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Introduction

Droughts are some of the costliest disasters in the world, resulting
in huge economic losses, the displacement of people, and loss
of life (FAO 2017; NOAA-NCEI 2018). For example, the 2015
drought in California incurred a total loss of $2.74 billion with
$1.84 billion due to direct agricultural losses (Howitt et al. 2015).
The reoccurrence of drought throughout the world makes improv-
ing the characterization and frequency analysis of low streamflow
particularly important.

The American Meteorological Society (AMS) identifies four
categories of drought: meteorological, agricultural, hydrologic, and
socioeconomic (AMS 1997). Hydrologic drought is caused by
water shortages in the hydrologic system, which includes surface
or subsurface water in the form of streamflow, groundwater, reser-
voirs, and lakes. Measures of hydrologic drought are useful for
water quality management, the issuance and renewal of discharge
permits, planning for hydropower, water supply, navigation, cool-
ing and irrigation systems, and to assess the impacts of prolonged
droughts on the ecosystem (Smakhtin 2001; Kroll and Vogel 2002;
VanLoon 2015; Zou et al. 2018).

Hydrologic drought is often characterized by low streamflow
statistics. Common low streamflow statistics include the 7-day,
10-year low streamflow (7Q10), which is the 7-day annual mini-
mum streamflow with a nonexceedance probability of 10% (Riggs
1980), and the daily streamflow with an exceedance probability

of 95% (Q95) (Smakhtin 2001). Other common low streamflow
statistics employed in practice include the 7Q2, 30Q10, 30Q2, Q99,
and Q90 (Hughes 1981; Armentroutand and Wilson 1987; Zalants
1992; Atkins and Pearman 1995; Smakhtin 2001). To estimate the
7Q10 from a historical streamflow record, a probability distribution
is fit to the 7-day annual minimum streamflows and the 10th per-
centile of that distribution is used as the estimate of the 7Q10
(Vogel and Kroll 1989; Smakhtin 2001; Gao et al. 2017). Similar
techniques are used to estimate the 7Q2, 30Q10, and 30Q2. In the
US, the log-Pearson type 3 distribution (LP3) is generally used to
describe low streamflow series and estimate low streamflow statistics
(Barnes 1986; Tasker 1989), though use of the LP3 for low stream-
flows is based on its recommendation for describing annual maxi-
mum instantaneous flows (Rossman 1990; Griffis and Stedinger
2007; England et al. 2018). Other probability distributions have
sometimes been recommended for describing low streamflow series
(Pearson 1995; Vogel and Wilson 1996; Kroll and Vogel 2002).

Numerous studies have used L-moments for fitting and assess-
ing the ability of different probability distributions to describe low
streamflow series (Pearson 1995; Vogel and Wilson 1996; Kroll
and Vogel 2002; Modarres 2008; Chen et al. 2010; Peng et al. 2010;
Dodangeh et al. 2011; Wang et al. 2011; Dodangeh et al. 2013;
Keshtkar 2015). L-moments are popular because they: (1) are ro-
bust in the presence of outliers, (2) perform well for small sample
sizes, (3) are able to characterize a wide range of distributions,
(4) are nearly unbiased for all underlying distributions, and (5) are
preferable to product moments for highly skewed data (Vogel and
Fennessey 1993; Hosking and Wallis 1997; Sankarasubramanian
and Srinivasan 1999).

The most commonly recommended probability distributions for
describing low streamflow series include the Generalized Extreme
Value (GEV), Generalized Logistic (GLO), Generalized Pareto
(GPA), 3-parameter lognormal (LN3), log-Pearson type III (LP3),
Pearson type III (PE3), and 3-parameter Weibull distribution (WEI)
(Chowdhury et al. 1991; Guttman et al. 1993; Kroll and Vogel
2002; Peng et al. 2010; Blum et al. 2017). Some previous studies
have used large data sets and L-moments to identify the best
distributions to describe low streamflow series; these studies have
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generally not reached a consensus on the best distribution to
employ (Pearson 1995; Vogel and Wilson 1996; Kroll and Vogel
2002).

Pearson (1995) studied the regional frequency distribution pat-
terns of low flows (1-day, 7-day, and 30-day minimum averages)
of nearly 500 catchments in New Zealand. Based on a visual in-
spection of their L-moment diagrams and the expected spread of
the sample L-moments, Pearson concluded that no single 2- or
3-parameter distribution provided an adequate fit across all sites;
however, Pearson generally recommended the GLO, GEV, LN3,
and PE3 distributions. Vogel and Wilson (1996) used the USGS
Hydro-Climatic Data Network (HCDN) sites (Lin 2012) that origi-
nally consisted of 1,570 streamflow sites with minimal anthropo-
genic influences. These sites were employed to study the probability
distribution of annual maximum, mean, and minimum flows using
L-moments to assess the goodness of fit; it was concluded that the
PE3 distribution provides the best fit for both the annual minimum
and annual average streamflow. Kroll and Vogel (2002) used 1,505
HCDN sites to identify potential probability distributions for
describing 1-, 7-, and 30-day annual low flow minimums. Kroll and
Vogel concluded that even when considering many sites across a
large region, it is hard to distinguish probability distributions using
L-moments and that L-moments followed different trends at inter-
mittent and nonintermittent sites. For nonintermittent sites, the LN3
distribution was suggested and for intermittent sites, the PE3 distri-
bution was suggested.

Some studies have shown the importance of data transforma-
tions when examining low flow series (Hosking 1995; Farmer et al.
2015). Farmer et al. (2015) recommended the use of inverse mo-
ments or negative moment orders for low flow series because the
positive moment orders do not effectively capture the probabilistic
lower tail behavior of flows above a certain exceedance probability.
This study explores the distribution of the inverse of the annual
minimum series (fitting 1/X as opposed to X, where X is the annual
minimum series). In addition to the benefits described by Farmer
et al. (2015), this transformation removes the chance of estimating
negative low flow quantiles for real-space probability distributions,
which can be a problem in practice. Hosking (1995), Zafirakou-
Koulouris et al. (1998), and Kroll and Vogel (2002) employed
L-moments for left censored samples. Typically, left censored
L-moments have been employed to handle low flow series that con-
tain zeros (Kroll and Vogel 2002). Unusually large observations

might influence the distributional fit to the lower tail of the distri-
bution. For flood frequency analyses in the United States, a multi-
ple Grubbs-Beck test (Cohn et al. 2013) is recommended to identify
potentially influential low flood observations (England et al. 2018).
This is typically done on a site-by-site basis. In a fashion analogous
to the process employed [what is done] for flood frequency, the
present research explores the censoring of a certain percentage
of the upper tail of the distribution and examines whether such
censoring may help us better distinguish between potential
3-parameter probability distributions.

Since Kroll and Vogel (2002), there has not been another study,
to the authors’ knowledge, that has assessed the goodness of fit
of different probability distributions to low streamflow series across
the conterminous US. The aim of this study is to identify appro-
priate probability distributions for low streamflow series in the con-
terminous US using L-moments for a new subset of unregulated
basins (HCDN-2009) to see if probability distributions may better
fit the inverse of these series and to see if the distributional fit can
be improved by fitting a lower percentage of the data set using
censored L-moment diagrams.

Study Area and Streamflow Data

Fig. 1 shows the location of the 704 streamflow gages employed
in this analysis. These gaged sites are from the USGS’s Hydro-
Climatic Data Network 2009 (HCDN-2009). This database was
selected because these sites have minimal anthropogenic impacts
and are generally able to reflect natural hydrologic conditions
(Lin 2012; Gao et al. 2017). For the purpose of this study, all re-
cords in the HCDN-2009 data set have been extended up to the
2017 water year. Table 1 contains summary statistics for the stream-
flow sites employed in this study (Falcone 2011). Record lengths at
these sites ranged from 22 to 115 years, with a median record
length of 63 years, while the drainage areas ranged from 2.2 to
25,800 km2, with a median of 325 km2. At each site, a low flow
water year was defined as April 1 to March 31, as most low stream-
flows in the US generally occur in the late summer or early fall
(Kroll and Vogel 2002). At each site for every continuous water
year, the following low flow series were estimated: 1-day, 3-day,
7-day, and 30-day annual minimums, and 90% (Q90), 95%
(Q95), and 99% (Q99) annual flow duration curve exceedance
probabilities.

Fig. 1. Location of 704 HCDN-2009 gaging stations in the contiguous US.
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L-Moment Diagrams

L-moment diagrams provide a visual tool to compare sample
L-moment ratios to theoretical L-moment ratio relationships for
different probability distributions (Stedinger et al. 1993). A rela-
tionship between L-moment ratios exists for various probability
distributions and for most 3-parameter probability distributions, a
unique relationship generally exists between τ3 (L-skew) and τ4
(L-kurtosis) (Hosking and Wallis 1997). Low flow processes are
complex, influenced by factors such as climatology, hydrogeology,
and geomorphology, and a 2-parameter distribution is unlikely to
capture the variety of distributional shapes of the low flow series,
especially over a large area (Kroll and Vogel 2002). Distributions
with more than 3 parameters (e.g., kappa and Wakeby) are not con-
sidered here. If a data series is described by a specific 3-parameter
probability distribution, one expects sample τ 3 and τ 4 estimates
to cluster around the theoretical τ3∶τ4 relationship for that
3-parameter distribution. Vogel and Fennessey (1993) showed that
L-moment ratio diagrams are always preferred to product moment
ratio diagrams for analyzing the goodness of fit of a probability
distribution to observations. Hosking and Wallis (1997) provided
a thorough description of the estimation of sample L-moment ratios
and the theoretical L-moment ratio relationships for different
probability distributions.

At each site, for each low streamflow series, the sample
L-moment ratios were estimated using the lmom package in R

(Hosking 2017). For each distribution, the theoretical relationship
between τ3 and τ 4 was obtained from the literature. The τ3∶τ4 re-
lationship for the GEV, GPA, GLO, LN3, and PE3 distributions
can be found in Hosking and Wallis (1997). The τ3∶τ4 relationship
for the WEI distribution can be found from a GEV distribution
(if X ∼ GEV, −X ∼WEI) or in Goda et al. (2011). Unlike the other
3-parameter distributions, the τ3∶τ 4 relationship for the LP3 distri-
bution is represented by an area as opposed to a line (Griffis and
Stedinger 2007). Here, the LP3 region for a log skew between −1.4
and 1.4 approximated by Griffis and Stedinger (2007) is used for
the LP3 distribution.

One important issue with low streamflow series is the presence
of flows recorded as zero within the record. Kroll and Vogel (2002)
showed that the L-moment ratios of low flows at such intermittent
streamflow sites often exhibited different characteristics than the L-
moment ratios at nonintermittent streamflow sites. Here, sites with
streamflow series including zeros were identified and L-moment
diagrams were developed for sites with and without zeros.

L-Moment Diagrams for Untransformed Flows

Figs. 2 and 3 present the sample estimates of τ 4 versus τ3 for 7-day
annual minimum low streamflows in the contiguous US for 495
sites without zero 7-day minimums and 209 sites with zero 7-day
annual minimums, respectively. These plots also include the τ3∶τ4

Table 1. Summary statistics of 704 HCDN-2009 streamflow gaging stations and pertinent watershed characteristics

Characteristic Minimum Maximum Median Mean

Record length (years) 22 115 62 63.4
Drainage area (km2) 2.2 25,800 325 795
Average basin precipitation (cm) 26.0 403 112 117
Average basin temperature (°C) −1.7 22.6 10.1 10.3
Potential evapotranspiration (mm=year) 306 1,190 650 681
Snow percent of total precipitation (percent) 0 88.4 14.7 20.7
Streams density (km=km2) 0.09 1.42 0.75 0.75
Maximum Strahler order in watershed 1 11 4 3.83
Sinuosity of mainstem streamline 1.03 5.14 1.51 1.61
Baseflow index (percent) 1.6 85.4 46.4 45.9
Watershed annual runoff (mm=year) 1 3,730 389 486
Elevation at gauge location (m) 0 3,190 283 540

Source: Data from Falcone (2011).

Fig. 2. τ 3 versus τ 4 for 7-day annual minimum flows at HCDN-2009
sites with no zeros.

Fig. 3. τ 3 versus τ4 for 7-day annual minimum flows at HCDN-2009
sites with zeros.
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relationships for the GEV, WEI, GPA, PE3, GLO, LN3, and LP3
distributions.

Based on visual assessment, sites with nonzero 7-day annual
minimum flows appear to be best represented by the LP3 distribu-
tion, though many of the observed data points fall above the LP3
area (a higher kurtosis for a specific value of skew). The PE3, GEV,
or LN3 appears to be the second-best distribution. This analysis,
though, favors the LP3 distribution, which is presented by an area
for a range of log space skew from −1.4 to 1.4. As the true skew is
unknown, this potential area is represented as a gray shaded region
in Figs. 2 and 3. For sites with 7-day low flow minimums with
zeros shown in Fig. 3, the LP3 also appeared to provide the best
fit, while the PE3 may be the second-best distribution; on this
figure, the observed data points generally fall below the LP3 area
and P3 curve (a lower kurtosis for a specific value of skew).

To avoid a visual assessment of goodness of fit based on visual
inspection of the L-moment diagrams, a number of more quantita-
tive metrics were also calculated to assess the goodness of fit of
probability distributions to the sample L-moment ratios. Various
tests and indices have been used as a measure of distributional
goodness of fit. These include the Kolmogorov-Smirnov test
(Chowdhury et al. 1991; Caruso 2000), the chi-squared test (Caruso
2000), probability plot correlation coefficient tests (Filliben 1975;
Vogel and Kroll 1989), and an L-moment average weighted dis-
tance (Kroll and Vogel 2002; Yue and Wang 2004; Kim et al.
2010). Many regional L-moment studies have also used ZDIST,
the Hosking and Wallis (1997) regional goodness of fit statistic
(Pearson 1991; Hosking and Wallis 1993; Yue and Wang 2004;
Modarres 2008; Chen et al. 2010; Peng et al. 2010; Dodangeh
et al. 2011; Hussain 2011; Dodangeh et al. 2013; Hussain 2017),
though this approach assumes all series are generated from a parent
distribution with the same τ4, which is unlikely for low streamflows
series distributed across the conterminous US.

For a 3-parameter distribution, the first three L-moments would
be determined by and thus fixed by the fitted parameters of the
given distribution. However, the fourth L-moment and therefore
τ 4 would be freely determined by the fitted distribution. The quan-
titative metrics used here are based on comparing the sample τ4 to
a distribution’s theoretical value of τ 4 corresponding to the value of
the sample τ 3. A record-length weighted Nash-Sutcliffe efficiency
(NSE), bias, and average weighted absolute deviation (AWAD) are
examined as the goodness of fit statistics:

NSE ¼ 1 −
P

N
i¼1 niðτ4S;i − τ4D;iÞ2P
N
i¼1 niðτ4S;i − τ4SÞ2

ð1Þ

Bias ¼
P

N
i¼1 niðτ4S;i − τ4D;iÞP

N
i¼1 ni

ð2Þ

AWAD ¼
P

N
i¼1 nijτ4S;i − τ4D;ijP

N
i¼1 ni

ð3Þ

where N = number of sites, τ4S;i = at-site τ4 at the ith site, τ4D;i ¼
τ4 of the respective probability distribution at the value of the at-site
τ3 at site i, τ4S = weighted mean of the at-site L-kurtosis across all
sites, and ni = number of years of record at site i. Here, the NSE is
calculated with the at-site estimate of τ4 in the denominator as op-
posed to the value of τ4 resulting from the fitted distribution. If the
fitted distributional value of τ4 was used, the denominator would
change for every distribution and distributions where the fitted
distributional τ4 had a larger variance would generally be favored.
Here, the NSE of every distribution is scaled similarly by the
weighted sum of squares of the at-site τ4 (τ4S;i) from its mean
(τ4S). The resulting value of NSE measures how the distribution
fits the data as opposed to how the data fits the distribution. If
the NSE is closer to 1, the fit of the probability distribution is better.
An unbiased estimator has a bias of 0; hence, the closer bias is to 0,
the better the fit. While NSE and bias are common metrics of good-
ness of fit, each does not completely describe performance. A few
observations far from the mean of the distribution could create a
large reduction in NSE, even when the overall fit is good. If the
observations are far from the mean, but equally distributed around
the mean, the bias may be close to 0, even though the fit is not
particularly good. To balance these metrics, the AWAD is also used,
which weights underestimation and overestimation equally. The
smaller the AWAD, the better the performance of the distribution
(Kroll and Vogel 2002).

Table 2 contains the results for the NSE, bias, and AWAD for
the 7-day annual minimum low flow series for sites with no 7-day
minimum of zero (from Fig. 2) and sites with zeros (from Fig. 3).
Distributions have been put in order based on the NSE of the
nonzero 7-day annual minima. Sites with more than 90% of the
7-day annual minimums recorded as zero produced unusually large
L-moment ratios; these sites were not included in the calculations
in Table 2 of the performance metrics for sites with zeros. For the
LP3 distribution, if τ4S;i was within the shaded region in Figs. 2
and 3, it was assumed to be equal to τ4D;i; for values outside of this
area, τ4D;i was taken as the upper limit (for larger τ4S;i) or lower
limit (for smaller τ4S;i) of the shaded area at the value of the
at-site τ 3.

On the basis of the values of the NSE, bias, and AWAD in Fig. 2
for the nonzero 7-day low flow series, the LP3 provides the best fit;
however, the LN3 and PE3 also seem to be plausible distributions,
especially considering the fact that the approach to evaluating
LP3 differs significantly from the approach to evaluating all other
distributions considered. To examine the relative performance of
different distributions for different flow series, a performance
metric was calculated for each goodness of fit statistic:

PerformanceRatioNSE ¼ NSEdistribution

NSEbest distribution
ð4Þ

Performance RatioBias ¼
jBiasbest distributionj
jBiasdistributionj

ð5Þ

Table 2. Goodness of fit results for 7-day annual minimum flow without zero, with zeros, and inverse of nonzeros for the contiguous US

Distribution

Nonzero Inverse With Zeros

NSE Bias AWAD NSE Bias AWAD NSE Bias AWAD

LP3 0.805 0.0109 0.0126 0.957 0.0153 0.0161 0.981 −0.006 0.0093
LN3 0.431 −0.0102 0.0366 0.900 0.0039 0.0385 0.774 −0.0688 0.0733
PE3 0.345 0.0102 0.0381 0.790 0.0343 0.0546 0.924 −0.0077 0.0351
GEV 0.324 −0.0177 0.0404 0.906 −0.0114 0.0375 0.544 −0.108 0.111
WEI 0.297 0.0228 0.0389 0.824 0.0391 0.0508 0.902 −0.0269 0.0433
GLO −0.395 −0.0563 0.0621 0.826 −0.0431 0.0543 0.477 −0.119 0.121
GPA −1.01 0.0687 0.0726 0.709 0.0648 0.0704 0.749 −0.0619 0.0755
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PerformanceRatioAWAD ¼ AWADbest distribution

AWADdistribution
ð6Þ

where NSEbest distribution = NSE for the distribution with the high-
est NSE, Biasbest distribution = bias for the distribution with the
smallest absolute value of the bias, and AWADbest distribution =
AWAD for the distribution with the smallest AWAD. The per-
formance ratio will be 1 for the best distribution and lower
than 1 for distributions that are not the best. Note that when
Biasbest distribution is close to 0, the performance ratios of the other
distributions are generally very low.

Fig. 4 shows the distributional performance ratios for the 1-day,
3-day, 7-day, and 30-day low flow series, as well as for the annual
Q90, Q95, and Q99 series, at sites with no zero flows. When a dis-
tribution produced a negative NSE and thus a negative performance
ratio, they were plotted as 0 in Fig. 4. In general, the LP3, LN3, and
PE3 are always the most plausible distributions regardless of the
flow series. Of the other 3-parameter distributions considered, the
GEV generally performed better than the WEI, and the GLO and
GPA performed worse than all other distributions. The GEV, GLO,
LN3, and PE3 were proposed by Kroll and Vogel (2002), Pearson
(1995), and Vogel and Wilson (1996) for fitting low streamflow
series and the results of this study are generally consistent with their
findings, though favor the LP3, LN3, and PE3 over the GEV and
GLO distributions. Vogel and Wilson (1996) and Kroll and Vogel
(2002) also examined low flow minimums for the HCDN sites
(though a different subset of sites). Vogel and Wilson (1996) sug-
gested the PE3 for the annual minimum low flow series and Kroll
and Vogel (2002) recommended the LN3 for intermittent sites and
the PE3 for nonintermittent sites. The LP3 is recommended for
flood flow frequency analyses with US federal guidelines (England
et al. 2018) and from the results presented here, the LP3 appears to
be a flexible distribution that generally also provides a good fit to
the low streamflow series.

From Table 2, for sites with 7-day annual minimums containing
zeros, the LP3 again provided the best fit, while the PEI and WEI
provided plausible fits to these series. The GLO and GEV distri-
butions produced a drop-off in performance and thus are less plau-
sible for describing 7-day annual minimums with zeros. Though
not shown here, similar results were obtained for 1-day, 3-day, and
30-day low flow series. For the annual Q90, Q95, and Q99 series
with zeros, the LP3 again provided the best fit, and the PE3 and
WEI also were plausible distributions. As expected, the at-site τ3
and τ4 estimates increase as more zeros are present in the record

due to a truncation of the lower tail of the distribution (note these
results are not presented in this paper).

L-Moment Diagrams of Inverse Flows

It has been proposed that for low flow series, employing inverse
moments might improve the characterization of these series (Farmer
et al. 2015). Here, an assessment was made of whether probability
distributions provide a better fit to the inverse transformation of the
flow series (i.e., 1=X) than to the original untransformed flow series
(i.e., X). By taking the inverse transformation, the smaller flows that
were originally in the lower tail of the distribution are now the larg-
est observations and thus are in the upper tail of the distribution.
Taking an inverse transformation removes the chance of estimating
negative quantiles for real-space probability distributions, which
can be a problem in practice.

Fig. 5 presents the sample estimates of τ4 versus τ3 for the
inverse 7-day annual minimum low streamflow in the contiguous
U.S. for the 495 sites without zero 7-day minimums. The plot also
includes the τ3∶τ4 relationship for the GEV, WEI, GPA, PE3, GLO,
LN3, and LP3 distributions. The at-site L-moment ratios in Fig. 5
for the inverse low flows have a wider range of τ 3 and τ 4 than the
plot of the untransformed flows (Fig. 2).

Table 2 also presents performance metrics for the inverse of the
nonzero low flow series. For the 7-day inverse low flows, the LP3
again performs best with the highest NSE and low bias and AWAD
values. The GEVand LN3 also appear to be plausible distributions
for the inverse low flow series. Importantly, for all distributions, the
NSE for the inverse flows is significantly larger than the NSE for
the untransformed flow series, though the AWAD and bias are of
similar magnitude. The larger variance in the at-site τ4 for the
inverse flows compared to the untransformed flows would inflate
the NSE [an increase in the denominator in Eq. (1)]. Overall, the fit
of probability distributions to the inverse flows appears as good as
the fit of the untransformed low flows.

Fig. 6 shows the distributional performance ratios for the inverse
flow series corresponding to the 1-day, 3-day, 7-day, and 30-day
low flow series, as well as for the annual Q90, Q95, and Q99 series
at sites with no zeros. Similar to the preceding results provided in
Fig. 4 for the untransformed flow series, for the inverse flow series,
the LP3, LN3, and possibly the GEV distribution appear to be plau-
sible distributions for describing a wide array of low flow series in
the US.

Fig. 4. Distributional performance ratios for low streamflow series
with no zero flows for the 1-day, 3-day, 7-day, 30-day, Q90, Q95,
and Q99 annual minimum series.

Fig. 5. τ3 versus τ 4 for the inverse 7-day annual minimum flows at
HDCN-2009 sites with no zeros.
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L-Moments Within Water Resource Regions

Across the conterminous US, there is a wide range of climatic, geo-
logic, geomorphic, and topographic conditions that impact low
streamflow processes. Of interest was whether the LP3, LN3,
and PE3 distributions would still be preferred if results were par-
titioned based on the USGS Water Resource Regions identified in
Fig. 1. Fig. 7 is similar to Figs. 4 and 6, but is for the untransformed
7-day annual minimum flows for each of the 18 USGS Water Re-
source Regions. In terms of the NSE and AWAD, the LP3 is the
best distribution regardless of the region, with the LN3 and PE3
generally being the next most plausible distributions. Fig. 8
presents the same results as Fig. 7, but for the inverse 7-day annual
minimum flows. Here, the results are more mixed, with the LP3
continuing to perform well, but the GEVand LN3 also performing
well in many regions of the United States. In drier regions
(e.g., Water Resources Regions 12, 13, and 15), which generally
produce lower flows, the GEV appears to be as good as or perhaps
better than the LP3 distribution. For larger values of skew, the GEV
generally has a larger kurtosis than the other distribution; this
thicker tailed distribution may better describe the inverse of low
streamflows when smaller values are present in the record.

L-Moment Diagrams for Censored Flows

In low flow frequency analysis, the focus is generally on estimating
a quantile in the lower tail of the distribution (unlike for flood fre-
quency, where qauntiles are generally estimated in the upper tail).
The larger observations, which are less important with these low
flow quantiles, may impact the higher L-moments, the estimated
parameters of the distribution, and thus the quantile estimates.
Of interest is if one removes a percentage of the largest observa-
tions (i.e., censors the largest observations), whether the remaining
observations will be more consistent with a particular probability
distribution. This idea is analogous to the current approach to
the removal of potentially influential low outliers in flood fre-
quency analysis (Cohn et al. 2013). Hosking (1995) introduced two
types of censoring for probability weighted moments: Type A
and Type B. While Hosking (1995) only considered the case of
censoring in the upper tail of the distribution, Zafirakou-Koulouris
et al. (1998) extended the analysis to consider lower tail censoring.
L-moment analysis for Type B censoring is performed when the
censored observations are replaced by a nominal value, such as
zero. Kroll and Vogel (2002) examined shifts in probability distri-
butions for Type B censoring when some observations of the annual
minimum series were recorded as zero. Type A censoring is equiv-
alent to taking the L-moments of the uncensored observations.
Here, Type A censoring is explored by censoring portions of the
upper tail of the observed low streamflow series, calculating the
L-moment ratios of the remaining observations, and comparing
the observed censored L-moment ratios to the relationships of
Type A censoring to different probability distributions.

To perform this analysis, the low flow series with no zeros were
utilized. At each site, a certain percentage (25%, 50%, and 75%)
of the largest observations were censored (i.e., removed) and
L-moment ratios were calculated using the remaining observations.
To develop relationships between τ 3 and τ4 for each probability
distribution with Type A censoring, a simulation experiment was
performed. First, 100,000 random variables were generated for the
respective distribution for a range of different distributional param-
eters. The 100,000 variables were then sorted and the largest
25%, 50%, or 75% of the values were censored (i.e., removed);
τ3 and τ4 were then calculated for the remaining data, which
represent the lower tail of the distribution.

Fig. 6. Distributional performance ratios for the inverse low stream-
flow series with no zero flows for the 1-day, 3-day, 7-day, 30-day, Q90,
Q95, and Q99 annual minimum series.

Fig. 7. Distributional performance ratios for low streamflow series in each Water Resource Region 1–18 with no zero flows for the 1-day, 3-day,
7-day, 30-day, Q90, Q95, and Q99 annual minimum series.

© ASCE 04019043-6 J. Hydrol. Eng.

 J. Hydrol. Eng., 2019, 24(10): 04019043 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
uf

ts
 U

ni
ve

rs
ity

 o
n 

08
/1

3/
19

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



For each distribution and each censoring level, an ordinary least
squares regression model of the form

τ4 ¼
X8

k¼0

Akτ k3β0 ð7Þ

was then fit to the censored τ3 and τ4 values to develop an approxi-
mation of the theoretical τ 3∶τ4 relationship for each distribution at
the upper tail censoring of 25%, 50%, and 75%. A similar method
was employed by Hosking and Wallis (1997) and Zafirakou-
Koulouris et al. (1998) to approximate L-moment ratio relation-
ships for different uncensored distributions. The model was fit
for a range of τ3 from the minimum observed value across all sites
to 0.9 based on maximizing the adjusted coefficient of determina-
tion. This was done for all distributions previously examined in this
experiment except for LP3, which has an unusual uncensored τ 3∶τ4
relationship (an area as opposed to a line) that complicates the
development of a censored approximation.

Fig. 9 contains a plot of τ4 versus τ 3 of the untransformed 7-day
annual minimums at sites with no zero flows for 25% censoring.
This plot contained points for the observed τ3 and τ4 for sites with
no zero 7-day annual minimums with Type A censoring as well as
the approximation to the theoretical relationship for each distribu-
tion. Wang (1990) noted that the censored τ3∶τ4 relationship for
GEV distribution becomes shallower compared to the uncensored
distribution and this was also observed for all of the distributions in
the present study. As the censoring level increases, for positively
skewed distributions, the τ 3 values decrease and the τ 4 value in-
creases. This is because as the upper tail of these distributions
is removed, the skew is reduced and the thickness of the tails
increases. As censoring increased, the theoretical relationship be-
tween τ3 and τ4 becomes more similar for all distributions except
the GPA. An interesting component of Fig. 9 is that most sites ap-
pear to cluster around a value of τ3 equal to 0 (the average τ 3 and τ4
across all sites is −0.010 and 0.063, respectively). Similar experi-
ments were performed with censoring of the lower tail of the in-
verse flows (not shown here). In general, censoring of the upper tail
of the distribution, or the lower tail of the distribution of the inverse
flows, did not improve the fit of probability distributions to low
streamflow series.

Closer Look at the LP3, GEV, and LN3 Distributions

From the analysis of L-moment diagrams for the untransformed
and inverse low flow series at sites with no zero annual minimums,
the most plausible 3-parameter distributions to describe low stream-
flow series in the US appear to be the LP3, GEV, LN3, and PE3
distributions. Here, a closer examination is provided of three of
these distributions: LP3, GEV, and LN3. If a series is generated
by the LP3 distribution, then the logarithm of that series should
follow a PE3 distribution. Fig. 10(a) contains a plot of τ4 versus
τ3 for the logarithm of the 7-day annual minimum series at the 495
sites with no zero 7-day annual minimums. The τ3∶τ4 relationship
for the PE3 distribution is also plotted in this figure. While the PE3
distribution line generally intersects the middle of the data points,
there does not seem to be overwhelming evidence that the log of the
series follows a PE3 distribution and thus, the untransformed series
follows a LP3 distribution. In fact, the data seems to be centered on
a τ3 of 0 (and a τ4 of 0.12), which is consistent with a 2-parameter

Fig. 8. Distributional performance ratios for low streamflow series in each Water Resource Region 1–18 with inverse of no zero flows for the 1-day,
3-day, 7-day, 30-day, Q90, Q95, and Q99 annual minimum series.

Fig. 9. τ 3 versus τ4 with 25% censoring of the upper tail for 7-day
annual minimum flows at HCDN-2009 sites with no zeros.
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lognormal distribution. A similar inverse pattern can be seen in
Fig. 10(b) for the log of the inverse flows, which is just the mirror
image of Fig. 10(a) since the logð1=xÞ ¼ − logðxÞ.

If a series is generated by a GEV distribution, then if one sub-
tracts the lower bound of a Type II GEV distribution from the data,
or subtracts the data from the upper bound of a Type III GEV dis-
tribution, and takes the logarithm, the resulting data set follows a
Gumbel distribution (Johnson and Kotz 1995). AType II or Type III
GEV distribution is distinguished by the sign of the shape param-
eter κ (κ < 0 for Type II and κ > 0 for Type III). Fig. 11(a) contains
a plot of τ 4 versus τ3 for the logarithm of the 7-day annual mini-
mum series after this transformation for the 495 sites with no zero
7-day annual minimums. The parameters of the GEV distribution
were estimated using the method of L-moments (Hosking and
Wallis 1997). The τ3∶τ4 relationship for the Gumbel distribution,
which is a point on this plot, is also plotted on this figure. All of the
L-moment ratios in Fig. 11(a) appear to cluster around the theoreti-
cal value for a Gumbel distribution so that it is entirely possible that
the untransformed data arise from a GEV distribution. The lower

bound of the GEV distribution is a function of κ, the shape param-
eter. The GEV distribution is very sensitive to κ and generally, a
regional κ is recommended (Chowdhury et al. 1991). Since here the
region is the conterminous US, an at-site κ is employed, which in-
troduces more uncertainty into this analysis and may be why there
is more variability in the L-moment ratios in Fig. 11(a) than is to be
expected. Fig. 11(b) is the same as Fig. 11(a), but for the inverse of
the 7-day annual minimums; for the inverse flows, even larger at-
site L-moment ratios are observed. The conclusion derived from
Fig. 11(b) is that it is unlikely that the inverse flows arise from
a GEV distribution.

If a series is generated by a LN3 distribution, and the lower
bound of the LN3 distribution is subtracted from the series, then
the logarithm of the resulting data set should follow a normal
distribution. Fig. 12(a) contains τ4 versus τ3 for the logarithm of
the 7-day annual minimum series after the lower bound of the
LN3 distribution has been subtracted at the 495 sites with no zero
7-day annual minimums. For consistency, the lower bound of the
LN3 distribution was estimated using the method of L-moments

Fig. 10. τ 3 versus τ 4 for the logarithm of (a) 7-day annual minimum flows; and (b) the inverse of 7-day annual minimum flows at HCDN-2009 sites
with no zeros.

Fig. 11. τ 3 versus τ4 for the logarithm of (a) 7-day annual minimum flows; and (b) the inverse of 7-day annual minimum flows after the lower bound
of the Type II GEV distribution has been subtracted (or the data is subtracted from the upper bound of a Type III GEV distribution) at HCDN-2009
sites with no zeros.
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(Hosking and Wallis 1997). The τ3∶τ 4 relationship for the normal
distribution, which is a point on this plot, is also plotted on the
figure. The normal distribution point on Fig. 12(a) falls within
the cluster of data points and the data points appear to be more
tightly clustered around this point than was observed for the LP3
or GEV distributions in Figs. 8 and 9. Fig. 12(b) contains the same
plot, but for the inverse of the 7-day annual minimum flows. The
patterns of the L-moment ratios in Fig. 12 do not take on the type
of elliptical shapes expected if the untransformed observations
arose from an LN3 distribution, which may be due to the vari-
ability introduced by having to estimate the lower bound of the
distribution.

Conclusion

In this study, L-moment diagrams of L-kurtosis (τ4) versus L-skew
(τ3) were constructed for seven low streamflow series commonly
employed in the practice of low flow frequency analyses: the 1-day,
3-day, 7-day, and 30-day annual minimum flows, and annual flow
duration curve quantiles with exceedance probabilities of 90%,
95%, and 99%. For each of these series, L-moment ratios were
estimated at 704 unregulated HCDN-2009 gaging stations located
in the contiguous US with record lengths ranging from 28 to
117 years. L-moment diagrams were used to assess the goodness
of fit of seven 3-parameter probability distributions: GEV, GLO,
GPA, LN3, LP3, PE3, and WEI. The visual assessment of
L-moment diagrams was combined with the calculation of good-
ness of fit statistics based on the relationship between the values of
τ 4 according to the observations and values of τ4 derived from the
fitted distributions. The three goodness of fit statistics were the
record-length weighted NSE, bias, and average weighted absolute
distance (AWAD).

Studies have shown that sites with and without annual mini-
mums of zero lead to differences in probabilistic behavior. Sites
with more zeros produce higher L-skew values. For this study, a
distinction was made between sites that recorded annual minimum
flows as zeros and those that did not. To assess the goodness of
fit of different probability distributions, both the original untrans-
formed low flow series and the inverse of the low flow series
for sites without zeros were analyzed. The sites without zeros
were also censored by removing the largest 25%, 50%, and
75% of the data, and the L-moment ratios for this censored data

were compared to the L-moment ratios for censored probability
distributions.

The results indicated that the LP3 distribution was plausible for
all the low flow series, regardless of whether the series had zeros,
no zeros, or the inverse was analyzed. Since the τ3∶τ 4 relationship
for the LP3 is an area and not a curve as it is for the other distri-
butions considered, the LP3 had an inherently unfair advantage
over the other distributions. Yet, the fact that the LP3 occupies a
region rather than a curve in the L-moment diagram is because it is
a more flexible distribution than nearly all other 3-parameter dis-
tributions. For low flow series with no zeros, the LN3 and PE3 are
also plausible distributions, and for low flow series with zeros, the
WEI and PE3 appear to be plausible. For the inverse of nonzero
flows, the results favored the LN3 and GEV in addition to the
LP3. In general, an inverse transformation of the flows produces
L-moment diagrams with a larger range of L-skew and L-kurtosis
than the untransformed flows, and the distributions fit similarly to
both the inverse and untransformed flows. Fitting a probability
distribution to the inverse of the low flows removes the possibility
of estimating negative low flow quantiles, which can be a problem
in practice when fitting real-space distributions. Censoring of the
upper tail of the distribution generally made it harder to assess the
goodness of fit.

Based on the results, the following conclusions can be drawn:
1. The LP3 generally performed best for all series (with zeros, no

zeros, and the inverse low flow series), though the LN3 and PE3
are plausible distributions for sites with no zero flows.

2. The inverse of nonzero low flow series produces L-moment ra-
tio diagrams in which the LP3, GEV, and LN3 distributions ap-
pear most plausible. Further investigation of fitting probability
distributions to the inverse of low flow series may be warranted,
especially when applying real-space probability distributions
that may generate negative quantile estimates.

3. Given that the GEV distribution is often considered the distri-
bution of choice for all extreme value applications due to its
foundation in the theory of extremes, it is of considerable inter-
est that this distribution is one of the recommended distributions
for fitting the series of nonzero low flow series. Future research
should perform comparative assessment of the sampling proper-
ties of estimated quantiles derived from fitting a GEV distribu-
tion to the inverse of the low flow series in contrast with fitting,
for example, an LP3, LN3, or PE3 distribution to the untrans-
formed series.

Fig. 12. τ 3 versus τ4 for the logarithm of (a) 7-day annual minimum flows; and (b) the inverse of 7-day annual minimum flows after the lower bound
of the LN3 distribution has been subtracted at HCDN-2009 sites with no zeros.
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