Evolutionary History of the Symbiosis Between Fungus-Growing Ants and Their Fungi

Ignacio H. Chapelá,* Stephen A. Rehner,* Ted R. Schultz, Ulrich G. Mueller†

The evolutionary history of the symbiosis between fungus-growing ants (Attiina) and their fungi was elucidated by comparing phylogenies of both symbionts. The fungal phylogeny based on cladistic analyses of nuclear 28S ribosomal DNA indicates that, in contrast with the monophyly of the ants, the attine fungi are polyphyletic. Most cultivated fungi belong to the basidiomycete family Leptotiaceae; however, one ant genus, Apterostigma, has acquired a distinctly related basidiomycete lineage. Phylogenetic patterns suggest that some primitive attines may have repeatedly acquired leptomycetous symbionts. In contrast, the most derived attines have clonally propagated the same fungal lineage for at least 23 million years.

Mutualistic symbioses between distantly related organisms have generated major innovations in the evolution of organic complexity, including the endocytotic organelles of the eukaryotic cell, the plant and fungal symbionts in mycorrhizae, and the ubiquitous nitrogen-fixing bacteria present in plants, animals, fungi, and protists (1). The reconstruction of the evolutionary history of such symbioses requires explicit phylogenies for both symbionts, a necessity that has limited the number of such studies to date (2). Here we report the results of a phylogenetic analysis of the attine ant–fungal symbiosis, an ancient and successful association that has culminated in the leaf-cutting ants, the dominant herbivores of the Neotropics (3).

All of the approximately 200 species of ants in the tribe Attini cultivate fungus gardens on which they are obligately depen-
dent for nourishment (3). The monophyly of the tribe (4) and its exclusively New World and primarily Neotropical distribution (5) argue for a single origin of the fungus-growing behavior about 50 million years ago (6). In spite of a century of research (5, 7, 8), progress toward understanding the origin and subsequent evolution of the ant-fungus symbiosis has been hindered by a lack of informed phylogenetic hypotheses, including the identities of the nearest nonsymbiotic relatives of both ants and fungi.

The phylogeny of the fungi has remained unresolved because of the infrequent production of taxonomically informative fruiting bodies (7–9). When fruiting bodies have been obtained, they have been assigned to the subdivision Basidiomycotina, order Agaricales, and variously classified in the families Cortinariaceae (7), Agaricales (10), or Leptopsidaceae (9, 11) (see 9, 12, 13 for reviews). However, some investigators have maintained that attine ants form associations with a wide variety of fungal symbionts, including members of the subdivisions Ascomycotina and Deuteromycotina (14).

Thus, it is unclear whether the Attini cultivate a monophyletic group of fungi that has evolved in close association with the ant lineages in a strict coevolutionary sense, or whether the ant fungi represent an array of possibly distantly related species (5, 15). The former hypothesis is supported by the fact that foundress queens of at least some attine species carry a small pellet of fungus from the natal nest with which to start a new garden (5, 16), leading to the expectation of clonally propagated fungal lineages that closely parallel the lineages of their ant hosts. However, this behavior has been reported for only three genera (Trachymyrmex, Acromyrmex, and Atta) within the derived higher attines (5) and in the transitional genus Cephalotes (Fig. 1) (17), but it has not been confirmed in any of the more primitive species that are most likely to retain less modified forms of the ancestral fungus-growing behavior.

A comprehensive collection of living attine ant (4) and fungal cultures (13, 18), which includes a representative sampling of the primitive attine genera, has provided new information on the evolutionary history of the ant-fungus symbiosis. Cultural, biochemical, and micromorphological characters of the fungal mycelium indicate that the attine fungi are basidiomycetes (13) and that they are subdivided into three major groups (G1, G2, and G3) that are congruent with a phylogeny of the ants based on larval morphology (Fig. 1) (4, 13). Only the G1 group, which includes the fungi of the enormously successful leaf-cutting species in the genera Atta and Acromyrmex, possesses gongylidia, the nutritious swollen hyphal tips that are harvested by the ants for food (3, 5, 13). Likewise, only the G2 group, cultivated by the species of the morphologically derived genus Apterostigma, possesses abundant clamp connections at hyphal septa (a basidiomycete character secondarily lost in many groups, including some Lepiopsidaceae) and extremely elongate aerial hyphae, which in some species serve to form a protective tent-like veil around the nest (5, 13). The G3 group is a comparatively heterogeneous assemblage that lacks these synapomorphies and, thus, may be paraphyletic (13).

The G3 group fungi, cultivated by the most primitive attine ants, are genetically heterogeneous, as indicated by patterns of pairwise rejection between these strains in vegetative compatibility (VC) studies (13, 18), in some cases even between isolates from different nests of the same ant species. In contrast, the widespread acceptance reactions between the fungi within the G1 group, and between the fungi within the G2 group, indicate strong genetic similarity.
within each of these groups. These observations have led to the hypothesis (18) that the G3 group fungi are genetically diverse because some of them have been repeatedly acquired by the ants from free-living forms, whereas the fungi within the G1 and G2 groups are genetically similar because they are the products of clonal reproduction, consistent with behavioral evidence that G1 group fungi are clonally propagated by their ant hosts (5, 19). This "acquisition-clonality" hypothesis predicts that (i) the two clonally reproduced lineages G1 and G2 are monophyletic entities and (ii) some G3 fungi are more closely related to free-living fungi than to other attine fungi.

To (i) determine the taxonomic position of the attine fungi, (ii) detail the phylogenetic relationships among attine fungi vis-à-vis the existing phylogeny of the ants (4), and (iii) test the two predictions of the acquisition-clonality hypothesis, we carried out a phylogenetic analysis of a 964-base pair region of the nuclear large subunit (28S) ribosomal DNA (20). Sequences were obtained for 21 attine fungi isolated from the nests of 19 attine ant species (21), as well as for 16 free-living basidiomycetes in the order Agaricales (22). The phylogenetic tree generated by parsimony analysis (Fig. 1) (23) is the strict consensus of 22 equally parsimonious trees of length 556, with a consistency index of 0.502 and a retention index of 0.742 (24). Additional analyses that used a variety of phylogenetic methods also produced trees with the topological features emphasized here (25).

Most attine fungi are members of a monophyletic group in the Lepiotaceae (Fig. 1), which corroborates the conclusions of some previous investigators (9, 11) and contradicts others (7, 14). However, the fungi cultivated by Apterostigma species arise in a position on the Agaricales tree well removed from the lepiotaceous attine fungi. The shortest tree in which the Apterostigma fungi are constrained to group with the other attine fungi is considerably longer (27 steps) than the most parsimonious trees. Furthermore, a test of the a priori hypothesis that the attine fungi (including the Apterostigma fungi but not the two free-living lepiotaceous species; see Fig. 1) are monophyletic was rejected by both the T-PTP (P < 0.05) (26) and maximum likelihood (27) methods. These results support a polyphyletic origin of the attine fungi and a nonlepiotaceous origin of the fungi cultivated by Apterostigma.

As predicted by the acquisition-clonality hypothesis (18), the G1 and G2 groups are monophyletic (Fig. 1). In contrast, the consensus tree (Fig. 1) indicates that the G3 group is paraphyletic because some G3 fungi are more closely related to the excluded G1 group, and some G3 isolates are more closely related to two free-living lepiotaceous fungi, Leucoagaricus naucinus and Leucoagaricus luteus, than to other G3 fungi. In each of the 22 most parsimonious trees, these two free-living species are invariably nested at least four nodes within the attine fungal clade (Fig. 2). These results are consistent with the second prediction of the acquisition-clonality hypothesis that some attine fungi in the G3 group are more closely related to free-living fungi than they are to other attine fungi and therefore must have been secondarily acquired by the ants. However, the alternative hypothesis, that these two free-living fungi are the sister group to the lepiotaceous attine clade, requires a tree only one step longer than the most parsimonious tree.

Comparison of the ant and fungal phylogenies reveals topological incongruence, indicating the absence of strictly parallel evolution, particularly between the primitive attine ants and their fungi (28). For example, within each of the genera Mycetorhizos and Cyphomyrmex, closely related ants cultivate distantly related G3 fungi (Fig. 1). Likewise, Mycetorhizos smithii, one of the most primitive attine ants, cultivates a fungus that is most closely related to those cultivated by the transitional species Cyphomyrmex timora and Cyphomyrmex minutus. These incongruences may be explained either by (i) inaccuracies in the phylogenetic reconstructions, (ii) lineage sorting (29), (iii) horizontal transfer of fungal clones across ant species (15), or (iv) secondary acquisition of fungi from a pool of free-living forms (30). The latter hypothesis is supported by vegetative compatibility patterns (18) and the nested position of the two free-living lepiotaceous species within the G3 group (Fig. 2).

From the time of its origin around 50 million years ago (6), the ant-fungus symbiosis has resulted in the evolution of complex behavioral (5) and physiological (31) modifications in the ants and in corresponding morphological and biochemical modifications in at least some of the fungal symbionts (5, 13, 31). It is now clear that the origin of the fungus-growing behavior was an extremely rare event, having occurred only once in the evolutionary history of the ants. Switching from the original host lineage was also rare: the first ant-fungus association probably involved a species in the Lepiota ceae, and only one switch to a fungal symbiont outside of this family has subsequently occurred, in the case of Apterostigma. On the other hand, switching by ants between fungi within the lepiotaceous lineage may have occurred frequently over evolutionary time, at least in the nonclonal G3-cultivating ant species. Precise identification of the fungal species within this group, as well as study of the biology of the most primitive attine ants and their closest non-fungus-growing relatives, is the most promising route to a complete understanding of the origin and evolution of the attine ant-fungus symbiosis.
REFERENCES AND NOTES


4. T. R. Schultz and R. Miller, Syst. Entomol., in press. A phylogenetic analysis of 44 morphological characters of the larvae of 51 attine and 11 nonattine species has revealed that the Attini are a monophyletic group and produced the ant cladogram summarized in Fig. 1.


15. I. H. Chapple, unpublished data.


19. This clonality may be quite ancient, because the G1- cultivating ant genera and species are separated in many cases by large geographic distances and es- timated divergence times of at least 23 million years (C. Baroni Urbani, Stuttg. Beitr. zur Natk. Ser. B 54, 1993). We thank S. Cover and J. Wetterer for collections of ant nests; R. Vigilas for isolates of free-living fungi; C. Aquadro, B. May, and J. Taylor for advice on molecular techniques; R. Langen, D. M. Harvey, J. Clardy, T. Elsner, F. Gharuay, A. Harada, H. Morais, and T. Seeley for logistical support; P. Cregan for use of an ABI no. 370; C. Aquadro for a generous donation; N. Scott, L. Batt, and W. Wcislo for comments on the manu- script; and the American Philosophical Society to (U.G.M.), the MacArthur Foundation (to H.U.K.), the National Geographic Society (to T.R.S.), the Ernst Mayr Fund (T.R.S.), and the Explorer’s Club (T.R.S.) for financial support. T.R.S. was supported by a NSF Graduate Research Fellowship. This paper is dedi- cated to the memory of George C. Eckroat (1940– 1994), without whose enthusiastic support this study would not have been possible.

14 July 1994; accepted 21 October 1994