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A B S T R A C T   

Uncertainty information associated with urban forest models are beneficial for model transparency, model 
development, effective communication of model output, and decision-making. However, compared with the 
extensive studies based on the applications of urban forest models, little attention has been paid to the uncer
tainty of the output from these models. In this study, bootstrap and Monte Carlo simulation were employed to 
explore the uncertainty of i-Tree Eco. We assess the uncertainties associated with input data, sampling methods 
and models throughout the processes of urban forest structure and function quantification, and we propagate and 
aggregate the three sources of uncertainty to derive an estimator of total uncertainty. The uncertainty magnitude 
is expressed as the coefficient of variation. By applying the uncertainty framework to a network of 15 cities across 
the United States, we find that the average magnitude of total uncertainty across 15 cities is 12.3 % for leaf area, 
13.4 % for carbon storage, 11.1 % for carbon sequestration, 40.7 % for isoprene emissions, and 25.0 % for 
monoterpene emissions. For leaf and carbon estimators, the total uncertainty is primarily driven by sampling 
uncertainty; the magnitudes of all three sources of uncertainty are comparable across 15 cities. In contrast, input, 
sampling, and model uncertainties all contribute to the total uncertainty for isoprene and monoterpene emission 
estimators, and there are large variations in these three sources of uncertainty across the 15 cities. An analysis of 
a regression-based approach to estimate input and model error indicated only moderate improvements over 
using averages across sites when estimating total uncertainty.   

1. Introduction 

Modeling techniques have become increasingly popular in urban 
forestry, and a fundamental yet often overlooked characteristic of a 
model is its uncertainty (Wu et al., 2006). Uncertainty typically exists in 
every component of a model such as input data, model parameters, and 
model structure (Beck, 1987; Beven and Binley, 1992; Draper, 1995). 
The model building and calibration process (e.g., modeling assumptions, 
calibrating to datasets, communicating outputs, making decisions) could 
also introduce additional sources of uncertainty (Ascough Ii et al., 2008; 
Beven et al., 2015; Hallegatte, 2009; Helton et al., 2006). In addition, 
applying models to real world applications typically increases the 
magnitude of output uncertainty. Urban systems are particularly 
spatially complex heterogeneous areas where forest model applications 
may differ from those on which the models are based and developed 
(Hill, 1998). In addition, scale effects require re-verification of model 

structure and re-estimation of initial and boundary conditions and co
efficient thresholds (Narasimhan et al., 2005; Rindfuss et al., 2004). 
Given these issues, uncertainty analysis (UA) should be regarded as 
important as model output, and the assessment of model output uncer
tainty should be formally integrated in modeling practices (Pappen
berger and Beven, 2006; Gallagher and Doherty, 2007). 
Decision-makers may alter their management decisions with a better 
understanding of uncertainty of model output (Bryant et al., 2018; 
Walker et al., 2003). 

While various methods of UA have been developed to identify and 
quantify different sources of uncertainties in many fields of environ
mental sciences (Clark, 2003; Held, 2005; Mishra, 2009), uncertainty in 
urban forest modeling has been limited (Lin et al., 2019). This limitation 
is probably due to the general complexity of urban forest models, the 
time and effort needed to perform a thorough uncertainty analysis, and 
the lack of guidance as to the best methods to assess urban forest model 
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output uncertainty (Pappenberger and Beven, 2006; Refsgaard et al., 
2007). UA is usually something added after a model has already been 
developed. For example, in models such as ENVI-met and the Green 
Cluster Thermal Time Constant, only model output uncertainty (or 
prediction error) is assessed and expressed as the discrepancy between 
model predictions and observations (Shashua-Bar and Hoffman, 2002; 
Wu and Chen, 2017). In addition, only specific kinds of uncertainties are 
typically assessed. For example, in i-Tree Eco, only sampling error of 
field plot data is evaluated while other kinds of uncertainties (e.g., 
model and input uncertainty) are ignored, resulting in an underesti
mation of overall uncertainty (Nowak et al., 2013). Most studies focus 
on examining output uncertainty from either a single case study and/or 
a single source of uncertainty (Nowak et al., 2008b). A comparative 
study across diverse social, ecological and climatic contexts is needed to 
more rigorously assess commonalities and ranges of output uncertainty. 
The extent to which the magnitudes of uncertainty are dependent on 
factors such as tree measurements, sampling size, and diversity of 
environmental conditions requires a thorough synthesis of case studies 
across different urban settings. 

Models of urban forests have been developed to quantify the struc
ture, function and ecosystem benefits provided by trees. i-Tree Eco 
(hereafter referred to as “Eco”) (https://www.itreetools.org/), is a 
model that has been widely employed in urban forest decision making 
such as developing priority planting schemes (McPherson et al., 2011) 
and urban forest master plans (Leff, 2016), informing environmental 
regulatory issues (Nowak et al., 2014), assessing the tradeoffs among 
different kinds of ecosystem services (Bodnaruk et al., 2017), and the 
equality and equity of urban forest ecosystem services (Nyelele and 
Kroll, 2020). Uncertainty analyses increase the transparency and cred
ibility of the modeling procedure and the associated model outputs and 
help facilitate the effective use of model outputs in urban forest 
decision-making. Without uncertainty information, users may incor
rectly view model output as error free or incorrectly infer error 
magnitudes. 

This study focuses on an UA of Eco. Currently the model only pro
duces uncertainty estimates based on the impact of sampling uncertainty 
(Nowak et al., 2008a). To overcome the gaps and promote a better use of 
this tool, here we assess input, sampling and model structure un
certainties (Regan et al., 2002; Refsgaard et al., 2007; Yanai et al., 
2018). These three sources of uncertainty are estimated, compared, and 
aggregated to derive an estimator of total uncertainty. Forest structure 
and function considered in this study include leaf area and biomass, 
carbon storage and sequestration, and biogenic volatile organic com
pound (BVOC) (isoprene and monoterpenes) emissions. The detailed 
processes to estimate those outputs can be found in the supplementary 
material (Eqns S1-S10). We perform the UA across 15 cities in the United 
States (US), explore ways to including input and model uncertainty in 
subsequent studies, and discuss implications on future urban forest plot 
inventory assessments, model development, and model-assisted 
decision-making. 

2. Study sites and data employed 

2.1. Study sites 

This study examined a network of 15 cities located in 14 states that 
have available urban forest inventory field plot data (Fig. 1). The study 
sites are spread across the US and cover diverse social and ecological 
settings. The cities have a range of size and climatic conditions, and arid, 
boreal and temperate systems are represented. The characteristics of the 
study sites are summarized in Table 1, which includes the average 
annual precipitation and temperature, and city size. 

2.2. Field data 

Field data were sampled and collected based on the Eco protocols 
developed by the USDA Forest Service (i-Tree Eco Field Guide, 2019). In 
each city, circular one-tenth acre plots were established across the entire 

Fig. 1. The distribution of 15 cities examined in this study.  
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city area using simple random sampling, and tree species, diameter at 
breast height (DBH), tree height, crown height and width, tree condi
tion, crown light exposure (CLE), and percent leaf dieback were 
measured (Nowak et al., 2008a). DBH is estimated at 1.37 m above the 
ground using a DBH tape. All woody species with a minimum DBH of 
one-inch were measured. Tree height is measured as the height from the 
ground to the top of the tree. Crown height is equal to the height dif
ference between the live top of the tree and the crown base while crown 
width is the average of the widths of the crown in the north-south and 
east-west directions. The crown diameters were measured by clinometer 
or laser device. Tree condition (crown dieback) is estimated based on the 
percent of the crown that is composed of dead branches with 5 percent 
classes. CLE is the number of sides of the tree receiving sunlight from 
above (ranging from 0 to 5), which is employed to estimate competition 
and consequently growth rates. The number of field plots varied by city, 
ranging from 93 plots in Gainesville, FL to 745 plots in Chicago, IL 
(Table 1). Inside each plot, the number of inventoried trees also show a 
large variability, varying from 0 (which occurs when plots fall within 
non-vegetative areas that have no trees) to 71 trees. 

2.3. Environment data 

We obtained weather variables from the National Solar Radiation 
Database (NSRDB) (https://nsrdb.nrel.gov/). The weather variables 
considered in this study included temperature and solar radiation. The 
NSRDB consists of several serially complete collections of hourly and ½ 
hour values of meteorological data, including the Physical Solar Model 
(PSM) and the Meteorological Statistical Model 3 (MTS3). Although the 
MTS3 has a total of 1454 stations across the US, it still provides limited 
coverage for our study sites. To fully capture the spatial variability of 
meteorological data, we employed the PSM. The PSM covers the US from 
1998 to 2018, and has a temporal resolution of ½ hour and horizontal 
resolution of 4 km. The dataset is developed using a physical model, 
satellite products, and meteorological station data, and is updated over 
time as better technologies and new data sets become available (Habte 
et al., 2017; Sengupta et al., 2018). We downloaded the weather vari
ables inside the city administrative boundaries for the same year when 
the field data were collected for each city, and converted the ½ hour data 
to hourly data by averaging. We ran our simulation at an hourly time 
step using weather data for July of that year, which is typically the 
hottest month of the year in the US. For Atlanta, GA and Boston, MA, the 
plot data were collected in 1997 and 1996, respectively. We used the 
PSM data in 1998, the earliest available dataset, in these two cities. 

3. Methods 

Three sources of uncertainties (e.g., input, sampling and model un
certainty) were evaluated in this study. Assuming the independence of 
these three sources of uncertainty, we also aggregated them to derive an 
estimator of total uncertainty. Since the most pressing social-ecological 
problems and the associated decision-making (e.g., policy formulation 
and urban forest master plans) are typically addressed at the landscape 
scale, the uncertainty of Eco outputs was assessed based on the total 
estimate per unit land area (e.g., carbon storage (Mg)/hectare, leaf area 
(m2)/ hectare) rather than based on individual trees. We employed the 
coefficient of variation (CV), the variance of an estimator divided by its 
mean value, as an indicator of uncertainty magnitude. CV is the relative 
variability of an estimator, a unitless quantity which has been employed 
to examine uncertainty magnitude in other studies (Hanna et al., 2005; 
Yanai et al., 2010). CV is more convenient than variance as a measure 
uncertainty because it allows us to compare uncertainty among different 
Eco outputs with varying units and ranges. 

3.1. Input uncertainty 

Sensitivity analyses were previously performed to investigate the 
relationships between input and output variables in Eco and to identify 
the most important parameters for estimating urban forest structure and 
function (Lin et al., 2020; Pace et al., 2018). For leaf area (LA) and leaf 
biomass (LB) estimators, Lin et al. (2020) identified crown height and 
width to be the most important variables; for BVOC emission estimators, 
leaf biomass, temperature, and photosynthetically active radiation 
(PAR) were most important; and for carbon storage and sequestration 
estimators, DBH was most important. We represented input uncertainty 
of tree attributes (e.g., DBH, crown height and width) and meteorolog
ical data (e.g., temperature and PAR) in different ways. 

For tree attributes, input uncertainty was represented as measure
ment error. Here the criteria of the USDA Forest Service’s Forest In
ventory and Analysis (FIA) national core field guide were adopted 
(https://www.fia.fs.fed.us/library/field-guides-methods-proc/). The 
core guide employs two criteria to indicate measurement quality: mea
surement tolerance (MT), that is the range of measurement that is 
acceptable, and measurement quality objective (MQO), that is the per
centage of time that collected data are required to be within MT. Here 
we assumed that these FIA criteria are indicative of the measurement 
error of tree attributes. The FIA core guide states that the MT for tree 
height and compacted crown ratio (defined as the portion of the tree 
supporting live foliage) should be within +/- 10 % of the true length, 
and the MQO should be at least 90 % (meaning that crews are expected 
to be within the measurement tolerance at least 90 % of the time). Based 

Table 1 
The sampled plot and tree information for 15 cities.  

City, State Average annual Average annual City size Year No. sampled No. sampled Species DBH range (cm) Tree canopy cover (%)  
precipitation (cm) temperature (◦C) (ha)  plots trees richnessa   

Atlanta, GA 119.6 16.3 34,139 1997 205 2506 93 2.5− 130 36.8 
Austin, TX 87.1 20.8 158,013 2015 207 2553 62 2.5− 185 30.8 
Boston, MA 112.3 9.8 14,279 1996 217 955 82 2.5− 144 22.3 
Casper, WY 31.8 7.4 5466 2006 234 235 47 2.5− 116 8.93 
Chicago, IL 84.3 9.8 59,805 2007 745 1795 102 2.0− 116 19.4 
Gainesville, FL 120.4 20.4 12,174 2007 93 1414 84 5.1− 241 50.6 
Golden, CO 62.2 4.1 2447 2007 115 196 60 2.5− 80 11.4 
Houston, TX 115.1 20.6 173,270 2004 332 2001 68 12.7− 128 23.6 
Los Angeles, CA 47.5 17.7 121,774 2007/08 348 685 139 2.5− 114 14.1 
Milwaukee, WI 87.4 8.7 25,057 2008 216 1169 82 2.5− 114 21.6 
Minneapolis, MN 77.2 9.4 15,112 2004 110 282 41 2.5− 117 26.5 
New York, NY 117.3 13.3 78,647 2013 296 1075 139 2.5− 122 18.5 
Omaha, NE 77.7 10.6 29,873 2008/09 189 1005 26 2.5− 145 21.2 
Phoenix, AZ 20.4 23.9 134,701 2013 204 270 65 2.5− 89 9.00 
Washington, DC 119.6 13.2 15,915 2004 201 1002 106 2.2− 180 28.6  

a number of tree species measured. 
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on the MT (within +/- 10 % of crown height) and MQO (at least 90 % of 
repeated times) criteria, the probability distribution of measurement 
error of crown height was represented as: 

P (μ − 0.1 μ ≤ ε ≤ μ + 0.1 μ) = 0.9 (1)  

where ε denotes the measurement error of crown height and μ is the 
mean of ε. From Eqn (1) and assuming measurement errors are well 
described by a normal distribution, we calculated the CV for ε as 0.0608. 
For the measurement error of crown width, the FIA core guide doesn’t 
provide specific guidance. Here we assumed crown width measurement 
error follows a normal distribution with a CV that is similar in magni
tude to the CV for crown height. To evaluate the sensitivity of the effects 
of measurement errors of crown width to CV magnitudes, CV values of 
0.05, 0.075, and 0.01 were tested. 

For DBH, the FIA core guide states that MT should be within +/- 0.1 
inch per 20.0 inch increments of measured DBH, and MQO should be at 
least 95 %. Since DBH in the NYC plot data ranges from 1 to 47.9 inches, 
we have three MT values, +/- 0.1, +/- 0.2, and +/- 0.3, for DBH varying 
from 1 to 20, 20–40, and 40–47.9, respectively. Following similar pro
cedure as those used to obtain measurement errors for crown height, we 
calculated measurement errors for the three DBH size groups with a 
standard deviation (SD) equal to 0.051, 0.102, and 0.153 in., 
respectively. 

Eco uses a single monitoring station closest to the study area’s 
geographic center for meteorological data. For meteorological data, 
spatial variability, as opposed to the variability of individual measure
ments, most likely dominates input uncertainty. We represented input 
uncertainty for meteorological variables as the spatial variability among 
the meteorological monitoring data downloaded from the National Solar 
Radiation Database (NSRDB) (https://nsrdb.nrel.gov/). Similar to the 
studies of Hanna et al. (2005); Zheng et al. (2010) and Situ et al. (2014), 
we assumed temperature (T) and PAR have normal distributions. The 
mean of T was derived by: 

μi,j =

∑N

k=1
Ti,j,k

N
(2)  

where i is the day in July, j is the hour of the day, k is the station, and N is 
the total number of stations in the study area. The overall standard 
deviation (SD) of T (σ) was estimated as a function of the SD for a spe
cific hour of the day (σi,j) where: 

σi,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1
(Ti,j,k − μi,j)

2

N − 1

√
√
√
√
√

(3)  

and 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑31

i=1

∑24

j=1
σ2

i,j

31*24

√
√
√
√
√

(4) 

As we ran our simulation on an hourly time step for the month of July 
at each study area, the denominator in Eqn (4) is 31 (days) * 24 (hours). 
We obtained the SD for input uncertainty of temperature by adjusting σ 
with the hourly temperature autocorrelation structure using an autore
gressive model of order one (Salas, 1980): 

εT = ∅1*εT − 1 + εεT (5)  

where εT is the input uncertainty of temperature at time T, ∅1 is the lag- 
1 autoregressive parameter between two continuous time periods T and 
T-1 which is derived from the hourly temperature data from all available 
monitoring stations, and εεT is a random error term of the input uncer
tainty of temperature which is assumed to be normally distributed with a 
mean of 0 and a standard deviation of σ. A thousand sequences of εT 

were then simulated for the month of July, and the CV of model outputs 
across all one thousand simulations were calculated. The mean and SD 
values for input uncertainty of PAR were estimated in a similar manner 
as temperature. 

3.2. Sampling uncertainty 

We also evaluated the effects of sampling uncertainty, based on the 
number and distribution of plot data, on model output estimators using a 
bootstrap simulation, a resampling technique (Efron, 1982). Specif
ically, for each city, we repeated the following steps to calculate sam
pling uncertainty magnitudes (indicated by CV) for six Eco output 
variables (leaf area and biomass, carbon storage and sequestration, and 
isoprene emissions, and monoterpene emissions): (1) we resampled the 
entire number of plots in each city with replacement to produce 1000 
input datasets; (2) we applied the 1000 input datasets to Eco to calculate 
1000 estimates for the six Eco variables; (3) we calculated the standard 
deviation and mean values across the 1000 outputs for the six variables; 
and (4) we calculated CV values based on the standard deviation and 
mean for each of the six variables. In addition, we examined the impact 
of increasing sampling size on uncertainty magnitude using the Chicago 
site as a case study. The Chicago site has 745 plots, which is the largest 
number across our 15 cities. We resampled a increasing number of plots 
(25, 50, 100, 200, 300, 400, 500, 600 and 745), and repeated the above 
bootstrapping procedure to calculate uncertainty magnitudes for the six 
Eco variables under each plot number scenario. The bootstrap resam
pling is again repeated 1000 times. 

Note that the sampling uncertainty could also be estimated directly 
from the data as is currently done in i-Tree Eco (standard deviation of 
estimator across plots/(number of plots)1/2). The bootstrap resampling 
provides a convenient method to verifying these results and also allows 
us to assess the symmetry of confidence intervals derived from the 
sampling uncertainty. 

3.3. Model uncertainty 

The Eco estimators of LA, LB, and carbon storage and sequestration 
are based on empirical allometric regression models. We represented 
model uncertainty as model fitting error; model selection uncertainty 
was not addressed in this analysis. The model fitting error was derived 
based on the variance-covariance matrix for the intercept and slope 
coefficients (V-C): 

V − C = σ2(X’X)− 1 (6)  

where σ2 is the mean square error (MSE) associated with each regression 
equation, and X denotes a matrix of model explanatory variables with a 
preceding column of 1 s representing the intercept term. In Eqn (6), we 
only had access to estimated MSE values associated with the original 
regression equations, and therefore we assumed that the data used to 
develop the equation had the same properties as the sampled field plot 
data (thus deriving X from the field plot data). If the residuals in the 
regression model are normally distributed (which is assumed), the 
parameter estimators are also normally distributed. Since the population 
variance of the residuals is unknown and estimated from the reported 
MSE, the parameter estimators follow a Student’s t-distribution with the 
degrees of freedom as a function of the number of trees pertaining to 
each allometric model. Using the derived V-C matrix and a Student’s t- 
distribution, we randomly obtained 1000 sets of model coefficients for 
each allometric model using MC simulation. We then applied the 1000 
sets of model coefficients to the field plot data to calculate 1000 model 
outputs, from which the output CVs can be estimated. 

BVOC emissions in Eco are estimated based on the procedures shown 
in Eqns (S3)-(S6) in the supplementary material, an approach which was 
also adopted by the Biogenics Emission Inventory System (BEIS) from 
the US Environmental Protection Agency (Hanna et al., 2005). Previous 
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studies based on other models of BVOC emission estimators, such as 
previous versions of BEIS (Hanna et al., 2005), the Model of Emissions of 
Gases and Aerosols from Nature (Situ et al., 2014), and the Global 
Biosphere Emissions and Interactions System (Zheng et al., 2010), 
demonstrate that model parameters are key sources of uncertainty for 
BVOC emission estimators (Situ et al., 2014; Zheng et al., 2010). The 
uncertainty information (e.g., distribution, mean, and SD) of the main 
parameters (e.g., cT1, cT2, TM, cL1, α, and β) in the Eco processes were 
obtained from the literature (Hanna et al., 2005). The meanings of the 
parameters and how they are employed to estimate BVOC emissions can 
be found in the supplementary material to this paper. Their statistical 
information and default values employed in Eco are summarized in 
Table 2. We then used MC to randomly sample parameter values from 
each distribution, and then estimated BVOC emissions with these 
parameter values. The CVs were then calculated using the output from 
the 1000 iterations. 

3.4. Total uncertainty 

In addition to estimating the input, model and sampling un
certainties for each Eco output estimator, we also calculated the total 
uncertainty as: 

CVTotal=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
CVInput*Estimate

)2
+(CVModel*Estimate)2

+
(
CVSampling*Estimate

)2
√

Estimate
(7)  

where CVInput, CVModel and CVSampling are the CVs estimated for input, 
model and sampling uncertainty, respectively, and “Estimate” is the 
estimate (mean) of the model ecosystem service. Eqn (7) is obtained 
because the variance of a summation of random variables can be esti
mated by summing the variances of the individual random variables, as 
long as the random variables are independent (Devore, 2016). This 
approach was also implement by Yanai et al. (2020) for assessing the 
uncertainty of forest carbon estimators. In addition, the relationships 
between total uncertainty and three sources of uncertainty across 15 
cities were examined. For leaf and carbon, the ratios between total and 
sampling uncertainty were calculated for different cities. For BVOCs, 
linear regression was performed for the input and model uncertainty for 
isoprene and monoterpene. Stepwise AIC (a stepwise regression process 
to identify a suitable set of explanatory variables from multiple-model 
comparisons based on the Akaike information criterion) was initially 
performed to develop a base model, and then variables with parameter 
estimator p-values greater than 0.05 were removed from the models. 
Using these developed models, a leave-one-out cross-validation was 
then performed where 1 study site was sequentially removed, the model 
was fit using data at the other 14 sites, and then the new model was used 
to predict the input or model uncertainty at the removed site. A similar 
leave-one-out cross-validation was also used to develop predictions from 
the average input and model uncertainty by removing 1 site, calculating 
the average of the other sites, and then using that average as the pre
diction at the removed site. The regression (and average) predictions 
were then used to estimate the CV of the total uncertainty (CVTotal,Reg) 
using Eqn 7. The performance of the regression and average estimators 
was assessed by calculating the average relative absolute difference 

(ARAD) for the regression estimator of CV of total uncertainty: 

ARAD = 100*
∑15

i=1

⃒
⃒CVTotal Reg i − CVTotal,i

⃒
⃒

CVTotal,i

/
15 (8)  

where CVTotal, i is the estimate of the total uncertainty at the ith site from 
Table 5 and 15 is the number study sites examined. ARAD is a conve
nient and easily interpretable measure of the average percent difference 
of an estimator. A similar procedure was also used for the average 
predictions. The ARAD was calculated using only the regression (and 
average) estimators for input uncertainty (where the sampling and 
model uncertainty comes from Table 5), only the regression and average 
estimators for model uncertainty, and using both input and model un
certainty from regression and average estimators. 

4. Results 

4.1. Leaf area (LA) and leaf biomass (LB) estimators 

The uncertainty magnitudes for LA across 15 cities are displayed in 
Table 3. The uncertainty magnitudes were expressed as CV values. The 
uncertainty results for LB were very similar to the LA results, and thus 
not shown here. For LA, the magnitudes of total uncertainty across 15 
cities averaged 12.3 %, and ranged from 8.1% to 18.5%. Sampling un
certainty was the primary contributor to total uncertainty; input and 
model uncertainties had much smaller impacts. The mean magnitudes 
for both input and model uncertainties of LA were 0.7 % and 2.0 % 
respectivelyacross all 15 cities, while sampling uncertainty averaged 
12.2 % (Table 3). If the average input and average model uncertainty 
across all sites was employed to estimate the total uncertainty of LA, the 
ARAD for the total uncertainty of LA would be 1.7 %; as such, we 
recommend using the average input and model uncertainty, along with 
the site-specific sampling uncertainty, to estimate the total uncertainty 
for LA (and LB estimators). 

Unlike the magnitudes of input and model uncertainties, which were 
relatively constant across the 15 cities, the magnitudes of sampling 
uncertainty varied greatly, ranging from 8.0 % (Chicago, IL) to 18.5 % 
(Austin, TX). To explore the variability of sampling uncertainty as a 
function of the number of plots, we employed the data from Chicago 
(with 745 plots) and bootstrap resampled from 25 to 745 plots and 
calculated the sampling uncertainty accordingly (Fig. 2). For LA, a 
decrease in sampling uncertainty from about 43 % (25 plots) to 8% (745 
plots) was observed. Similar to results shown by Nowak et al. (2008b), 
the sampling uncertainty decreased sharply within the first 200 plots, 
and less so over 200 plots. Similar patterns were also observed for other 

Table 2 
Statistical information of main model parameters to estimate BVOC emissions.  

Parameter Original 
value in Eco 

Unit Distribution Mean SD 

cT1 95,000 J/mol Lognormal 95,000 20,000 
cT2 230,000 J/mol Lognormal 230,000 150,000 
TM 314 K Normal 314 3 
cL1 1.066 dimensionless Normal 1.06 0.2 
α 0.0027 m2*s/ μmol Lognormal 0.0027 0.0015 
β 0.09 1/K Lognormal 0.09 0.02  

Table 3 
Uncertainty magnitudes for leaf area.   

Leaf area (CV: %) 

City, State Input Sampling Model Total 

Atlanta, GA 0.4 9.2 0.9 9.3 
Austin, TX 1.6 18.5 0.5 18.5 
Boston, MA 0.5 9.7 1.6 9.9 
Casper, WY 1.1 15.2 2.4 15.4 
Chicago, IL 0.4 8.0 1.1 8.1 
Gainesville, FL 0.6 13.5 1.6 13.6 
Golden, CO 1.1 17.1 4.0 17.6 
Houston, TX 0.3 9.4 1.0 9.5 
Los Angeles, CA 0.7 8.9 3.7 9.7 
Milwaukee, WI 0.6 9.8 1.7 9.9 
Minneapolis, MN 0.9 11.4 2.2 11.7 
New York, NY 0.7 11.0 1.4 11.3 
Omaha, NE 0.6 11.8 1.3 11.9 
Phoenix, AZ 0.8 13.0 3.7 13.5 
Washington, DC 0.7 14.1 2.4 14.3 
Mean 0.7 12.0 2.0 12.3 
Standard deviation 0.3 3.1 1.1 3.1  
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Eco outputs. Though not shown here, confidence intervals for the leaf 
area and biomass estimators derived from the bootstrap resampling 
were nearly symmetric, as is currently assumed in i-Tree Eco. 

4.2. Carbon storage and sequestration estimators 

For carbon storage and sequestration, the average magnitudes of 
total uncertainty across 15 cities was 13.4 % (ranging from 9.3% to 
19.5%) and 11.1 % (ranging from 7.9% to 15.4%), respectively 
(Table 4). The ranking of uncertainty magnitude was sampling > model 
> input. Sampling uncertainty played the dominant role, model uncer
tainty had a small influence, and input uncertainty had a negligible ef
fect. Compared with input and model uncertainties, sampling 
uncertainty also had the largest variability across the 15 cities (Table 4), 
which again was primarily driven by different sample sizes across the 
cities (Fig. 2). Similarly to LA estimators, when using the average input 
and model uncertainty across all sites, the ARAD for the total uncer
tainty of carbon storage and sequestration estimators is small (1.3 % and 
3.7 %, respectively), and thus we recommend using the average input 
and model uncertainty, along with the site-specific sampling uncer
tainty, to estimate total uncertainty. 

4.3. Isoprene and monoterpenes emission estimators 

For BVOC emissions, the mean of total uncertainty was 40.7 % 
(ranging from 30.4% to 57.6%) for isoprene and 25.0 % (ranging from 
16.7% to 32.9%) for monoterpenes (Table 5). The uncertainty magni
tudes for BVOCs were much larger than for leaf and carbon estimators. 
All three sources of uncertainty played important roles for estimating 
total uncertainty of BVOC emissions. When examining the average 
values of uncertainty for isoprene, the order of uncertainty magnitudes 
was model (26.8 %) > sampling (23.8 %) > input (17.3 %); for mono
terpene emissions, the order of average uncertainty magnitudes was 
sampling (17.6 %) > input (12.2 %) > model (11.1 %). 

Unlike for LA and carbon estimators, where the input and model 
uncertainty contributed minimally to the total uncertainty, for BVOCs 
input and model uncertainty were larger contributors to the total un
certainty. While one could estimate the total uncertainty as a function of 
the at-site sampling uncertainty and the average of the input and model 
uncertainty across all the study sites, here we also explored whether 
regression models might be developed of input and model uncertainty 
for isoprene and monoterpenes as a function of the site characteristics in 
Table 1 to better estimate total uncertainty. The resulting regression 
models are presented in Table 6 which provide the parameter estimates 
with p-values in parentheses, and the model’s adjusted coefficient of 
determination (Adj-R2). 

The leave-one-out cross-validation and ARAD results are presented 
in Table 7. Using average estimators of input and model uncertainty 
produces estimators of total uncertainty with an ARAD of 7.8 % for 
isoprene and 11.2 % for monoterpene; the regression estimators reduced 
the ARAD to 6.2 % and 5.5 %, respectively. While the regression esti
mators produced improved estimators of total uncertainty, the addi
tional effort to obtain the regression model inputs for specific cities does 
not seem warranted, and it is recommended that average input and 
model uncertainty estimators from Table 5 be employed, along with 
study-specific sampling uncertainty, to estimate the total uncertainty of 
isoprene and monoterpene output from Eco. 

We summarized the relationships among different Eco outputs and 
three sources of uncertainty based on the average CV values across 15 
cities (Table 8). Overall, for leaf carbon estimators, their input and 
model uncertainties are low (< 5%), while their sampling and total 
uncertainties are moderate (between 5% and 20 %). For isoprene, model 
and sampling uncertainty is high (> 20 %) while input uncertainty is 
moderate. For monoterpenes, all sources of uncertainty are moderate 
except total uncertainty which is high. 

Fig. 2. The effects of plot numbers on magnitudes of sampling uncertainty 
in Chicago. 

Table 4 
Uncertainty magnitudes for carbon storage and sequestration.   

Carbon storage (CV: %) Carbon sequestration (CV: %) 

City, State Input Sampling Model Total Input Sampling Model Total 
Atlanta, GA 0.0 9.1 1.7 9.3 0.0 8.5 1.5 8.6 
Austin, TX 0.0 10.0 0.5 10.1 0.0 7.9 0.7 7.9 
Boston, MA 0.0 10.7 1.4 10.8 0.0 9.0 3.4 9.6 
Casper, WY 0.1 19.1 4.2 19.5 0.0 14.6 3.2 15.0 
Chicago, IL 0.0 8.7 3.9 9.5 0.0 6.8 5.9 9.0 
Gainesville, FL 0.0 18.1 1.8 18.1 0.0 15.2 2.3 15.4 
Golden, CO 0.1 18.1 2.5 18.3 0.0 15.3 1.4 15.4 
Houston, TX 0.0 10.4 0.7 10.4 0.0 8.5 1.9 8.7 
Los Angeles, CA 0.0 10.4 3.0 10.8 0.0 8.3 4.0 9.2 
Milwaukee, WI 0.0 14.2 2.5 14.4 0.0 9.5 3.9 10.3 
Minneapolis, MN 0.1 15.9 3.1 16.2 0.0 12.6 1.8 12.7 
New York, NY 0.0 12.6 1.8 12.8 0.0 10.0 1.3 10.1 
Omaha, NE 0.0 13.0 1.8 13.1 0.0 10.5 1.7 10.6 
Phoenix, AZ 0.1 15.9 0.6 15.9 0.0 12.3 4.7 13.2 
Washington, DC 0.0 12.1 1.7 12.2 0.0 9.9 1.3 10.3 
Mean 0.0 13.2 2.1 13.4 0.0 10.6 2.6 11.1 
Standard deviation 0.0 3.5 1.1 3.4 0.0 2.8 1.5 2.6  
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5. Discussion 

5.1. Leaf area and leaf biomass estimators 

Sampling uncertainty of LA dominated the other two sources of un
certainty, which resulted in the sampling uncertainty being approxi
mately equal to the total uncertainty. The variability of sampling 
uncertainty was mainly due to sample size and the spatial variability of 
tree density. When the plot numbers in Chicago reduced from 745 to 25, 

the sampling uncertainty for LA increased from 8% to 43 %. The 
increased magnitude is likely a function of sampling intensity and study 
site heterogeneity. The sampling effects of LA are rarely evaluated, and 
the literature typically focuses on the influence of sampling on tree 
populations and tree’s ecosystem services (Martin et al., 2013; Nowak 
et al., 2008b). 

Model uncertainty for LA played a minor role (the mean CV = 2.0 %). 
This relatively low value may be due to model uncertainty being only 
represented as model fitting error. The regression equation for the LA 
estimator in Eco has a relatively good fit (R-square is 0.91 and MSE is 
0.23) (Nowak, 1996). Therefore, when the intercept and slope co
efficients were randomly sampled from the variance-covariance matrix 
developed based on a small MSE value, the differences among intercept 
and slope coefficients across the iterations were small. Apart from model 
fitting uncertainty, model selection can also be an important source of 
uncertainty (Yanai et al., 2018). The effects of model choices, such as 
comparisons among species-specific and multi-species models, and 
selecting extant foreign models or developing local models, are often 
evaluated in non-urban sites (Chave et al., 2014; Stas et al., 2017; Van 
Breugel et al., 2011). The current method adopted by Eco for the LA 
estimator is based on a crown-based allometric equation developed from 
park tree data in Chicago (Nowak, 1996). Other approaches to estimate 

Table 5 
Uncertainty magnitudes for isoprene and monoterpene emissions.   

Isoprene emissions (CV: %) Monoterpene emissions (CV: %) 

City, State Input Sampling Model Total Input Sampling Model Total 

Atlanta, GA 16.2 11.2 23.4 30.5 12.0 10.0 5.8 16.7 
Austin, TX 14.6 34.6 22.5 43.8 11.1 13.0 2.4 17.3 
Boston, MA 17.3 17.9 31.6 40.3 11.8 13.8 17.9 25.5 
Casper, WY 15.1 20.2 25.0 35.5 11.1 29.3 10.1 32.9 
Chicago, IL 19.3 21.0 29.2 40.9 13.4 10.1 15.5 22.8 
Gainesville, FL 14.1 17.7 23.6 32.7 10.3 15.4 6.0 19.5 
Golden, CO 11.1 30.6 27.5 42.6 7.9 29.0 13.4 32.9 
Houston, TX 16.2 11.3 23.1 30.4 11.8 15.4 5.2 20.1 
Los Angeles, CA 23.4 17.0 26.5 39.2 16.5 15.4 12.4 25.8 
Milwaukee, WI 16.6 26.9 31.1 44.4 11.4 14.8 17.4 25.5 
Minneapolis, MN 16.1 45.3 31.6 57.6 10.6 19.7 17.8 28.6 
New York, NY 16.9 18.3 26.0 36.0 11.9 19.0 11.5 25.2 
Omaha, NE 33.0 30.2 28.1 52.8 18.0 16.4 13.9 28.0 
Phoenix, AZ 12.9 37.9 27.0 48.3 12.9 26.1 7.2 30.0 
Washington, DC 17.2 16.8 26.0 35.3 12.1 17.0 10.6 23.4 
Mean 17.3 23.8 26.8 40.7 12.2 17.6 11.1 25.0 
Standard deviation 5.2 10.0 3.1 7.9 2.4 6.1 5.0 5.1  

Table 6 
Regression model parameters of isoprene and monoterpene input and model uncertainty (p-values in parentheses).   

Intercept Temperature Average 
(K) 

PAR Average (mol/ 
m2×s) 

PAR Standard Deviation 
(mol/m2×s) 

# Trees/ # 
Plot 

Species 
Richness 

Model Adj-R2 

(%) 

Isoprene Input Uncertainty 121 (0.052) − 0.480 (0.028) 0.0191 (0.014) 0.0506 (5*10− 5) – 0.0579 
(0.026) 

78.2 

Isoprene Model 
Uncertainty 

179 (.003) − 0.507 (0.010) – – − 0.262 
(0.069) 

– 54.7 

Monoterpenes Input 
Uncertainty 

− 10.5 
(0.085) 

– 0.0117 (0.010) 0.0234 (2*10− 4) – 0.0411 
(0.009) 

66.3 

Monoterpenes Model 
Uncertainty 

327 
(2*10− 5) 

− 1.05 (3*10-5) – – − 0.410 
(0.008) 

– 83.5  

Table 7 
Total Uncertainty ARAD for regression models and average of input and model uncertainty for isoprene and monoterpene.   

Regression Input 
Uncertainty 

Average Input 
Uncertainty 

Regression Model 
Uncertainty 

Average Model 
Uncertainty 

Regression Input and 
Model 

Average Input and Model 
Uncertainty 

Isoprene Total 
Uncertainty 

3.6 % 3.5 % 3.7 % 4.7 % 6.2 % 7.8 % 

Monoterpene Total 
Uncertainty 

3.6 % 3.3 % 2.7 % 9.1 % 5.5 % 11.2 %  

Table 8 
A summary of relationship between Eco outputs and different sources of 
uncertainty.   

Input Sampling Model Total 

Leaf area Lowa Moderateb Low Moderate 
Carbon storage Low Moderate Low Moderate 
Carbon sequestration Low Moderate Low Moderate 
Isoprene Moderate Highc High High 
Monoterpenes Moderate Moderate Moderate High  

a CV < 5%. 
b 5% < CV < 20 %. 
c CV > 20 %. 
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LA have also been developed, including species-specific equations 
(McPherson et al., 2016) and DBH-based equations (Timilsina et al., 
2017). Comparisons among these methods are available in the litera
ture. For example, by comparing four methods at a site located at 
northern California, Peper and McPherson (2003) reported that Nowak 
(1996) method tends to slightly overestimate LA. Another study, based 
on 74 urban trees and 5 species collected in Stevens Point, Wisconsin, 
concluded that locally developed LA models have higher accuracies than 
the default models employed by i-Tree Eco (Timilsina et al., 2017). 
However, these comparisons are typically constrained to limited species 
and single study sites. Future studies based on more representative 
datasets and systematic comparisons are needed. Locally developed 
allometric relationships are generally superior only if they are devel
oped using a sufficiently intensive and representative data set (Van 
Breugel et al., 2011), but their development will substantially increase 
the cost of analyses. The reported low magnitude of model uncertainty 
does not indicate that model uncertainty can be ignored. This study only 
examined model fitting uncertainty and not model selection uncertainty; 
therefore, the reported model uncertainty for leaf area is most likely 
conservative. 

Input uncertainty due to measurement errors of crown width and 
height is negligible at the landscape scale when compared with sampling 
uncertainty. Measurement errors are likely to be larger for individual 
trees, especially for large trees due to the exponential relationship in the 
allometric equation (Eqn S1). We adopted the FIA core criteria of 
measurement tolerance and measurement quality objectives, which are 
most appropriate for experienced professionals. Urban forest programs 
often employ citizen science to collect tree attribute data (Roman et al., 
2017). When there is a lack of training and experience and the FIA 
measurement guidance is not strictly followed, input uncertainty may 
increase. 

Based on the analysis performed, it is recommended that the average 
input and model uncertainty from Table 5 be employed along with a 
study-specific estimator of sampling uncertainty to estimate the total 
uncertainty (Eqn 7) of LA estimator from Eco. In most situations, the 
total uncertainty will be nearly identical to the sampling uncertainty. 

5.2. Carbon storage and sequestration estimators 

The largest uncertainty source for carbon storage and sequestration 
came from the sampling process, with the mean CV across 15 cities being 
13.4 % and 11.1 %, respectively. The total uncertainty was approxi
mately equal to the sampling uncertainty due to the dominating influ
ence of sampling uncertainty. This sampling uncertainty had similar 
magnitudes as those found for LA, which is probably because they are 
influenced by the similar spatial heterogeneity of the tree population. 
There are only limited efforts in the literature that evaluate the effects of 
sampling intensity on ecosystem service outputs in urban sites. Nowak 
et al. (2008b) reported that 200 plots are needed to yield a 12 % relative 
standard error on the total number of trees based on field studies in 14 U. 
S. cities. Martin et al. (2013) found that in order to achieve a +-10 % 
error, 258, 870, and 483 plots are needed for the estimators of the 
number of trees, carbon storage and sequestration, respectively. 
McPherson et al. (2013) reported that standard errors for carbon storage 
and sequestration estimators are typically within 5–15% based on 
studies in Los Angeles and Sacramento, CA. Our average sampling un
certainty was 13.2 % across the 15 study sites, which is comparable to 
the values reported in these three studies. However, to achieve a 
comprehensive understanding of sampling uncertainty, it is necessary to 
incorporate the effects of other aspects of sampling strategy (e.g., sam
pling method), and to perform cross-site comparative studies to evaluate 
how city characteristics (e.g., city size and heterogeneity) influence 
sampling uncertainty. 

The mean model uncertainties for carbon storage and sequestration 
estimators across 15 cities were 2.1 % and 2.6 %, respectively. Both 
carbon and LA are estimated based on regression equations. While the 

equations have different MSE values (0.054 and 0.232) for carbon and 
LA, this disparity had little effect on the resulting magnitude of model 
uncertainty for carbon and LA (CV = 2.0 %). Similar to the LA model, the 
magnitude of model uncertainty in the carbon model is also likely to be 
conservative due to the simplifying assumptions we made for Eqn (6), 
and the fact that only model fitting error was considered. 

Several models have been developed to calculate carbon storage and 
sequestration, including those employed by Eco, i-Tree Streets, the 
CUFR Tree Carbon Calculator, and the Urban Tree Database biomass 
allometries, and some variability is reported when the models are 
compared (Aguaron and McPherson, 2012; Boukili et al., 2017). How
ever, this variability typically results from different models employed 
(McHale et al., 2009) (i.e. applying different models to the same tree 
results in different estimates), which makes model selection an impor
tant uncertainty source. In the urban forestry field, model selection is 
further complicated by employing either urban-specific allometric 
equations, which are relatively scarce, or forest-derived equations with a 
correction factor for urban open-grown trees. As suggested by Davies 
et al. (2013) and McHale et al. (2009), standardizing the models and 
methods used to estimate carbon storage and sequestration may reduce 
variability and facilitate improved inter-city comparisons of these esti
mators. Other aspects of model uncertainty not considered in this study 
include species composition and species assignment errors (McPherson 
et al., 2013). Species misidentification may result in an assignment of 
inappropriate allometric equation. Depending on the species composi
tion of a site, different proportions of the trees may be non-matching (i.e. 
there are not species-specific equations available), which necessitates 
the use of average results from models of the same genus (Nowak et al., 
2008a). A higher proportion of non-matching sample site trees may 
increase the magnitude of uncertainty. 

For input uncertainty, although DBH is identified as the most 
important variable for carbon storage and sequestration estimators of 
individual trees (Lin et al., 2020), the effect of small amounts of DBH 
measurement uncertainty on model output variability at the landscape 
scale is negligible. This minimal effect is probably because we adopted 
the FIA core guide criteria. The assumed magnitudes of input uncer
tainty due to the measurement errors are relatively small, which results 
in a small impact on output uncertainty. 

Based on the analysis performed, it is recommended that the average 
input and model uncertainty from Table 5 be employed along with a 
study-specific estimator of sampling uncertainty to estimate the total 
uncertainty (Eqn 7) of carbon storage and sequestration estimators from 
Eco. Similar to LA, in most situations the total uncertainty would be 
nearly identical to the sampling uncertainty. 

5.3. Isoprene and monoterpenes emission estimators 

BVOC emissions are typically calculated by multiplying genus-based 
standardized emission rates by LB weights, and then correcting for 
environmental effects (Eqn S3). Commonly employed models for esti
mating BVOC emissions include Eco, BEIS, GloBEIS, and MEGAN (Wang 
et al., 2016). In Eco, a genus base emission rate database has been 
developed based on the literature (Nowak et al., 2006), and two envi
ronmental correction processes have been built for isoprene (tempera
ture- and light-dependent (Eqns S4-S5)) and one for monoterpenes 
(temperature-dependent (Eqn S6)) emission estimators (based on BEIS 
processes). 

For both isoprene and monoterpenes emissions, the total uncertainty 
is larger than that of the LA and carbon models due to increased input 
and model uncertainty. The increased model uncertainty is due to an 
increase in the number of model input variables and the increased input 
uncertainty is due to meteorological inputs (i.e., temperature and cloud 
cover/light) that can have relatively high variability among monitors. 
This finding is consistent with uncertainty assessments based on other 
BVOC emission models (Hanna et al., 2005; Situ et al., 2014). Apart from 
temperature and PAR, in other models additional environmental 
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variables (e.g., humidity and wind speed) are also incorporated in BVOC 
emission estimators (Situ et al., 2014; Wang et al., 2016). It is not clear 
how these additional variables and associated processes affect the ac
curacy of BVOC emission estimators. The reduction of the uncertainty 
magnitude is not guaranteed unless the added processes are 
well-understood, well-represented and supported by good data (Turner 
and Gardner, 2015). Inter-model comparisons across different land
scapes are beneficial to improving mechanistic understanding of BVOC 
processes, and to reduce input and model impacts on output uncertainty. 

Compared with the effects of temperature, the uncertainty due to 
tree attributes (e.g., leaf biomass) is negligible. However, this doesn’t 
mean that BVOC emission estimators are totally driven by environ
mental variables as tree attributes play a minor role. Through a sensi
tivity analysis, genus and leaf biomass were identified as the two most 
important input variables for estimating BVOC emissions (Lin et al., 
2020; Pace et al., 2018). Input errors impacting LB estimators are likely 
due to small measurement errors of crown width and height, which 
limits the impact on output uncertainty. Treating all uncertainties 
probabilistically is impractical, and some uncertainty sources, such as 
nominal variables (e.g., genus), are not amenable to quantification 
(WHO, 2008). For low and high VOC-emitting genera, the differences in 
base emission rates can be up to a factor of 70 for isoprene, and 8 for 
monoterpenes (Nowak et al., 2006). The misidentifications of genera 
could also be a potential source of uncertainty. The i-Tree Database 
provides a mechanism for users to upload and employ local 
species-specific information. Advancements in science may not guar
antee the reduction of some sources of uncertainty, such as those due to 
genera misidentifications. An effective approach is to develop a 
comprehensive local database which captures the diversity of the urban 
landscape. 

Sampling uncertainty for both isoprene and monoterpenes emissions 
are larger than that for LA or carbon. This difference is probably because 
BVOC emissions are not only affected by the spatial heterogeneity of tree 
population, but also the spatial distribution of tree species. High and low 
VOC-emitting species may be unevenly spaced, such as when some plots 
are dominated by high-emitting species while others are dominated by 
low-emitting species. This results in large BVOC emission ranges across 
the sample plots and more sampling uncertainty. 

Unlike for LA and carbon storage and sequestration, the input and 
model uncertainty of isoprene and monoterpenes was a large contrib
utor to total uncertainty. Here a regression-based approach was used to 
assess whether estimators of input and model uncertainty could be 
estimated from site-specific field data. Our analysis showed that while 
the regression estimators were an improvement over using average es
timators of input and model uncertainty, the improvements were rela
tively small and thus did not warrant the effort to obtain regression 
model inputs at new study sites. As such, it is recommended that the 
average input and model uncertainty from Table 5 be employed along 
with a study-specific estimator of sampling uncertainty to estimate the 
total uncertainty (Eqn 7) of isoprene and monoterpene estimators from i- 
Tree Eco. 

5.4. Reducing estimator uncertainty 

The two most likely ways to reduce estimator uncertainty are in the 
model inputs and sampling. While input uncertainty is relatively low, 
efforts to ensure accurate field data collection are essential. Errors in 
tree measurements (e.g., DBH and crown diameters) will affect results 
such as leaf and carbon estimators. For estimators that require external 
environmental inputs (e.g., BVOC estimators), the number and prox
imity of these data to the trees being modeled will affect model outputs. 
These hourly environmental data (e.g., meteorological data) are 
spatially limited in most landscapes, but can vary substantially across 
landscapes. Efforts to obtain more spatially distributed data would help 
improve local estimators and reduce their uncertainty. However, given 
the practical and economic limitations in establishing more monitors, 

this limitation is not likely to be easily overcome and model inputs will 
continue to rely on the best available local environmental data. 

Sampling errors were the dominant source of estimator uncertainty 
for most output variables and could be reduced by increasing the 
number of field plots used as model inputs. However, given the cost of 
field data collection and the diminishing return of reduced uncertainty 
with more field plots (e.g., Fig. 2, Nowak et al., 2008b), it is unlikely that 
many cities will establish more than 200 one-tenth acre field plots. The 
200 plots were originally established based on the estimated number of 
plots that a field crew of two can collect in a summer season in a city. The 
200 plot total produces a relative sampling uncertainty of around 12 
percent for total number of trees (Nowak et al., 2008b), leaf area 
(Table 3) and carbon (Table 4), with a total uncertainty also around 12 
percent. 

Reducing the sampling uncertainty will reduce total uncertainty, but 
the cost of reducing this uncertainty with more plots and the relatively 
low uncertainty of about 12 % for many estimators will likely limit 
expanded field data collection to reduce uncertainty. Increasing the plot 
totals from 10 to 200 reduces relative uncertainty from around 50 
percent to 12 percent; adding an additional 200 plots only reduces the 
uncertainty to around 8 percent, while likely doubling data collection 
costs. While reducing uncertainty is important, the costs of reducing 
uncertainty needs to be considered as well as whether the uncertainty 
needs to be reduced. 

A 12 % total uncertainty for many urban forest estimators is likely an 
acceptable level of uncertainty for a population estimator. However, 
sub-population estimators (e.g., estimators for one species or within an 
individual land use) will have increased uncertainty due to increase 
sampling errors from a smaller sample size. If particular areas or species 
need to be assessed, the sampling strategy may need to be modified to 
reduce estimator uncertainty. Individual tree management (e.g., street 
trees) estimators often requires reduced uncertainty, and entire street 
tree populations are often inventoried (a census), reducing sampling 
error to zero. Users need to consider project goals, accuracy, uncertainty 
and costs when developing data collection and analysis protocols. 

6. Conclusions and future directions 

This study developed a framework to quantify the magnitudes of 
input, sampling, and model uncertainties on i-Tree Eco estimators of 
urban trees form and function, and applied the framework to 15 cities 
across the US. We found that the average magnitude of total uncertainty 
across the 15 cities was 12.3 % for leaf area, 13.4 % for carbon storage, 
11.1 % for carbon sequestration, 40.7 % for isoprene emissions, and 25.0 
% for monoterpene emissions. For leaf and carbon estimators, the 
magnitudes of all three sources of uncertainty relative to the total un
certainty are comparable across the 15 cities, while there are large 
variations in these three sources of uncertainty for BVOC emissions. We 
recommend employing the average input and model uncertainty, along 
with a site-specific estimator of the sampling uncertainty, to derive the 
total uncertainty of i-Tree Eco of leaf, carbon and BVOC estimators. 

Uncertainty analysis should become a formal practice and necessary 
component of modeling exercises, especially for models which aim to 
support decision-making and policy-formation. Although this study 
performed a thorough uncertainty assessment for i-Tree Eco, it is worth 
noting several limitations of the study. First, uncertainty magnitudes 
reported in this study are still believed to be conservative due to the 
omission of other factors that could increase output uncertainty. Second, 
this study focuses on urban areas in US, and the applicability of findings 
to other locales especially outside US is uncertain. To reduce overall 
uncertainty, future studies could (1) develop urban- and species-specific 
allometric relationships when they are not available, (2) improve the 
spatial representation of meteorological weather monitors, (3) break the 
study domain into subareas when multiple monitors are available to 
improve local meteorological estimates, and (4) improve sampling 
strategies to ensure representation of the diversity of the urban forest, 
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balancing sampling intensities and data collection costs. Inter- 
comparisons among models are also beneficial assuming model mech
anisms are well-understood, and the comparisons should be based on 
large sample sizes and multiple and diverse study sites. 
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