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A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This
investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on esti-
mated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein
WRF provided temperature and LAI fields, and CMAQ provided NO2 concentrations. A base case simu-
lation was conducted using built-in distributed i-Tree Eco tools, and simulations using different inputs
were compared against this base case. Differences in land cover classification and tree cover between the
distributed i-Tree Eco and WRF resulted in changes in estimated LAI, which in turn resulted in variations
in simulated NO2 dry deposition. Estimated NO2 removal decreased when CMAQ-derived concentration
was applied to the distributed i-Tree Eco simulation. Discrepancies in temperature inputs did little to
affect estimates of NO2 removal by dry deposition to trees in Baltimore.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Urban areas have become significant contributors of air pollu-
tion due to changes in transportation systems and industrial pro-
duction (Gurjar et al., 2008; Hopke, 2009; Parrish et al., 2011). Air
pollution can affect landscapes and ecosystems far from its source,
thus its impact can bewide-reaching. Air pollutants are responsible
for several adverse effects on human health, and can harm both the
natural and the built environment (Davidson and Barnes, 2002;
Driscoll et al., 2007; Schlesinger, 2007). In addition to reducing and
controlling emissions, developing credible strategies to remove
pollutants from the urban atmosphere is also of interest to air
quality managers. An ecosystem approach, particularly the use of
trees and shrubs for reducing air pollutants, should be an essential
component of urban planning (Beckett et al., 1998; Freer-Smith
et al., 2005).

Air pollutants are removed from the atmosphere through a va-
riety of mechanisms, including precipitation scavenging (i.e. wet
deposition), chemical reaction, and direct deposition to terrestrial
and marine surfaces in the absence of precipitation (i.e. dry depo-
sition). With vegetation, gaseous air pollutants are removed
through dry deposition primarily by uptake via leaf stomata
gmail.com(M.T.I. Cabaraban).
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(Nowak et al., 2006). Depending on the chemical and physical
properties of the gas and the absorbing surface, some gases are also
removed by the plant surface (Smith et al., 2000). Trees can be
significant sinks for gaseous pollutants since they provide a large
surface (leaves, stems, barks) for pollutant uptake (Fowler, 2002).

Within the i-Tree modeling suite, i-Tree Eco (formerly known as
the Urban Forest Effect model) is used to calculate air pollution
removal by the urban forest and associated air quality improve-
ment throughout the year (i-Tree, 2012). The dry deposition com-
ponent of i-Tree Eco assumes that input hourly meteorological and
air pollutant concentration data are homogeneous over a region,
such that estimated pollutant removal rates are for the entire urban
area modeled. Local influences of urban trees cannot be estimated
and potential tree-planting sites would be challenging to identify
using current i-Tree Eco techniques. The location of trees is
important, as air pollutant removal effectiveness is enhanced when
trees are close to the pollutant source, or are located where pol-
lutant concentration is high (Beckett et al., 1998; Freer-Smith et al.,
2005).

Hirabayashi et al. (2012) developed a grid-based prototype of i-
Tree Eco, hereafter referred to as iTreeEcoD, where input temper-
ature, leaf area index (LAI), and air pollutant concentrations are
spatially distributed, while other meteorological parameters are
lumped over the modeling domain. A couple of issues arise when
implementing iTreeEcoD. The model’s multiple regression tem-
perature equation was derived for Baltimore, MD using long-term
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data from the Baltimore Ecosystem Study (BES, 2012). A similar
model could be used to estimate temperature patterns outside of
Baltimore, although the regression coefficients may change for
different regions of study. This change will require data from
a high-density network of meteorological stations for long obser-
vation periods. Moreover, the Gaussian model applied in iTreeEcoD
is typically used to simulate the transport of non-reactive gaseous
pollutants and may be unsuitable for estimating concentrations of
highly reactive pollutants like nitrogen dioxide (NO2) and second-
ary pollutants like fine particulate matter (PM).

In this study, the results obtained by Hirabayashi et al. (2012)
were expanded to consider the effects of three factors on simu-
lated dry deposition to urban trees. A mesoscale meteorological
model was used to obtain near-surface (2-m) temperature and LAI
fields, and a photochemical air quality model was used to obtain
surface-level concentration fields. The impacts of these estimates
on output from the urban-scale dry deposition simulation were
examined. The goal of this study was not to validate model per-
formance, but to investigate the degree to which variations in
model inputs would affect estimates of dry deposition of air pol-
lutants on vegetative surfaces.
2. Materials and methods

2.1. Case study e Baltimore, MD

The case study is for the Baltimore metropolitan area in Maryland for the time
period from July 27 to 29, 2005. The gaseous pollutant of interest is NO2, typically
a local-scale pollutant, in that it is formed by combustion from local sources like
traffic, industry, power plants, and inland waterway shipping. This gas was chosen
since its presence in the atmosphere can affect ozone (O3) or secondary PM (Seinfeld
and Pandis, 2006).

Baltimore has an area of 210 km2, 42 km2 (20%) of which is urban tree canopy
(Galvin et al., 2006). Among the land use categories, high-intensity urban areas (22%
of total area), medium-intensity urban areas (28% of total area), and agricultural
lands (4% of total area) have relatively low tree cover. A large concentration of in-
dustrial, commercial, power plants, and waste treatment and disposal facilities are
sited in the southern district of the city, where residential neighborhoods are also
located.
Fig. 1. Modeling domain showing locations of the WRF, CMAQ, and iTreeEcoD grids.
2.2. Description of the modeling systems

iTreeEcoD integrates calculation tools to process and generate raster data of three
input parameters: temperature, LAI, and air pollutant concentrations. Simplifying
assumptions regarding these three iTreeEcoD inputs are described in more detail
elsewhere (Hirabayashi, 2009; Hirabayashi et al., 2012). iTreeEcoD assumes fixed
values of fractional tree cover and LAI across a defined land use type. Here, LAI is
defined as the total one-sided area of green canopy elements over the ground pro-
jected canopyarea (Hirabayashi et al., 2012; Liang et al., 2005). The detailed approach
to calculate pollutant flux (Fp) in iTreeEcoD is given in Hirabayashi et al. (2011b).

To improve the spatial modeling of the impacts of vegetation on air quality in
urban areas, iTreeEcoD was coupled to a regional air quality model. The US Envi-
ronmental Protection Agency’s (EPA’s) Community Multiscale Air Quality (CMAQ)
model was used in this study to estimate ambient pollutant concentration (Cp).
CMAQ (Byun and Schere, 2006) is a three-dimensional Eulerian model that accounts
for emissions, horizontal and vertical advection, eddy diffusion, cloud mixing, gas-
phase chemical transformations, aqueous-phase chemical reactions, and aerosol
processes.

The Weather Research and Forecasting (WRF) model was used to generate the
hourly wind, temperature, humidity, mixing depth, and solar insolation fields
required by CMAQ. WRF (Skamarock et al., 2008) is a mesoscale numerical weather
prediction system developed by the National Oceanic and Atmospheric Admin-
istration (NOAA), and is maintained by the National Centers for Environmental
Prediction (NCEP).

WRF, CMAQ, and iTreeEcoD were combined using a loose coupling scheme,
refering to the technique of integrating models at the input or output data level
(Lieber and Wolke, 2008; Lilburne, 1996). Geographic information system (GIS) was
used to extract and convert the binary network Common Data Form (netCDF) output
files from WRF and CMAQ into raster datasets required by iTreeEcoD, which calcu-
lated and generated maps of dry deposition velocities (Vd) and Fp. WRF was used to
output hourly gridded temperature and time-invariant LAI, and CMAQ to generate
hourly gridded Cp. The LAI, temperature, and Cp fields were then used for dry dep-
osition calculations in iTreeEcoD.
2.3. Model setup

2.3.1. iTreeEcoD model simulations
Hourly meteorological data for iTreeEcoD temperature, Cp, and dry deposition

calculations were obtained from NOAA’s National Climatic Data Center (NCDC,
2007). LAI calculations used the same values for leaf area and tree cover percent-
ages for Baltimore as those used by Hirabayashi et al. (2011a, 2012), which were
obtained from field sampled data gathered in 2004. Dry deposition calculations
were limited to periods of no rain and with wind speed >0 m s�1; periods not
satisfying these conditions were omitted from further analyses.

2.3.2. WRF model simulations
WRF version 3.3 was implemented on two nested grids shown in Fig. 1.WRFwas

run for the 1.5 km domain using initial and boundary conditions from NCEP’s 1��1�
resolution Global Forecast System model analysis data with 6-h intervals (UCAR,
2007). The 1.5-km run provided the initial and boundary conditions for the
0.5 km run. The simulations used a 3-day spin up (i.e. the first three days of model
output were discarded from the data analysis). Analyses were done for the period
from July 27 to 29, 2005.

The WRF runs used land cover types derived from the Global Land Cover
Characteristics (GLCC) (Loveland et al., 1991), which were created at a 1-km hori-
zontal resolution using Advanced Very High Resolution Radiometer (AVHRR) sat-
ellite images from April 1992 to March 1993, and from the 30-m NLCD 2001.
Incorporating the NLCD 2001 into the WRF framework allowed for evaluating the
effects of different land cover data on the WRF estimates of LAI and near-surface
temperature.

In succeeding discussions, the WRF simulation that used the GLCC land cover is
referred to as WRFG, and that which used the NLCD land cover as WRFN. Using the
coupledWRF/Noah land surfacemodel (LSM)/Urban CanopyModel (UCM) system in
WRFN necessitated fine-tuning the vegetation and urban parameters for the four
developed land use types according to available information for Baltimore. Green
vegetation fractionwas derived from the same 1-km AVHRR product as for the GLCC,
using the normalized difference vegetation index data for each land cover type
(Liang et al., 2005; Zeng et al., 2000).

2.3.3. CMAQ model simulations
CMAQ version 4.7.1 was configured to utilize all 28 layers from the input

meteorology. Anthropogenic and biogenic emissions datasets for CMAQ were gen-
erated by the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system
version 2.6 (SMOKE, 2010). Meteorological outputs from the WRF simulations were
processed to create model-ready inputs for CMAQ using the Meteorologye
Chemistry Interface Processor (MCIP) version 3.6 (Otte et al., 2005).

Additional information about the models and model configurations are given in
the Supplementary material.

2.4. Comparison methodology

To investigate the impact of varying model inputs on iTreeEcoD’s dry deposition
estimates, six simulations were conducted. The first simulation (base case; S1) used
output from built-in iTreeEcoD (i.e. temperature, LAI, NO2 concentration) calculation



Table 1
NO2 removal by dry deposition to trees estimated by iTreeEcoD (S1, S2, S3, S4, S5, and
S6) and CMAQ (S7) in Baltimore, MD from July 27 to 29, 2005. Sn, where n ¼ 1 to 7,
represents the simulation number. The seven simulations in this study each made
use of different input fields for dry deposition calculations.

S1 S2 S3 S4 S5 S6 S7

Green vegetation fraction, fg
Min 0.09 0.00 0.00 0.09 0.09 0.09 0.00
Mean 0.20 0.59 0.62 0.20 0.20 0.20 0.59
Max 0.65 0.66 0.67 0.65 0.65 0.65 0.66
Std. dev. 0.15 0.14 0.09 0.15 0.15 0.15 0.14

Average daily NO2 flux, mg m�2 d�1

Min 1.88 1.86 0.35 1.88 1.88 0.53 0.00
Mean 2.84 2.91 2.60 2.84 2.83 3.40 1.50
Max 6.63 6.23 6.62 6.62 6.62 8.70 3.40
Std. dev. 0.68 0.46 0.80 0.68 0.68 1.43 0.89

Total NO2 removal, kg
July 27 132.16 370.78 350.50 132.14 131.98 113.78 29.44
July 28 154.64 437.70 415.24 154.64 154.50 136.20 36.13
July 29 95.12 273.18 259.74 95.03 94.77 200.48 46.89
Total 381.92 1081.66 1025.48 381.81 381.25 450.46 112.46
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tools to obtain estimates from the iTreeEcoD dry deposition calculation tool. The
second (S2) and third (S3) simulations differ from S1 by using LAI fields fromWRFG
and WRFN, respectively. The fourth (S4) and fifth (S5) simulations differ from S1 by
using temperature fields from WRFG and WRFN, respectively. The sixth simulation
(S6) differs from S1 by using CMAQ NO2 concentration (CNO2

) fields. iTreeEcoD and
MCIP/CMAQ differ in their approaches to parameterize Vd. Hence, a seventh simu-
lation (S7) was conducted to assess differences in dry deposition estimates from the
two models resulting from parameterization differences.

Note that the iTreeEcoD domain is considerably smaller than theWRF and CMAQ
domains, covering only metropolitan Baltimore. Land cover, LAI, temperature, and
NO2 concentration in netCDF extracted fromWRF or CMAQwere converted to raster
data layers, georeferenced to use the same geographic coordinate system as the
raster layers from the iTreeEcoD tools, and clipped to the iTreeEcoD domain. Carrying
out these raster operations introduced distortions inherent in changing map pro-
jections and created when resampling cell values (Seong, 2003; Steinwand et al.,
1995; Yeh and Li, 2006).

Examination of simulation results uncovered the effects of different tempera-
ture, LAI, and CNO2

inputs on estimated dry deposition. Model-to-measurement and
model-to-model comparisons were considered (Lutman et al., 2004; Smyth et al.,
2009). Model performance (EPA, 2007) was evaluated using:

mean biasðMBÞ ¼ ð1=NÞ
X

ðModi � ObsiÞ; (1)

normalized mean biasðNMBÞ ¼
�X

ðModi � ObsiÞ
.X

Obsi
�
*100; (2)

and index of agreement (O’Neill and Lamb, 2005)

ðIOAÞ ¼ 1�
nX

ðModi � ObsiÞ2
.X

ðjModi � Obsavej þ jObsi� ObsavejÞ2
o

(3)

where N is number of measurements, Mod are modeled values, Obs are measured
values, and Obsave are the average measured values.

There is only one meteorological station and one NO2 monitoring station in
metropolitan Baltimore. Therefore it was not possible to quantify biases in the
temperature and CNO2

estimates at other locations except at the monitoring sites.
Additionally, dry deposition estimates could not be directly evaluated due to a lack
of measurements in the study area.

Hourly estimates of temperatures, CNO2
and NO2 deposition fluxes (FNO2

) were
averaged over all modeled hours. The resulting temporally-averaged WRF temper-
ature and CMAQ CNO2

spatial plots were subtracted from similar spatial plots of
iTreeEcoD temperatures and CNO2

, respectively, and the differences used as a mea-
sure of the relative divergence of the WRF and CMAQ datasets from the iTreeEcoD
datasets. Spatial plots for land cover and LAI were similarly compared. Spatial plots
of modeled hourly temperatures, CNO2

and FNO2
were averaged over the modeling

domain for eachmodeled hour, and the diurnal patterns compared. This comparison
was conducted to uncover the variability in estimated FNO2

associated with changes
in land cover, LAI, temperature, and CNO2

inputs. Only the temporal plot of FNO2
is

presented.
Fractional tree cover and fractional green vegetation cover are used inter-

changeably in ensuing discussions and, for brevity, are referred to as fg. It should be
emphasized that fg are defined differently in iTreeEcoD and WRF. Whereas all types
of vegetation contributed to the fg values in WRF, only trees and shrubs contributed
to the fg values in iTreeEcoD.

Average daily FNO2
(mg m�2 d�1) was obtained as the sum of hourly FNO2

for all
modeled hours divided by the number of modeling days. Hourly NO2 removal (RNO2

)
across the modeling domainwas calculated bymultiplying the hourly FNO2

by fg. The
hourly RNO2

was summed over all modeled hours of the day to obtain the total daily
RNO2

(kg).
3. Results and discussion

Table 1 shows RNO2
estimated by each of the seven simulations.

Disparities in RNO2
per simulation are due to variations in input

parameters. S1, S4, and S5 had nearly the same average daily FNO2
. S2

and S3 estimated the largest total RNO2
among the simulations. S7

estimated the lowest average daily FNO2
and the lowest daily RNO2

.

3.1. iTreeEcoD base case simulation (S1)

Fig. 2a presents land cover applied to the base case iTreeEcoD
simulation. iTreeEcoD used two vegetated classes with mixed land
features (forest/wetland and pasture/barren/cultivated land) and
four urban-related classes (developed open space, developed low
intensity, developed medium intensity, and developed high
intensity).
iTreeEcoD estimated high LAI values in patches of developed,
open area (fg ¼ 0.215, LAI ¼ 7) and in forest/wetland (fg ¼ 0.652,
LAI ¼ 5.24). Leaf area was larger for forest/wetland (62.4 km2) than
for developed, open area (48.6 km2) by a factor of around 1.3.
Estimated tree cover was also larger for forest/wetland (11.9 km2)
than for developed, open space (6.9 km2) by a factor of around 1.7.
Hence, estimated LAI was larger for developed, open area than for
forest/wetland. Low LAI values were found in developed medium-
(fg ¼ 0.128, LAI ¼ 3.37) and high-intensity (fg ¼ 0.092, LAI ¼ 2.91)
areas. iTreeEcoD average LAI across the modeling domain was 4.11
(std. dev.¼1.51). LAI values reported here are consistent with those
for Baltimore summer conditions (Hirabayashi et al., 2011a; 2012)
and for different land cover types (Asner et al., 2003).

As shown in Fig. 3a, iTreeEcoD estimated the highest tempera-
tures in the vicinity of the bay, extending to the city center. A
temperature gradient was observed with the lowest temperature
(24.1 �C) found in cells located at the western and northwestern
edges, rising to 27 �C at the center of the modeling domain.

Fig. 4a presents the spatial distribution of iTreeEcoD-modeled
CNO2

. The plot shows the largest CNO2
(14e19.2 ppb) were located

downwind of highway cells, indicating a significant contribution
of mobile sources to the modeled CNO2

.
The temporal variation in S1 FNO2

is demonstrated in Fig. 5. FNO2

were relatively large (0.11e0.27 mg m�2 h�1) during daytime, and
around 14e20% of daytime values during nighttime. S1 estimated
the highest FNO2

(0.89e1.7 mg m�2 h�1) in patches of forest/
wetland cells, which were regions with high LAI, relatively high
temperatures (>23 �C) and, due to their proximity to major
roadways, high CNO2

(30e37.3 ppb). FNO2
were moderately high

(0.35e1.03 mg m�2 h�1) near major highways, where the model
estimated moderately high LAI (3.37e5.24), low temperatures
(<23 �C), and moderately high CNO2

(12.9e14.1 ppb). Low FNO2

were found in cells with low CNO2
(<12.4 ppb) and relatively low

temperatures. The ranges of S1 FNO2
are consistent with values

reported in Hirabayashi et al. (2012).
3.2. Effect of alternate land cover datasets on LAI and FNO2

In this section, comparisons are made between S1 and S2, and
between S1 and S3. Because land cover type was used to attribute
values to fg and LAI in iTreeEcoD, differences in the land cover
datasets are also discussed.

The disparities in the land cover datasets used in the iTreeEcoD
and WRFG simulations are attributed to differences in the spatial,



Fig. 2. Land cover data (a) obtained from NLCD 2001 (S1, S4, S5, and S6); (b) extracted from WRF using GLCC (S2 and S7); and (c) extracted from WRF using NLCD (S3).
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temporal, and spectral resolution of the Landsat and AVHRR data
from where the NLCD and GLCC data, respectively, were derived.
Disagreements in the land cover maps are also attributed to dif-
ferences in classification schemes. As shown in Fig. 2b, WRFG
identified four vegetated classes (forest, grassland, shrub land, and
pasture) and one urban-related class (urban and built-up land). The
WRFG land cover map shows that large patches of shrub land and
pasture were located adjacent to the bay, while iTreeEcoD showed
that barren/pasture/cultivated land was interspersed with devel-
oped and forest/wetland cells. WithWRFG, urban and built-up land
comprises more than 90% of Baltimore.

According to the iTreeEcoD land cover dataset, around 86% of
the modeling domain was developed, in contrast to the 91.5% in
WRFN. More than 65% of iTreeEcoD forest/wetland was covered by
WRFN developed land, and iTreeEcoD pasture/barren/cultivated
land was missed in WRFN (Fig. 2c). Differences between the land
cover maps used in iTreeEcoD and in WRFN could be attributed to
information losses related to the conversion of data formats and
map projections that were carried out to prepare the dataset
(Dixon and Earls, 2009; Yeh and Li, 2006). For example, informa-
tion could be lost through resampling of the 30-m resolution
NLCD data to 0.5 km resolution when it was integrated into the
WRF framework.

WRFG estimated an LAI of 4.29 for urban and built-up land
(fg¼ 0.564e0.658). LAI estimates for iTreeEcoD forest/wetlandwere
reduced by a factor of 1.1e1.4 in WRFG. Conversely, WRFG-
estimated LAI for iTreeEcoD developed medium- and high-
intensity cells were increased by a factor of around 1.2 to 1.5.
Overall, WRFG LAI averaged across the domain (mean ¼ 4.05, std.
dev. ¼ 0.23) was not much different from iTreeEcoD’s.

LAI values were reduced for forest/wetland (fg ¼ 0.49 to 0.67,
LAI ¼ 2.43e4.74) by a factor of 1.1e2.2 and for developed open
space (fg ¼ 0.57 to 0.67, LAI ¼ 1.00e2.64) by a factor of up to 7 in
WRFN when compared to iTreeEcoD. Alternatively, WRFN-
estimated LAI for developed medium- (fg ¼ 0.30 to 0.69,
LAI ¼ 2.76e4.29) and high-intensity (fg ¼ 0.32 to 0.67, LAI ¼ 3.05e
4.29) areas increased by a factor of up to 1.5 in comparison with
iTreeEcoD. WRFN LAI (mean ¼ 3.60, std. dev. ¼ 0.32) was around
12% lower than iTreeEcoD LAI across the domain.

WRF fg values were generally higher than iTreeEcoD’s because of
the contribution of other green canopy components such as
grasses, resulting in discrepancies in estimated LAI. These dis-
crepancies were further propagated in subsequent dry deposition
calculations, resulting in the divergence in hourly FNO2

and RNO2

between S1 and S2, and between S1 and S3.
The diurnal variations of FNO2

in S1 and S2 are similar (Fig. 5),
with S2 daytime FNO2

only around 2% larger than S1’s. In S2, the
distribution of FNO2

resembled the spatial pattern of CNO2
(Fig. 4a)

and FNO2
in S1. As seen in Table 1, using WRFG-derived LAI as input

in S2 did not considerably change the average daily FNO2
. However,

S2 total RNO2
were larger than S1’s by a factor of 2.8, mainly due to

the larger fg values used in S2 in comparison with S1.
The diurnal distributions of S1 and S3 FNO2

followed a similar
pattern (Fig. 5), although S3 daytime FNO2

were lower than S1’s by
around 8%. Similar to S1 and S2, S3 FNO2

were larger in cells where
CNO2

were high. Although S1 and S3 each have the same average
daily FNO2

, the use of WRFN-derived LAI as input in S3 reduced the
daily FNO2

by a factor of 1.1. Lower LAI in S3 resulted in a decrease in
estimated Vd, which had been shown to have a near linear rela-
tionship with LAI for NO2 (Hirabayashi et al., 2011a). Additionally,
S3 calculated larger RNO2

than S1, due to larger fg values used in S3,
particularly for the developed land use types.

3.3. Effect of alternate temperature on FNO2

The temperature fields from WRFG and WRFN were compared
with point measurements taken from the single meteorological
station located in an urban cell in Baltimore. The effects of changes
in temperature inputs on NO2 deposition were assessed by com-
paring S1 and S4, and S1 and S5.

Table 2 shows summary statistical measures for modeled tem-
peratures for the study domain. Both simulations were not able to
capture the high temperature value (37.2 �C) at 16 LST of July 27.
Modeled temperatures showed daytime (06e20 LST) and night-
time (00e05 LST and 21e23 LST) cold biases. The resulting overall
cold biases of�1.2 �C forWRFG and�7.4 �C forWRFNmight be due
to an inadequacy of the heat and moisture transport parameter-
ization in the YSU scheme to entrain warmer and drier air into the
planetary boundary layer, similar to the findings of Hu et al. (2010)
and Misenis and Zhang (2010). The Noah LSM might have over-
estimated the differences between land and water temperatures,
especially during nighttime. In both simulations, temperatures



Fig. 3. Spatial plots of time-averaged 2-m temperatures (�C) modeled by the (a) iTreeEcoD (S1, S2, S3, and S6), (b) WRFG (S4 and S7), and (c) WRFN (S5); and differences between
iTreeEcoD- and (d) WRFG- and (e) WRFN-modeled 2-m air temperatures for Baltimore, MD.
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decreased very sharply in the evening of the second day until the
early morning hours of the third day, resulting in differences with
observations >3 �C in WRFG and >10 �C in WRFN. These large
temperature differences, particularly in the WRFN, produced the
observed variability in the NMB values.

Fig. 6 shows a damped diurnal cycle of temperatures estimated
by the WRFG and WRFN simulations in Baltimore. The diurnal
variations were reproduced by WRFG with good accuracy, which is
reflected in the model’s overall IOA of 0.90. Bulk parameterization
used in the WRFG include a roughness length of 0.8 m, a surface
albedo of 0.15 to represent radiation trapping in urban canyons,
a volumetric heat capacity of 3.0 MJ m�3 C�1, and a thermal con-
ductivity of 3.24 W m�1 C�1 to represent the large heat storage in
urban buildings and roads. The use of these parameter valuesmight
have suppressed latent heat flux while enhancing sensible heat and
storage heat fluxes (Lee et al., 2011), resulting in relatively high
WRFG temperatures in urban cells.

WRFN did not perform as well as WRFG, with an overall IOA of
0.48. The underestimation of temperatureswas grossly exacerbated
in WRFN, probably due to the low urban fraction (lu) used for low-
intensity (lu ¼ 0.76) and medium-intensity (lu ¼ 0.81) developed
classes, which were derived from available information for Balti-
more. Similar findings were reported by Salamanca et al. (2011),
indicating that further improvements on surface parameterization
are required for urban classes (Lee et al., 2011). Performance sta-
tistics for WRFG and WRFN temperatures (Table 2) indicate the
adequacy of the bulk parameterization in WRFG to estimate near-
surface temperature.



Fig. 4. Spatial plots of time-averaged (a) iTreeEcoD- (S1, S2, S3, S4, and S5) and (b) CMAQ-modeled (S6 and S7) NO2 concentration (ppb), and (c) the differences in these con-
centrations for Baltimore, MD.
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Fig. 3b shows the spatial plot of time-averaged WRFG temper-
atures. The map demonstrates a thermal gradient that progressed
from high-temperature urban cells near the city center. WRFG
estimated higher temperatures (by up to 1.8 �C) than iTreeEcoD, in
the western and northern suburban Baltimore (Fig. 3d), and lower
temperatures (from 1.4 to 2.1 �C) in industrial cells south of the
modeling domain and adjacent to the bay. On average, however,
WRFG temperatures (mean ¼ 25.7 �C, std. dev. ¼ 0.3 �C) did not
differ much from iTreeEcoD temperatures (mean ¼ 25.7 �C, std.
dev. ¼ 0.8 �C).

The WRFN temperature map (Fig. 3c) shows low temperatures
(<10 �C) in developed open areas and in forest/wetland cells. WRFN
temperatures were lower than WRFG’s by up to 3.5 �C, predomi-
nantly in the vicinity of the city center. WRFN temperatures were
generally lower than iTreeEcoD’s, with a difference of 11.7e18.7 �C
in forest/wetland cells (Fig. 3e). Overall, WRFN temperatures
Fig. 5. Time-series comparison of modeled NO2 hour
(mean ¼ 15.9 �C, std. dev. ¼ 4.0 �C) were lower than iTreeEcoD
temperatures.

The different spatial patterns of temperature derived from
iTreeEcoD, WRFG, and WRFN are a function of model construct and
land cover. iTreeEcoD adopted a regression model that allows for
approximation of near-surface temperatures from a relationship
that was fitted to data collected for Baltimore and neighboring
areas, whereas WRFG and WRFN parameterized energy and
moisture exchanges between the land surface and the atmosphere
using the Noah LSM that incorporates urban features such as sur-
face morphology, presence of impervious materials, and vegetation
cover.

As shown in Fig. 5, the diurnal variations of FNO2
in S4 and S5 are

similar to S1, both in pattern and magnitude. The distribution of
FNO2

in S4 and S5 reflected the spatial pattern of CNO2
(Fig. 4a) and

FNO2
in S1. As seen in Table 1, iTreeEcoD average daily FNO2

and total
ly deposition fluxes averaged over all grid cells.



Table 3
CMAQ performance statistics for surface-level NO2 concentrations at monitor
location from July 27 to 29, 2005.

Min
(ppb)

Max
(ppb)

Mean
(ppb)

MBa

(ppb)
NMBb

(%)
IOAc

Measured 7.0 47.0 All 24.2
Day 22.1
Night 26.6

Modeled
(CMAQ)

2.5 39.1 All 10.8 �13.4 �55.4 0.56
Day 10.1 �12.5 �55.5 0.60
Night 12.0 �14.8 �55.3 0.49

a MB, mean bias.
b NMB, normalized mean bias.
c IOA, index of agreement.

Table 2
WRF performance statistics for near-surface temperature at the weather monitor
location from July 27 to 29, 2005.

Min
(�C)

Max
(�C)

Mean
(�C)

MBa

(�C)
NMBb

(%)
IOAc

Measured 21.7 37.2 All 26.8
Day 27.9
Night 25.5

Modeled
(WRFG)

19.2 35.4 All 25.6 �1.2 �4.6 0.90
Day 26.5 �1.1 �3.8 0.92
Night 24.0 �1.6 �6.1 0.84

Modeled
(WRFN)

11.6 32.1 All 19.5 �7.4 �27.5 0.48
Day 21.1 �6.5 �23.6 0.50
Night 16.7 �8.8 �34.6 0.47

a MB, mean bias.
b NMB, normalized mean bias.
c IOA, index of agreement.
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RNO2
were not affected by the use of WRFG- and WRFN-derived

temperatures as input in S4 and S5, respectively. Temperature
was used in Vd calculations. WRFG temperatures were similar in
magnitude to iTreeEcoD’s, so that estimated Vd values were com-
parable between S1 and S4. The sensitivity analyses by Hirabayashi
et al. (2011a) showed an increasing trend in Vd, up to about 20 �C
when it reaches an optimum value. Further increases in tempera-
ture would cause Vd to decrease. It would appear that the ranges of
temperatures in S1 and S5 yielded Vd values that are on opposite
tails of this optimal curve, but are of similar magnitudes. Despite
lower temperatures in S5 than in S1, Vd values for S1 and S5 were
similar.
3.4. Effect of alternate CNO2
on FNO2

The CMAQ CNO2
fields were compared with point measurements

taken from the single NO2 monitoring station located in an urban
cell in Baltimore. Comparisons were made between S1 and S6.

Table 3 shows the performance statistics for CMAQ-modeled
CNO2

for all hours. CMAQ underestimated hourly CNO2
, with MB

of�13.4 ppb and NMB of 55.4%. Biases weremost substantial when
Fig. 6. Time-series comparison of measured and modeled near-surface temperature,
CNO2
were relatively high (between 00 and 06 LST of July 27, and

between 13 and 23 LST of July 29), during which periods NO2 dis-
persion might have been precluded by neutral to extremely stable
atmospheric conditions characterized by overcast nighttime con-
ditions and either light or absent surface winds. Modeled and
measured NO2 values have moderate agreement (IOA of about 0.6),
with slightly better agreement during daytime than nighttime.
Overall, the underestimation of CNO2

, particularly during nighttime,
may be due to an overestimation of NO2 losses due to advection and
diffusion. It would appear that NO2 emissions and regeneration of
NO2 in the lowest layer did not sufficiently offset these transport
losses, resulting in low estimated CNO2

.
Fig. 7 shows the NO2 time series comparisons between CMAQ

results and observations at the monitoring station during the
modeled period. Results show that CMAQ did well to capture the
measurement pattern and the timing of peak CNO2

, but under-
estimated NO2 peak magnitudes.

The spatial distribution of time-averaged CMAQ CNO2
(Fig. 4b)

differs in magnitude and spatial variability from those estimated by
iTreeEcoD across the domain. High CMAQ-modeled CNO2

were
found in the vicinity of expressways and local roadways in the city’s
northwestern district. It can be observed from Fig. 4b that the
mobile-source contribution to CNO2

decreased from the city core
area. CMAQ CNO2

in these cells were higher (from 11.1 to 15.6 ppb)
in �C, from July 27 to 29, 2005 measured at the monitoring station in Baltimore.



Fig. 7. Time-series comparison of measured and modeled surface-level NO2 concentration, in ppb, from July 27 to 29, 2005 measured at the downtown Baltimore monitoring
station.
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than the iTreeEcoD estimates for the same cells (Fig. 4c). On average,
CMAQ CNO2

(mean ¼ 16.78 ppb, std. dev. ¼ 9.6 ppb) were higher
than iTreeEcoD CNO2

(mean ¼ 2.76 ppb, std. dev. ¼ 4.7 ppb). It is
noted that in some hours during the simulation period (e.g. around
noontime and hours before sunset from 17 to 20 LST), iTreeEcoD
estimated higher CNO2

than CMAQ.
The differences in CNO2

between these two models are most
likely due to their treatment of chemical transformations of pol-
lutants. The CB05 mechanism implemented in CMAQ attempts to
capture all relevant gas-phase reactions that result in the formation
and destruction of atmospheric pollutants leading to changes in
their concentrations. The Gaussian model does not include
a chemical transformation algorithm. CNO2

might have been inac-
curately estimated, especially if major chemical processes were
important, e.g. the oxidation of nitric oxide by O3 to form NO2. The
Gaussian and the CMAQ models also differ in their temporal dis-
aggregation of annual emission data, as well as in their calculations
and spatial allocation of mobile emissions.

Another potential reason for the differences in iTreeEcoD and
CMAQ outputs is in the models’ handling of background concen-
trations. Background concentration is defined here as the concen-
tration due to sources primarily outside the modeling domain,
which are attributable to long-range transport and are not specified
in the emission inventory. In CMAQ, temporally and spatially
resolved concentration fields from the coarse-grid simulation
provided background contributions from pollutants transported
into the domain from the boundaries, whereas iTreeEcoD consid-
ered the difference between measured and modeled values as the
background concentration.

In addition to the above differences, the two models also differ
in their approach to representing air flow and diffusion. The CMAQ
model incorporates the spatial variation of topography, wind fields,
and eddy diffusivities. The simplified physics of air transport in the
Gaussian model are usually not representative of the complex
turbulence and diffusion processes observed in urban air transport.

Fig. 5 reveals that the temporal variations of FNO2
were different

between S1 and S6, with higher peaks in S6. Both simulations show
multiple peaks during all days of the simulation, with S6 showing
more clearly defined daytime peaks. S6 FNO2
shows a similar spatial

pattern as CNO2
(Fig. 4b). iTreeEcoD average daily FNO2

were
increased by a factor of around 1.2 when CMAQ CNO2

were used as
an input in S6, due to higher CNO2

in S6 than in S1. Moreover, RNO2

was larger in S6 than S1 by a factor of around 1.2 as a result of
higher CNO2

in S6.

3.5. Comparison with CMAQ NO2 dry deposition simulation (S7)

S7 used the meteorological field generated by WRFG, which
were processed by MCIP, and applied as input to CMAQ. Compared
to S1, S7 produced smaller average daily FNO2

by a factor of 1.1e3.2,
which was primarily due to lower Vd calculated from MCIP. S7
daytime Vd (mean ¼ 0.23 cm s�1, std. dev. ¼ 0.05 cm s�1) were
lower than S1’s (mean ¼ 0.54 cm s�1, std. dev. ¼ 0.09 cm s�1).
The MCIP Vd fell at the lower end of the range (0.1e0.5 cm s�1)
reported in Lovett (1994), while the iTreeEcoD Vd were at the up-
per end of or above this range. Vd in S1 and S7 were in accordance
with compiled values in Holland et al. (2005).

The differences in Vd and FNO2
could be explained partly by the

differences in meteorological and emissions inputs, the fg values
used, the modeling of gaseous chemical transformations, the
treatment of turbulence, and the parameterization of vertical
transfer and surface uptake between the two models. Total RNO2

was reduced by a factor of 3.4 in S7, due to lower Vd in S7 than in S1.
These comparisons of simulation results point to local Cp and fg

as major factors in pollutant removal, in agreement with findings
elsewhere (Baldocchi et al., 1987; Escobedo and Nowak, 2009;
Hirabayashi et al., 2011a; Jim and Chen, 2008; Nowak, 1994; Nowak
et al., 2006; Sehmel, 1980). Results further suggest that the spatial
distributions of Cp and fg have much more influence on Fp calcu-
lations than the spatial distribution of air temperature in an urban
setting such as Baltimore.

3.6. Uncertainties of the coupled system approach

As discussed elsewhere, there are several uncertainties of the
iTreeEcoD modeling system, which are a combination of
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uncertainties in input variables and model parameterization
(Hirabayashi et al., 2012). Validation of dry deposition estimates
suffered from the unavailability of dry deposition flux monitoring
in Baltimore.

In addition, errors are introduced into the Cp estimation by the
inherent uncertainty associated with the simplified processes
within the Gaussian model. The Gaussian-based models in iTreeE-
coD are not capable of dealing with reactive pollutants, which could
result in inaccurate estimation of Cp during periods when chemical
transformations are important. Another approximation implied in
the Gaussian model is that mean wind speeds are large enough so
that upstream or longitudinal diffusion is negligible in comparison
to mean transport. This assumption of constant mean transport in
the horizontal plane could also be a source of model uncertainty,
especially in urban areas where urban structures can significantly
alter wind direction and speed (Neophytou et al., 2011).

The results of the simulations using the WRF/CMAQ/iTreeEcoD
coupled system are also subject to several uncertainties which
should be noted. Land cover influences surface climate, and fg is an
important property to describe land surface processes and surface
parameterization schemes used for climate and weather forecast-
ing (Sertel et al., 2009). Accurate representation of vegetation in
land surface schemes is therefore an important factor for weather
prediction systems such as WRF. The deficiencies in vegetation
characteristics (i.e. land cover classification and fg) in the data
sources used affected model simulations, causing uncertainties in
the WRFG, WRFN, and CMAQ outputs. These uncertainties were
propagated through the operations performed on these datasets in
the iTreeEcoD simulations, resulting in spatially variable un-
certainties in FNO2

. These estimates are subject to additional un-
certainties from distortions resulting from processing (i.e. map
reprojection and resampling) (Seong, 2003; Steinwand et al., 1995;
Yeh and Li, 2006) of the WRFG, WRFN, and CMAQ netCDF fields to
raster input files for iTreeEcoD.

4. Summary and conclusions

In this study, the effects of varying temperature, LAI, and CNO2

inputs on iTreeEcoD dry deposition estimates were investigated.
The methodology involved loosely coupling WRF, CMAQ, and
iTreeEcoD using a set of procedures that included meteorological
modeling in WRF, air quality modeling in CMAQ, and calculation of
Fp in iTreeEcoD. GIS was used to preprocess meteorological and Cp
fields for subsequent spatial analyses in iTreeEcoD. The comparative
evaluation helped to identify differences in simulation results
caused by differences in the models’ parameterizations, processes,
and numerical algorithms, and to reveal similarities and differences
in the spatial patterns of FNO2

. The simulation study was performed
in Baltimore, MD for the end of July 2005. The strategy presented
here demonstrated how the capabilities ofWRF and CMAQ could be
integrated with iTreeEcoD in a loosely coupled system.

iTreeEcoD was able to better describe spatial heterogeneity in
LAI values than WRF, which could be attributed to model for-
mulation and input. One would expect iTreeEcoD LAI to be an
improvement over those from WRF since they are based on
a combination of both field plot data and more detailed land cover
information. The GLCC data used in WRF are not current and may
not be accurate for urban areas (Sertel et al., 2009). The incorpo-
ration of NLCD data inWRF provided a more detailed description of
the spatial variation in estimated LAI than was provided by the
WRFG simulation, although it was lower than the iTreeEcoD LAI due
to higher WRFN fg values in comparison with iTreeEcoD fg values.
The current version of i-Tree Eco focuses only on urban trees and
shrubs. In future model development, fg estimates in i-Tree Eco
could include the contributions of other green canopy components.
The regression-based approach in iTreeEcoD was shown capable
to provide adequate estimates of the temporal and spatial
distribution of temperatures in Baltimore (Heisler et al., 2007;
Hirabayashi et al., 2012). However, the regression model does not
capture the underlying physics driving the urban climate system,
which might explain the model’s fairly low correlation coefficient
with measured data (Heisler et al., 2007). In contrast, WRF adopts
a physics-based approach that explicitly considers land surfacee
atmosphere exchange. Bulk parameterization in WRFG was shown
to produce sufficient estimates of temperature,while detailed urban
parameterizations in the UCM inWRFN only served to impair near-
surface temperature estimates (Salamanca et al., 2011).

This study has demonstrated the utility of WRF to generate LAI
and temperature maps. This approach will be useful when field
sampled data are not on hand to estimate a study area’s leaf area
and tree cover, and will be more advantageous than the tem-
perature regression model in iTreeEcoD in locations where long-
term observations from multiple weather stations are unavai-
lable. Estimates could be improved by using MODIS LAI and fg
data in WRF (Ke et al., 2012; Liang et al., 2005; Sea et al., 2011),
which better reflect vegetation characteristics than the AVHRR-
based climatology data currently used in WRF, thereby enhanc-
ing surface energy budgets within the Noah LSM with bulk urban
parameterization.

The difference in the spatial pattern of CNO2
from iTreeEcoD and

CMAQwas not unexpected, since the chemical mechanisms and the
numerical algorithms for transport processes were different in the
twomodels. The Gaussianmodel in iTreeEcoD, which is widely used
to simulate concentrations of relatively nonreactive gases, requires
the assumption of ideal and constant conditions, which rarely
occur. A grid model that accounts for atmospheric chemical
transformations would more appropriately model reactive air
pollutants such as NO2, O3, and PM. Results from this analysis
indicate that some changes to the air pollutant model within
iTreeEcoD may be warranted for reactive air pollutants. Moreover,
the appropriate selection of background values could reduce un-
certainties in estimating the spatial variation of air pollutant
concentrations.

The iTreeEcoD simulation using WRF temperature inputs pro-
duced FNO2

that are similar both inmagnitude and spatial pattern as
those produced from using the regression-based temperature in-
puts. WRF-estimated LAI inputs to the iTreeEcoD simulations
resulted in large spatial changes in FNO2

from those calculated using
the built-in LAI calculation tool, and showed the highest fluxes in
areas where CNO2

were high. Using CMAQ-modeled CNO2
in the

iTreeEcoD simulation also resulted in considerable disparity in the
spatial distribution of FNO2

when compared to estimates from using
the Gaussian-based CNO2

inputs, and showed gradients of FNO2
that

increased from the central commercial and eastern residential
districts of Baltimore toward the industrial and residential districts
west and south of the city.

The comparisons of the simulation results show that the use of
different inputs from iTreeEcoD calculation tools, WRF, and CMAQ
introduced uncertainties into the dry deposition estimates because
of the different assumptions used, errors in the available model
inputs, and uncertainties related to raster data processing. Rather
than suggesting that the use of one dataset resulted in more ac-
curate estimates of dry deposition than the other, which was not
possible to establish given the challenges in validating these
datasets and the modeled dry deposition values, this study focused
on the effects of the variability in model inputs on iTreeEcoD esti-
mates of dry deposition. This study lays the groundwork for future
applications of iTreeEcoD where detailed local-scale land cover,
meteorological, or air pollutant concentration information may be
unavailable.
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Building on the results of this modeling demonstration, down-
wind Cp from emission sources need to be estimated more accu-
rately to make reasonable Fp estimates. Future research will also
investigate the spatial distribution of near-surface temperature and
Cp under different atmospheric stability conditions. Such in-
vestigations will be useful in assessing the impacts of atmospheric
stability on Vd and Fp.
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