitinases and 
β-1,3-endoglucanases (e.g., Brogue et al. 1991; 
Yoshikawa et al. 1993). We decided to take a 
different route and began working with antimi-
crobial peptides (AMPs), which naturally pro-
tect many animals from infections (Zasloff 1987; 
Jia et al. 2000; Lamberty et al. 2001; Linde et al. 
2008), and are also part of the innate immunity 
in most organisms (Gordon and Romanowski 
2005). Because these peptides were very small, it 
was feasible to synthesize and test modified se-
quences in the laboratory. We tested several syn-
thetic designs based on the protein structure of 
magainin-type AMPs found in frog skin. Using 
our own designs allowed us to enhance antifun-
gal activity while reducing potential effects on 
animals (i.e., hemolytic activity [Powell et al. 
1995, 2000]). The best designs could then be 
reverse engineered into genes for testing in 
plants (Liang et al. 2001, 2002; Newhouse et al. 
2007). 

While this early research with synthetic 
AMPs showed some success in conferring resis-
tance to fungal infection, we soon learned that 
public acceptance is an equally important con-
sideration. Though the peptides used were syn-
thetic in origin, and not cloned directly from a 
frog or any other organism, they became known 
as the “frog genes” with all the problematic pub-
lic perceptions that this engendered. Respond-
ing to public feedback, this line of research was 

eventually abandoned for a more effective and 
publicly acceptable gene. 

A eureka moment occurred while reading a 
book of abstracts from the 1997 Annual Meeting 
of the American Society of Plant Physiologists, 
with an abstract entitled “Expression of oxalate 
oxidase in transgenic plants provides resistance 
to oxalic acid and oxalate-producing fungi.” Ox-
alate (or oxalic acid) at a chestnut blight canker 
margin helps lower the pH from a normal 5.5 to a 
toxic 2.8, binds calcium, inhibits lignin forma-
tion (Welch et al. 2007), and may inhibit the 
oxidative burst in the host (Cessna et al. 2000). 
Oxalate had been linked to virulence in C. 
parasitica when studying hypovirulence (Havir 
and Anagnostakis 1983, 1985); this link was later 
confirmed in knockout mutants of the pathogen 
(Chen et al. 2010). We immediately began work-
ing with a wheat oxalate oxidase (OxO) gene 
provided by Dr. Randy Allen (Texas Tech Uni-
versity). At that time, the chestnut transforma-
tion protocols were still being optimized, so the 
initial tests were performed in a model tree, hy-
brid poplar, where we demonstrated that the 
OxO gene could enhance resistance to another 
oxalate-producing fungal pathogen, Septoria 
musiva (Liang et al. 2001). Successful transfor-
mation of American chestnut followed soon 
thereafter (Polin et al. 2006), and we planted 
the first transgenic American chestnut trees in 
field trials under USDA permits in 2006. 

Why Is Oxalate Oxidase an Ideal Gene 
for American Chestnut? 

We have tested over 30 transgenes, mostly from 
Chinese chestnut, in conjunction with various 
promoters, producing hundreds of transgenic 
events in American chestnut. However, the 
constitutively expressed OxO gene has demon-
strated the best results to date and will soon 
be submitted for U.S. Federal regulatory review. 
There are other transgenic events in the devel-
opment pipeline with different promoters (e.g., 
the win3.12 wound/pathogen-inducible pro-
moter), and combinations of transgenes to try 
to protect the tree from other chestnut patho-
gens, such as Phytophthora cinnamomi. 
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There are many advantages to using the 
oxalate oxidase to confer blight tolerance. First 
and most important, oxalate oxidase has been 
shown to be effective at protecting the American 
chestnut tree from the oxalate produced by 
C. parasitica (Zhang et al. 2013; Newhouse 
et al. 2014; see examples in Figs. 3 and 4). A 
single copy of the gene expressed over a certain 
threshold level can provide blight tolerance sim-
ilar to Chinese chestnut controls. Because this 
new trait is inherited like a dominant allele, it 
can be used to rescue existing genetic diversity 
and local adaptations in the surviving remnant 
population of the American chestnut. When us-
ing pollen from a transgenic blight-tolerant tree 
to outcross to a surviving “mother” tree, approx-
imately half the offspring inherit the blight tol-
erance along with half the nuclear genotype and 
all the cytoplasmic genes in the chloroplasts and 
mitochondria from the wild mother tree. Nuts or 
seedlings that inherit the OxO gene can be iden-
tified with a simple assay (Zhang et al. 2013). 
Coordinated outcrossing to a variety of “moth-

Potted small stem inoculations 
canker length, 29 DPI 

35 

er” trees throughout the natural range of the 
American chestnut will add more diversity and 
local adaptations to the population (J West-
brook, J Holiday, A Newhouse, et al., in prep.). 
This process differs from traditional breeding 
approaches where resistance is provided by genes 
that are either recessive or intermediately dom-
inant. In that scenario, full blight resistance is 
only expressed by individuals that are homozy-
gous for all resistance alleles. The restoration 
population, therefore, must remain closed be-
cause every outcrossing dilutes the resistance 
and requires intercrossing to build back the full 
resistance. Thus, GE simplifies the rescue of ge-
netic diversity for use in restoration because 
about half the offspring from outcrossing inherit 
full blight tolerance and no dilution occurs. 

Second, oxalate oxidase provides “tolerance” 
to the blight not by killing the pathogen, but 
instead by protecting the tree from the damag-
ing oxalate produced by the pathogen (Fig. 4). 
The tree and the fungus can coexist, as is the case 
with Asian chestnut species in the native range 
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Figure 3. Mean canker height (left) on stem inoculations of potted Darling 58 T1 trees compared to nontrans-
genic controls, with example photos (right) of cankers on each tree type. Measurements and photos taken 29 days 
postinoculation (DPI). Error bars indicate ±1 standard error of the mean. Note in the photos that the Darling 58 
transgenic stems were visibly infected by blight (orange color immediately surrounding the wound) but the 
infection did not spread far beyond the wound or cause damage like that on the nontransgenic controls. The 
wounds on the Darling 58 and Chinese stems appear worse (splitting open) because the stems are still growing, 
whereas the nontransgenic American stem tissue surrounding the wound is completely dead as a result of blight. 
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A Chinese chestnut 

C American chestnut 
OxO minus, front 

B American chestnut 

D American chestnut 
OxO minus, back 

E American chestnut 
OxO plus, front 

Figure 4. Two-year-old stems (∼1 cm diameter) in-
oculations with Cryphonectria parasitica strain 
EP155. (A,B) Resistant Chinese and susceptible 
American chestnut, respectively, 76 days postinocu-
lation. (C,D) Front and back, respectively, “Darling” 
American chestnut T1 offspring that did not inherit 
the oxalate oxidase gene, 74 days postinoculation. (E, 
F) Front and back, respectively, “Darling” American 
chestnut T1 offspring that did inherit and expressing 
the oxalate oxidase gene. Black marker lines in C and 
E represent the 0.5 cm wound that was originally in-
oculated. 

of the blight fungus. This is important because 
chestnuts are long-lived trees, so effective blight 
protection must be sustainable over the lifetime 
of the tree for it to provide all its ecological ser-
vices. Even though we are using a single gene, 
tolerance is a very evolutionarily stable relation-

ship because it does not provide a strong selec-
tive pressure for the pathogen to overcome this 
defense (Rausher 2001; Woodcock et al. 2018). 
To date, we have not seen a report of a pathogen 
that uses oxalate as a virulence factor over-
come the plant tolerance conferred by oxalate 
oxidase; so it is unlikely that this will occur in 
C. parasitica. 

Finally, the oxalate oxidase enzyme is very 
common in both wild and cultivated plants (Ta-
ble 1). This ubiquity helps demonstrate its safety 
in food, feed, and to the environment. Knowing 
that it is consumed daily by billions of people, 
livestock, and wildlife should ease public accep-
tance. The amount of oxalate oxidase potentially 
introduced to the human diet from transgenic 
chestnut would be dwarfed by the amount con-
sumed from other sources. 

REGULATORY OVERSIGHT 

The section is from the authors’ perspective, 
specific and updated regulatory details should 
be clarified directly with the appropriate 
agencies. 

In the United States, regulation of genetically 
engineered plants falls under the federal coordi-
nated framework consisting of one or more the 
following agencies: USDA, the Food and Drug 
Administration (FDA), and the United States 
Environmental Protection Agency (EPA). This 
usually means that at least one of the regulatory 
agencies reviews each newly developed geneti-
cally engineered plant, but often more than one 
agency is involved, as is the case for the transgen-
ic, blight-tolerant American chestnut. 

GE of agricultural crops is widespread, so the 
companies that produce these products have be-
come adept at navigating the relevant regulatory 
processes. In contrast, most university faculty 
researchers lack training or resources for work-
ing with the federal regulatory processes for ge-
netically engineered plants. Many potentially 
useful crops have been developed at universities 
using the tools of GE, but few have even attempt-
ed federal regulatory review. Examples (limited 
to crops transformed with the oxalate oxidase) 
include hybrid poplar (Liang et al. 2001), soy-
bean (Donaldson et al. 2001), corn (Ramputh 
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Table 1. Samples of oxalate oxidase isozymes found in plants and other organisms 

Common name Scientific name References 

Cultivated food plants 
Peanut Arachis hypogaea Wang et al. 2010 
Oat Avena sativa Lane et al. 1991 
Beet Beta vulgaris Obzansky and Richardson 1983 
Tea Camellia sinensis Fu et al. 2018 
African oil palm Elaeis guineensis Rusli et al. 2015 
Strawberry Fragaria ananassa Dahiya et al. 2010 
Barley Hordeum vulgare Sugiura et al. 1979 
Banana Musa paradisica Anjum et al. 2014 
Rice Oryza sativa Carrillo et al. 2009 
Date palm Phoenix dactylifera LOC103698783 oxalate oxidase 1-like 

(Phoenix dactylifera [date palm]) 
Peach and apricot Prunus spp. Liang et al. 2010 
Sorghum Sorghum bicolor Satyapal and Pundir 1993 
Spinach Spinacia oleracea Laties 1950 
Cacao Theobroma cacao Gesteira et al. 2007 
Wheat Triticum aestivum Lane et al. 1993 
Corn Zea maize Vuletić and Šukalović 2000 

Wild plants and microbes 
Mosses Six spp. (genera include: Mnium, Laker et al. 1980 

Hylocomium, Eurohynchium, 
Rhytidiadelphus) 

Goatgrass Aegilops tauschii subsp. tauschii Oxalate oxidase GF-2.8 (Aegilops 
tauschii subsp. tauschii) 

Spiny amaranth Amaranthus spinosus Goyal et al. 1999 
Ramie Boehmeria nivea Xuxia et al. 2012 
Bougainvillea Bougainvillea spectabilis Srivastava and Krishnan 1962 
Stiff brome Brachypodium distachyon LOC100841795 oxalate oxidase 1 

(Brachypodium distachyon [stiff 
brome]) 

Rubber bush Calotropis procera Freitas et al. 2017 
White rot fungus Ceriporiopsis subvermispora Aguilar et al. 1999 
Insulin plant Costus pictus Sathishraj and Augustin 2012 
Moss Hypnum triquetrum Houget et al. 1927 
Perennial ryegrass Lolium perenne Davoine et al. 2001 
Endophytic bacterium Ochrobactrum intermedium CL6 Kumar and Belur 2016 
Bacteria Pseudomonas sp. OX-53 Koyama 1988 
Azalea Rhododendron mucronatum Sakamoto et al. 2015 
Castor bean Ricinus communis LOC107261123 oxalate oxidase GF-3.8-

like (Ricinus communis [castor bean]) 
Split-gill mushroom Schizophyllum commune SCHCODRAFT_15706 oxalate oxidase 

(Schizophyllum commune H4-8) 
Dermatophytic fungus Trichophyton rubrum TERG_03492 oxalate oxidase 

(Trichophyton rubrum CBS 118892) 
Wild einkorn (wheat Triticum urartu Oxalate oxidase GF-2.8 (Triticum 

progenitor) urartu) 
Narrowleaf cattail Typha angustifolia Du et al. 2018 
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et al. 2002), sunflower (Hu et al. 2003), tomato 
(Walz et al. 2008), rice (Molla et al. 2013), and 
taro (He et al. 2013). The university-developed 
crop plant that may have come closest was pea-
nut (Hu et al. 2015, 2016), which was submitted 
to the USDA but later withdrawn after facing 
the complications and high costs of the EPA 
registration. 

Like most university professors, we also 
began this process with virtually no regulatory 
background in this process and have relied 
heavily on feedback from the three agencies 
directly, the USDA IR4 Project, and volunteer 
or reduced-fee consultants. It has taken about 
3 years to thoroughly understand the regula-
tions, to complete additional experiments 
needed for regulatory review, and to start writ-
ing extensive dossiers with supporting material 
for the blight-tolerant American chestnut. 
Future restoration projects involving GE would 
be streamlined by a better understanding 
of this system, so we have been involving stu-
dents and research collaborators throughout 
the whole process. 

Regulatory Review Processes 

USDA 

The USDA, through its Animal and Plant 
Health Inspection Service (APHIS) has respon-
sibility for protecting agriculture from pests and 
diseases. Through the Plant Protection Act and 
the Animal Health Protection Act (AHPA), the 
USDA derives regulatory authority of biotech-
nology products that have the potential to pose a 
risk to agricultural plant and animal health. The 
USDA also oversees all our field trial planting 
permits. 

As with all the regulatory agencies, the first 
question is, “Are we regulated?” This was easily 
answered because we used Agrobacterium-me-
diated transformation. Because the disarmed 
Agrobacterium tumefaciens strain we used was 
developed from a plant pathogen, the transgenic 
American chestnut falls under USDA regula-
tion. Newer bioengineering techniques that do 
not involve plant pests may not be subject to the 
same review process. 

As of this writing, a petition for nonregulat-
ed status is being prepared for the USDA. The 
final petition will include an extensive back-
ground on the biology and ecology of American 
chestnut, molecular characterization of the 
transgenic events, enzyme quantification, blight 
tolerance assays, growth comparisons, and sev-
eral ecological studies. Two such ecological 
studies published recently are a wood frog tad-
pole experiment observing feeding on chestnut 
leaf litter (Goldspiel et al. 2018) and another 
examining native seed germination and mycor-
rhizal root colonization in the presence of trans-
genic chestnut tissue (Newhouse et al. 2018). To 
date, no significant environmental differences 
have been found between the transgenic and 
wild-type American chestnut. 

The first step in submission is a review for 
completeness and editing as needed. Subse-
quent steps include a 60-day open comment 
period on the petition, preparation of the Plant 
Pest Risk Act (PPRA) evaluation by the USDA, 
preparation of an Environmental Impact State-
ment (EIS) by the USDA’s National Environ-
mental Policy Act (NEPA) team, another open 
comment period on the EIS, revision of docu-
ments and response to comments, and then a 
final decision. It is impossible to accurately 
predict how long this process will take, but a 
reasonable estimate based on other recent sub-
missions is approximately 18 to 24 months. The 
decision (also pending decisions by other agen-
cies) will determine whether we can proceed to 
public distribution and ecosystem restoration, 
or whether more testing needs to be completed 
and reviewed. 

FDA 

The FDA’s authority relative to our blight-tol-
erant American chestnut trees is based on its 
mission to assure the safety of foods and food 
ingredients for humans and animals, specifically 
under the adulteration provisions (section 402 
(a)(1)) and the food additive provisions (section 
409) of the Federal Food, Drug and Cosmetic 
Act (FD&C Act). 

FDA review of transgenic plant products is 
technically voluntary, but to our knowledge, all 
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transgenic food plants available in the United 
States today have been through this review. Be-
cause the American chestnut produces a nut 
that can be used in food and feed, we will submit 
our trees for their review. The approval sought 
from the FDA through the premarket consulta-
tion process is a determination as to whether our 
transgenic trees meet the standards of safety for 
food additives and GRAS (generally recognized 
as safe) substances as well as the adulteration 
section provisions of the FD&C Act. 

EPA 

The EPA is responsible for protecting human 
health and the environment. EPA’s regulatory 
authority relative to our blight-tolerant Ameri-
can chestnut trees is derived from the Federal 
Insecticide, Fungicide, and Rodenticide Act 
(FIFRA), which was originally intended to ad-
dress regulation of pesticides, but has expanded 
first to include plant pesticides and later modi-
fied into plant incorporated protectants (PIPs). 
Examples of PIPs registered with the EPA in-
clude Cry proteins from Bacillus thuringiensis 
(Bt) that have been incorporated into many 
commercially grown crops. 

Of the three agencies comprising the coor-
dinated framework, the EPA is the only one that 
charges fees. Levied under the Pesticide Regis-
tration Improvement Extension Act (PRIA), 
these include registration fees (covering initial 
reviews) and maintenance fees (covering annual 
reports). Land grant universities and some gov-
ernmental institutions have reduced rates or are 
exempt from at least some of these fees, but 
many universities or nonprofits would still be 
responsible for some or all of the costs. These 
fees were implemented when primarily for-
profit commodities were being regulated, but 
they become problematic with public restora-
tion programs such as the American chestnut 
project and other not-for-profit applications. 
For example, it is not clear who would or should 
pay ongoing maintenance fees for a wild, un-
owned, not-for-profit restoration tree replicat-
ing on its own in the wild. Some form of federal 
rule change will likely be required to allow the 
use of GE for disease tolerance in wild organ-

isms. This has presented a new paradigm for the 
regulators to consider. 

For OxO-expressing American chestnuts, 
the first question raised with the EPA is whether 
we should be also regulated by this agency. This 
revolves around the EPA definition of a pesti-
cide, and whether OxO, which protects the tree 
from oxalate without harming the fungus, meets 
this definition. We have been engaged in discus-
sions surrounding this question for over a year 
to date. Although we believe that OxO is not a 
pesticide (even as defined in FIFRA), if the EPA 
rules oxalate oxidase to be a pesticide under 
FIFRA, we will proceed accordingly, seeking a 
reasonable path to distribution of restoration 
trees that can be freely planted, bred, and shared. 

The process currently underway for the 
American chestnut will lay very important 
groundwork for any future restoration of trees 
or other organisms using this technology. The 
outcomes have the potential to either encourage 
or stifle future innovation using biotechnology 
to adapt to new invasive pests. 

NEXT STEPS 

We have begun initial outcrossing of transgen-
ic chestnuts to wild-type American chestnut 
mother trees and have reached the T2 (second 
outcross) generation as of 2018. Some of the first 
seedlings from this generation will comprise 
part of a multisite, long-term ecological research 
project to be initiated in 2019. We are also pre-
paring trees, scions for grafting, and/or pollen to 
be ready for public distribution pending regula-
tory approvals. These may come from the T0 
(the initial transformed generation), T1 (the first 
outcrossed generation), and T2 generations, and 
are targeted for small horticultural plantings, 
such as on private properties, arboretums and 
botanical gardens, historic sites, and parks. 

To prepare for potential long-term, large-
scale forest restoration, we are working closely 
with TACF on a plan to increase genetic diver-
sity and local adaptation throughout the Amer-
ican chestnut’s range (J Westbrook, J Holiday, A 
Newhouse, et al., in prep). This plan will pro-
duce more diverse trees for larger scale restora-
tions such as mine lands and forest ecosystems. 
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These will be T3 (and later) outcross genera-
tions, ultimately incorporating hundreds of 
mother trees from diverse geographic and ge-
netic backgrounds. 

CONCLUDING REMARKS 

Using the American chestnut as a model, we 
have demonstrated that GE is a viable tool to 
safely and effectively address invasive patho-
gens. GE can have several advantages compared 
to alternative approaches. In American chest-
nut, it allowed us to develop a blight-tolerant 
tree while avoiding problems such as IKB (Ful-
bright et al. 2014), male sterility (Sisco et al. 
2014), and intermediate traits (Cipollini et al. 
2017) that have arisen from hybrid breeding of 
chestnuts. GE retains all the genes from the wild 
tree to help it reintegrate into its natural habitat 
and restore its ecological services to the forest. 
Using a single, dominant blight-tolerant gene 
with an easy identification assay simplifies the 
rescue of the surviving genetic diversity and lo-
cal adaptations. And in the case of OxO or sim-
ilar traits that do not kill a pathogen, it provides 
a more evolutionarily stable protection from 
the blight. This tool can be used alone or com-
bined with more traditional breeding methods, 
such as stacking the resistance genes incorporat-
ed from C. mollissima with OxO to enhance 
sustainability even further, or adding Phytoph-
thora resistance, while at the same time making 
the backcross trees with a greater portion of 
American chestnut alleles and better adapted 
to its habitat. 

We are on the cusp of the most exciting stage 
of the American chestnut project, the potential 
beginning of restoration. Moving from green-
house and confined field trials to broader plant-
ings in forest conditions will present challenges, 
but also expand unique research possibilities. 
We will move from transgene characterization 
and developing pest tolerance into ecological 
questions such as how a keystone or founda-
tional tree species (Ellison et al. 2005) can be 
established back into a dynamic ecosystem. 
Meanwhile, we will continue to develop new 
transgenic events, testing regulated promoters 
and additional genes for other diseases such as 

Phytophthora root rot. We also hope to apply 
what we have learned to other threatened trees 
such as the Ozark Chinquapin and the Ameri-
can elm. There are many threats to trees and 
other wild plants, but if we use all the tools avail-
able, including GE, there is better hope for the 
future of our shared environment. 
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