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Abstract: Information regarding topographic, meteorologic, geologic, and geomorphic characteristics is increasingly available in spa-
tially explicit digital formats. Of interest is whether enhanced spatial processing of newly available digital grids can lead to new estimators
of watershed characteristics which may in turn, improve our ability to predict extreme hydrologic events. Regional hydrologic models of
low-flow processes often produce estimators with unacceptably large errors. Using a continuous digital elevatidbBMyelf the
conterminous United States, watershed boundaries were developed for the streamflow gauges of the USGS’s Hydro-Climatic Dat
Network. Using these watershed boundaries, many watershed characteristics were developed from digital grids, including: the origina
DEM, the USDAs State Soil Geographic grids, and the Spatial Climate Analysis Service’s orographically weighted precipitation and
temperature grids of varying spatial and temporal resolution. Digital processing of grids leads to improvements in estimation and
reproducibility of spatial statistics over traditional manual processing approaches. Low-flow regional regression models were developet
for regions across the conterminous United States. Inclusion of the new watershed characteristics led to improvements in regione
regression models for all regions. The inclusion of hydrogeologic indices, in particular a new smoothed baseflow recession constan
estimator, led to dramatic improvements in low-flow prediction.
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Introduction needed for issuing and/or renewing National Pollution Discharge

Understanding the frequency and duration of extreme hydrologic Elimination System permits, as required by provisions in the
events is critical to the efficient management of water resources€an Water Act of 1977. Low streamflow statistics are also used
throughout the world. Floods and droughts are responsible for {0 Plan water supply, hydropower, and irrigation systems, design
large monetary and human losses every year. While flood fre- cooling-plant facilities, site treatment plants and sanitary landfills,
quency analyses have received considerable attention in the redetermine waste-load allocations, and make decisions regarding
search literature, the estimation of low streamflow statistics hasinterbasin transfers of water and allowable basin withdrawals. In
received relatively little attention. Low streamflows are especially addition, low streamflow events are often critical periods for
important for water quality management, where they provide aguatic habitats due to potentially low dissolved oxygen concen-
critical dilution of nonpoint source and point source pollution trations and/or high pollutant concentration.
discharges during dry periods, and water quantity management, When a sufficient historic record is available at the river site of
where low streamflows greatly influence water use policy. For interest, low streamflow statistics may be obtained using a fre-
example, in every state, estimates of low streamflow statistics arequency analysigRiggs 1965, 1968 When no historic streamflow
record is available, a regional regression model may be devel-
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is developed for stream gauges that are contained within the“Watershed Boundary Delineation” explains the method used to

United States Geological Survey’s Hydro-Climatic Data Network, delineate watershed boundaries, while the section “New Water-

or HCDN. The HCDN database contains high quality streamflow shed Characteristics” discusses our methodology for processing

data at over 1,500 locations spatially distributed across the Unitedthe digital grids and the development of new watershed charac-

States, and has been employed in numerous watershed studieteristics. The section “Regression Analysis” describes the meth-

[for examples see: Vogel et d1999; Kroll and Vogel (2002); odology employed in developing low-flow regional regression

Douglas et al(2000, and citations therein equations, and the section “Results” presents a comparison of
A new database is developed using spatially explicit digital various low-flow models both within and across geographic re-

information regarding the topography, meteorology, geology, and gions. The last section contains the paper’s conclusions and future

geomorphology within each HCDN watershed. A 1 km digital research directions.

elevation model(DEM) is employed to delineate watershed

boundaries for each of the HCDN watersheds. Using these bound-

aries, summary statistics are estimated using a variety of digital HCDN Watershed Characteristics and Streamflow

grids including the United States Geological Surve{ySGS 30 Records

arc sec (-1 km) Hydo 1 K digital elevation modeIDEM), the 1

km U.S. Department of Agriculture’sUSDA) State Soil Geo-  The USGS’s HCDN consists of streamflow records for sites

graphic(STATSGO grids, a 40-year monthly time series of the  throughout United States. The HCDN streamflow data meet cer-

Spatial Climate Analysis Service®RISM) 0.5° (~49 km) oro-  tain measurement accuracy criteria as outlined by Slack and

graphically weighted precipitation and maximum and minimum [andwehr(1993. In this study, only sites designated as having

temperature, and PRISM's 2.5 arc mirt 4 km) average monthly  streamflow suitable on a daily time step were employed, resulting

and annual precipitation grids. in 1,545 sites. The HCDN contains river flows from 1874 to 1988,
Our study addresses the following two related questions: with an average record length of 44 years.
1. Can low-flow regional regression models be improved by the  The daily streamflow records were used to obtain estimates of
inclusion of digitally derived watershed characteristics? the 7-day annual minimum streamflow which is on average ex-
2. What are the most important hydrogeologic characteristics to ceeded nine out of every ten yea€¥; 0. The Q1o is the most
include in low-flow regional regression models? widely used low-flow statistic in the United StatéRiggs 1980.

Prior studies of low-flow regional regression models have met In general, the USGS uses a log-Pearson ty(eP3) distribution
with only limited success, yet those studies are mostly limited to to describe annual minimum streamflow series, as evidenced by
eastern regions of the United States. Using the newly derivedits use in a variety of USGS studiéBarnes 1986; Wandle and
database of watershed characteristics, low-flow regional regres-Randall 1993; Rumenik and Grubbs 1996 is important to note
sion models are developed for USGS water resource regionsthat there is no consensus as to the best methodology to perform
across the entire conterminous United States, allowing interre-a low-flow frequency analysis at a gauged river site. For instance,
gional comparisons between competing models. Of interest isthere appears to be no consensus as to the best probability distri-
whether new digital spatial information can improve the predic- bution (Condie and Nix 1975; Tasker 1987; Vogel and Kroll
tive capabilities of regional low-flow models. This is the initial 1989; Pearson 1995; Vogel and Wilson 1996109 and Bayazit
study in a series that explores improvements in low-flow predic- 1999; Kroll and Vogel 200R In addition, if a poor distributional
tion across the United States. fit is present, other methods have been advocated, such as tail
In addition to gridded digital data, our database of watershed models (Durrans 1996; Durrans et al. 1999nonparametric
characteristics includes four hydrogeologic indices: three versionskernel-based methodsTasker 198Y, and graphical techniques
of the baseflow recession constévibgel and Kroll 1996 and the (Riggs 1972.
baseflow index(Institute of Hydrology 198D Vogel and Kroll For the sake of this study we assumed that 7-day annual mini-
(1992 showed the importance of including hydrogeologic indices mum streamflows were adequately described by a LP3 distribu-
in low-flow regional regression equations in Massachusetts. Heretion. We estimated the parameters of the LP3 distribution by the
we investigate whether this conclusion can be extended to othermethod of moment$Stedinger et al. 1993and theQ- ;o as the
regions of the United States, and which indices are most impor- 10th percentile of the distribution. At sites with between 0 and
tant to include in regional low-flow models. Two new smoothed 10% of 7-day annual minimum flows reported as zero, we used a
baseflow recession constant estimators are presented in an attembnditional probability adjustment to estimate e, (Jennings
to reconcile difficulties with the varying precision of the reported and Benson 1969; Haan 197Any site with more than 10% of
streamflow records. 7-day annual minimum flows reported as zero was assigned a
While some of the methodology employed in this paper is not Q- o value of zero. Since we employed a simple log-linear re-
new, the goal of this paper is to perform a series of low-flow gression model in this study, sites with(y 1, estimated as zero
regional regression analyses across the conterminous Unitedvere removed from the analysis, resulting in the removal of 243
States with a variety of new explanatory variables. The results of sites. An alternative approach would be to emploffabit) cen-
this study provide practitioners in each water resource region nu-sored regression model in regions with at-site quantile estimates
merous watershed characteristics which one should consider a®f zero (Kroll and Stedinger 1999
potential explanatory variables in a low-flow regional regression = The HCDN database contains a small collection of watershed
analysis. characteristics for each of the gauged river sites, including drain-
This paper is broken into the following sections. The first and age area, main channel slope, main channel length, mean basin
second sections are the Abstract and Introduction, respectively.elevation, mean annual precipitation, 2-year, 24 hour precipitation
The section, “HCDN Watershed Characteristics and Streamflow intensity, and mean January minimum temperature. Many of these
Records” describes the HCDN watersheds examined in this study,watershed characteristics were developed using manual tech-
the watershed characteristics database included within the HCDN,niques, employing relatively old information, or were developed
and the estimation of at-site streamflow statistics. The sectionfrom a limited record(Slack et al. 1998 In many regions these
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watershed characteristics were not reported for all HCDN sites, the USGS value was found, all grid positions within radii of 7.5,
which further complicated the analysis. We removed 180 water- 10, and 15 km were sequentially examined. If no location within
sheds with missing HCDN watershed characteristics because wea 15 km radius was found to have a drainage area within 10% of
considered it more important to keep watershed characteristics athe USGS cited drainage area, the site was removed from the
opposed to sites in this analysis. analysis. This procedure removed 192 sites from our analysis.

. . New Watershed Characteristics

Watershed Boundary Delineation o _

After delineating the watershed boundaries, we used numerous
We used a DEM of the United States to delineate the watersheddigital grids to develop a database of watershed characteristics. In
boundaries for each of the remaining HCDN river sites. A rela- thiS analysis, we required grids with a continuous coverage of the
tively coarse DEM, GTOPO30, was employed in this analysis due United States. The digital grids used were the USGS’s GTOPO30
to the computational challenge of delineating a large number of PEM. the 1 km USDAS STA;I-SGO soil maps, a 40-year monthly
watersheds. GTOPO30 is a 1-km resolution raster grid of North fime series of PRISM's 0.5° orographically weighted precipita-
America and the U.S. territories produced by the USGS. While tion and maximum and minimum temperature, and PRISM's 2.5
this DEM may not provide an adequate topographic description to & Min average monthly and annual precipitation grids. We also

accurately delineate the boundaries of all watersheds, it doesemployed new hydrogeologic characteristics derived from the

allow for the development of an initial database of watershed Stréamflow records. Table 1 contains a summary of the watershed
characteristics for these sites. It is important to note that DEMs characteristics used in this study. The development of each water-
contain errors as the result of blunders, systematic errors, andSned characteristic is discussed below.

random errordUSGS 1995 These errors impact not only the

DEM, but also estimators derived from the DEM. Numerous tech- 10P0graphy: GTOPO30

niques, such as stochastic simulati@oovaerts 1997 have been  Wwe used the GTOPO30 DEM coverage of the conterminous
applied to assess the impact of DEM error on terrain modeling United States to derive a number of topographic estimators. The
(Holmes et al. 2000 Such an analysis typically requires a semi- HCDN database contains an estimator of main channel slope. We
variogram of the DEM error, which is difficult to obtain without  developed two new watershed slope estimators: SLOPE2, the wa-
estimates of the “true” elevation at numerous points across a tershed slope from the highest elevation in the watershed to the
watershed. With a coarser DEM, such as the GTOPO30, onewatershed outlet; and SLOPE3, the watershed average of the in-
would generally expect more accurate results for larger water- dividual planar slopes calculated on a cell-by-cell basis. The pla-

sheds. nar slope for an individual cell was calculated as
A watershed is defined as the upslope area that drains to a

specific point on a river. The delineation of a watershed boundary
is based on the assumption that water flows downhill. With a
gridded DEM, there are a number of different approaches to de-
termine flow pathways within a watershed. Each method, coupled
with a flow accumulation algorithm, can be used to produce an
estimator of the drainage area. We employed the USGS’s Hydro 1
K flow directions, which are based on applying a single flow
direction algorithm to the GTOPO30 DEM. Use of more compli-
cated flow routing algorithms such as a multiple directi@Quinn
et al. 199] or steepest decefiTarboton 199Y appear to impact
watershed delineation in only relatively small watersheds. Tar-
boton (1997 provides a review of flow direction algorithms and
their impact on flow paths and watershed delineation. Use of the
Hydro 1 K flow direction grid avoided the need for “filling” the  Soils: STATSGO (MUID)
GTOPO30 DEM. Filling is often required to remove any depres-
sions or flat areas within the DEM, which would adversely impact The soil information was based on the USDAs STATSGO
the flow accumulation algorithm. All digital grids were projected (MUID) digital grids. This $ a 1 kmresolution grid covering the
into an equal-area lambert projection. This projection maintains entire United States. STATSGO, which was developed from the
area across the raster grid, and thus should provide a good pro1994 State Soil Geographic Database, was designed to support
jection for watershed delineation. regional, multistate, state, and river basin resource planning, man-
We initially located stream gauges using the quoted latitude agement, and monitorinJSGS 2001 For each watershed we
and longitude for the gauge reported by the USGS. Unfortunately, computed the average of the high and low range values for the
the latitude and longitude did not usually correspond to the opti- following soil parameters: permeability, organic matter content,
mal position of the gauge location within the DEM. This was available water capacity, high water table, total soil thickness, and
most likely due to problems with the DEM not representing the bulk density. It should be noted that STATSGO was developed
true topography at the gauge locati@nsufficient resolution or using information from individual states, and often there are dis-
errors in grid or inaccuracies in the reported latitude and longi- continuities across state boundaries in these grids.
tude. To determine the “best” location for each gauge, we used
the following search algorithm. All grid positions withia 5 km
radius from the original gauge location were searched to locate
the grid position with a drainage area as close to the drainage ared@wo sets of climate data from the Spatial Climate Analysis Ser-
reported by the USGS as possible. If no position within 10% of vice's (PRISM) project were used in this study. The first set of

(E4+2E3+E,) — (Eg+2E,+ qu2

SLOPE3= ({ (8% cell width)

2\1.2

(E4+ 2E5+ EG)_ (E2+ 2El+ Eg)
(8*cell width)

whereE; = elevation of theith surrounding cella total of eight
surrounding cells This slope estimator is presented by Bur-
roughs(1986 and is part of the ArcView Hydrologic Extension
(ESRI 1998. In this analysis, the elevation of the gauge location
on the GTOPO30 DEM was also used as an explanatory variable.

Climate: PRISM
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Table 1. Description of Explanatory Variables

Symbol Percent time entering model Variable description Source
Topographic and HCDN variables

DA 93 Drainage area USGS HCDN
SLOPE1 9 Main channel slope USGS HCDN
SLOPE2 5 Slope of watershed from peak to outlet GTOPO30 DEM
SLOPES 14 Average of cell facet slopes GTOPO30 DEM
ELEV1 17 Gauge elevation USGS HCDN
ELEV2 3 Gauge elevation from DEM GTOPO30 DEM
LENGTH 5 Channel length USGS HCDN
PRECIP 29 Average annual precipitation USGS HCDN
INTENS 9 Precipitation intensity USGS HCDN
JANTMIN 9 January minimum temperature USGS HCDN
Hydrogeologic variables

Kp_1 3 Baseflow recession constdift,) based on daily streamflow Computed
Kp-2 86 K}, based on three-days moving average Computed
Kp-3 0 K}, based on decreasing flows in three-day moving average Computed
BFI 31 Baseflow index Computed
Geologic variables

PL 0 Low value for the range of permeability STATSGO
PH 0 High value for the range of permeability STATSGO
OML 2 Low value for the range of organic matter content STATSGO
OMH 0 High value for the range of organic matter content STATSGO
AWCL 0 Low value for the range of available water capacity STATSGO
AWCH 2 High value for the range of available water capacity STATSGO
WDL 2 Low value for the range of depth to the high water table STATSGO
WDH 3 High value for the range of depth to the high water table STATSGO
RDL 0 Low value for the range of the total soil thickness STATSGO
RDH 7 High value for the range of the total soil thickness STATSGO
BDL 2 Low value for the range of bulk density STATSGO
BDH 0 High value for the range of bulk density STATSGO
Climatic variables

ATMAX 0 90th percentile for maximum temperature for period Jun—Aug PRISM
BTMAX 5 90th percentile for maximum temperature for period Sep—Nov PRISM
CTMAX 2 90th percentile for maximum temperature for period Dec—Apr PRISM
DTMAX 3 90th percentile for maximum temperature for period Apr—Mar PRISM
ATMIN 7 90th percentile for minimum temperature for period Jun—Aug PRISM
BTMIN 0 90th percentile for minimum temperature for period Sep—Nov PRISM
CTMIN 3 90th percentile for minimum temperature for period Dec—Apr PRISM
DTMIN 0 90th percentile for minimum temperature for period Apr—Mar PRISM
APRCP 19 10th percentile for precipitation for period Jun—Aug PRISM
BPRCP 2 10th percentile for precipitation for period Sep—Nov PRISM
CPRCP 7 10th percentile for precipitation for period Dec—Apr PRISM
DPRCP 3 10th percentile for precipitation for period Apr—Mar PRISM
PANN 3 Average annual precipitation using 2.5 arc min grids PRISM
PJAN 0 Average January precipitation using 2.5 arc min grids PRISM
PFEB 7 Average February precipitation using 2.5 arc min grids PRISM
PMAR 2 Average March precipitation using 2.5 arc min grids PRISM
PAPR 7 Average April precipitation using 2.5 arc min grids PRISM
PMAY 5 Average May precipitation using 2.5 arc min grids PRISM
PJUN 10 Average June precipitation using 2.5 arc min grids PRISM
PJUL 5 Average July precipitation using 2.5 arc min grids PRISM
PAUG 7 Average August precipitation using 2.5 arc min grids PRISM
PSEP 9 Average September precipitation using 2.5 arc min grids PRISM
POCT 5 Average October precipitation using 2.5 arc min grids PRISM
PNOV 3 Average November precipitation using 2.5 arc min grids PRISM
PDEC 0 Average December precipitation using 2.5 arc min grids PRISM

Note: HCDN=Hydro-Climatic Data Network; DEMdigital elevation model; STATSGOState Soil Geographic Grids; and PRISarameter-

Elevation Regressions on Independent Slopes Model.
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grids is interpolated raster data of monthly climate variables in- estimatedK, based on Method 5 outlined in Vogel and Kroll
cluding precipitation, and minimum and maximum temperatures. (1996. This method is derived from the continuity equation when
A 40-year monthly time series of grids were employed, resulting outflow from a watershed is linearly related to basin groundwater

in 480 grids for each climatic variable. These grids have a reso-
lution of 0.5°, which roughly translates into a projected resolution
of 49 km. While these grids have a poor spatial resolution, the
temporal resolution produces a unique data set.

The average monthly precipitation, and maximum and mini-
mum temperature were calculated for each of the HCDN water-
sheds for each of the 480 months, resulting in a time series of

monthly averages at every site. Since low streamflows are caused

by long-term extremesas opposed to shorter duration events
such as those impacting flogd$our “seasonal windows” were
selected: (1) June—August; (2) September—November3)
December—March; ang@t) April-May. These four windows cap-
ture either typical months when annual minimum streamflow oc-
curs(late summer and early faJlor winter and spring conditions
which can impact groundwater storage prior to the low-flow
months.

Since extreme climatic conditions such as low precipitation
and/or high temperatures are generally responsible for low
streamflow events, numerous extreme percentiles for each cli-

matic time series were calculated and included as explanatory

variables. Since th®; 1,is the 10th percentile of the distribution
of 7-day annual minimums, in this analysis the 10th percentile o
the distribution of precipitation and the 90th percentile of the
distribution of temperature were estimated. This was accom-
plished by fitting each temperature series with a generalized ex-
treme valudGEV) distribution with L-moment parameter estima-
tors (Stedinger etal. 1993 and then estimating the 90th
percentiles from the distribution. The GEV distribution has been
used in practice to describe some climatic varial®shaefer
1990. For the precipitation series a delta distribution with a point
mass at zero and a two-parameter lognorth#l2) distribution
describing the nonzero observations was emplogkitchison
1955. The parameters of the LN2 distribution were obtained by
method of moment$Stedinger et al. 1993 The 10th percentile
of the delta distribution was then estimated.

For the second climatic data set, PRISM’'s 2.5 arc min
(~4 km) average monthly and annual precipitation grids were
employed. This consists of 13 grids: 12 grids of monthly aver-

f

storage

d
-ad-aQ ®

resulting in the least squares estimator

1 1
Kb:eXp[ _exl{mt}; [ln(Qt1_Qt)_|n(§(Qt+Qtl))]H
2

whereQ, = streamflow on Day; andm=total number of stream-
flow pairs Q; andQ;_;). Based on a linear solution to the Bouss-
inesq equationk,, is a function of hydraulic conductivity, poros-
ity, drainage density, and groundwater slofM@gel and Kroll
1992. Vogel and Kroll(1996 compared siX,, estimators’ abili-

ties to describe low streamflow statistics in Massachusetts. They
found theK, estimator in Eq(2) to be the preferred estimator due

to both its performance and simplicity.

To determineK,, only streamflows that occur during a
groundwater recession were employed. A streamflow recession
was defined by at least a ten-day drop in a three-day moving
average. The first 30% of the recession was removed to limit the
impact of surface and shallow subsurface stormflows. The re-
maining days were considered the groundwater recession. This is
also the procedure followed in Vogel and Kr¢ll992, 1996.

In this study threeK,, estimators were developed. The first,
Ky_1, was developed using ER), employing any pairs of two
consecutive decreasing daily streamflows during a groundwater
recession period. The other tWq, estimators were developed to
smooth errors due to the varying precision of USGS reported
streamflow values. USGS streamflows less than 1 cfs are reported
with two significant digits, all flows between 1 and 10 cfs are
reported with one digit after the decimal point, flows between 10
and 1,000 cfs as integers, and flows greater than 1,000 cfs with
three significant digits. Thus there are lower bounds on the value
of dQ/dt in Eq. (1) over each of these ranges of streamflow. For

ages, and 1 grid of annual averages. While the temporal reSOIUtioninstance, the minimum value dfQ/dt is 0.01 for flows less than

of these grids is poofaverages over 40 yearshe spatial reso-
lution is much better than those of the first climatic data set.

Hydrogeology

None of the above watershed characteristics capture the hydro
geologic behavior of the watershed. Since low streamflow is gen-
erally the result of groundwater discharge to the stream during
times of little or no precipitation, we expect hydrogeology to be
an important parameter in explaining low streamflow processes
and low streamflow statistid®ogel and Kroll 1992. Most of the
information in the MUID data set is near surface soil parameters
and is not necessarily representative of a watershed’s underlyin

calculated: the baseflow recession const&n) (and the baseflow
index (BFI). It should be noted that historic streamflow records
were required to estimat€, and BFI, and thus these parameters

g
aquifers. To address this issue, two hydrogeologic statistics were

1 cfs, but is 0.1 for flows between 1 and 10 cfs. Kid®89 and

Eng and Brutsaert1999 examined the issue of varying stream-
flow measurements precision on baseflow recession analyses. In
an attempt to smooth the data to reduce the impact of varying
precision, we developed a new estimakgy_,, which employs

consecutive 3-day moving averages for the te@ns; andQ; in

Eq. (2) (as opposed to daily streamflowsKn_,). The other new
estimatorK,,_s, is similar toK,_,, but has the requirement that
over the four days which make up the two consecutive three-day
moving averages, the streamflow must be decreasing. This restric-
tion produced a large reduction in the sample size forkhes
estimator compared to the sample sizeskgr ; andK,_».

BFI measures the long-term average fraction of annual stream-
flow that is contributed from groundwater. The BFI estimator em-
ployed was based on an Institute of Hydroldd®80 study. The
BFI estimator uses a moving window approach to determine days

cannot be derived at ungauged sites using the techniques dein which the streamflow is comprised solely of groundwater and

scribed below.
K, is an estimator of the daily percentage decline in stream-
flow during times of no surface or shallow subsurface runoff. We
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Regression Analysis is a function of the coefficient of determinatioRY) obtained by
regressing each individual explanatory variable against all the
When no discharge record exists at a site of interest, a regionalother explanatory variables. A VIF (VH1/(1—R?) greater
regression model can be used to estimate low streamflow statisticshan ten was used as a threshold to indicate possible multicol-
at the ungauged site. Using a region of gauged river sites, thislinearity problems(Rawlings et al. 1998 When this occurred,
method requires a relationship between low streamflow statisticsvariables with high correlatiofsuch as drainage area and stream
and topographic, meteorologic, geologic, and geomorphic charac-length, orK,_;, K,_,, andK,_3) were entered into the model
teristics to be developed. These relationships most often have thdéndividually. In an ongoing study, we are investigating the impact
following form: of using of principal component§lolliffe 1986 as explanatory
variables in our regression models.
Qqr=aX;Xj... €)
where Qg r=d-day; T-year low-flow statistic; X;=drainage
basin characteristics; and B, andy=model parameters. Vogel ~ Results
and Kroll (1992 showed that Eq(3) has a form consistent with
the linear solution to the Boussinesq equation for groundwater The results are broken into three sections. In the first section,
discharge. The dependent variable in B), Q; 1o, was obtained models developed using the HCDN watershed characteristics
using at-site quantile estimates from gauged river sites. By takingwere compared with models developed by including the new wa-
the logarithm of both sides of E¢3), the model parameters can tershed characteristics. In the second section a comparison of
be estimated using ordinaf®LS), weighted(WLS), or general- model performance with competing variablegsich as the three
ized least squareéGLS) regression proceduregStedinger and K, estimatorgis made. In the third section, a regional intercom-
Tasker 1985; Kroll and Stedinger 199®nce the model param-  parison of the low-flow models is presented.
eters have been estimated in a region, low-flow estimates at un-
gauged sites can be obtained using drainage basin characteristic
for the ungauged site.

Sites with Q; 1 estimated as zero were eliminated from the This section provides an analysis of the impact of the new data
analysis. Kroll and Steding€t999 showed that when only afew  sets on low-flow regional regression models. Regression models
sites have zero quantile estimates, dropping these sites did nowere developed in each of the 29 regions for six different sets of
adversely impact the regression model parameter estimators. Foexplanatory variables: the HCDN variables; HCDN plus PRISM’s
moderate to high censoring level$0 to 50% of the sites in a  climatic grids; HCDN plus MUID and the new topographic esti-
region, a (Tobit) model should be employed. In this study, OLS mators(TOPO; HCDN, PRISM and TOPQALL3); HCDN plus
regression estimators were employed to estimate the model paHydrogeology; and HCDN, PRISM, TOPO, and Hydrogeology
rameters. Because model error variance is typically high in low- (ALL4). To compare the impact of each of these data sets, two
flow regional regression models, the model error variance tends toperformance metrics were calculated: the adjusted coefficient of
overwhelm the time sampling error in the models. Thus we expect determination (AdjR?) (Devore 1994 and the percent standard
only slight differences in the parameter estimators when WLS and error of prediction(SE%. SE% was computed as 1@Xp(S)

GLS are compared to OL&roll and Stedinger 1998 —1]¥2, whereSﬁ is an estimate of the variance of the residuals
After we removed sites due Q- ;o values estimated as zero, developed using Hardison’¢1971) variance of the “space-
inaccurate watershed delineation, and missing HCDN watershedsampling error.” Similar conclusions were reached using mean
characteristics, 930 sites remained. Initially the 18 USGS regionssquare error of model estimators and a prediction error sum of
in the conterminous United States were used to develop low-flow squares statistic, which is a validation-type estimator of error

regression models, but this produced many extremely heteroge{Helsel and Hirsch 1992 This section compares the overall per-
neous regiongsuch as Region 3 which spans from Florida to formance of these data sets. The section “Variable Comparisons”
Virginia). Therefore, for this analysis state boundaries were used.examines the most important variables from each of these data
If a state did not have at least 20 sites, it was combined with the sets.

adjacent state with the fewest sites. This approach resulted in 29  Figs. 1 and 2 contain box plots of Ad? and SE%, respec-
regions. While the decision to use state boundaries could be criti-tively, for each of the data sets across the 29 regions. The solid
cized due to the lack of hydrologic homogeneity in many states, line across each box represents the median, the ends of the box
many watershed characteristics are developed independently bythe 25th and 75th percentiles, the ends of the whiskers the 10th
states(such as the STATSCO datand are stored in state-based and 90th percentiles, and the circles values outside this range.
geographic information systef®IS) clearinghouses. In fact, the  With just the HCDN variables, the median ABZ was 67.6%,

last major national study of regional regression models for flood with a maximum of 92.7% and a minimum of 21.1%. The me-
frequency reported results on a state-by-state b@lsnings dian, maximum, and minimum SE% were 124, 617, and 36.7%,
et al. 1994. respectively. With the addition of the MUID and new topographic

To develop a regional regression model in a specific region, a variables (HCDN-TOPO), slight improvements in the models
stepwise regression procedure was employed using a 5% signifiwvere made, with a median Ad? of 70.8, with a maximum of
cance level on the entering variables. One major issue is high94.0% and a minimum still of 21.1%SE% median, maximum,
correlation(multicollinearity) among the explanatory variables in  and minimum were 107, 470, and 32.8%, respectivéNRISM’s
the regression model. Multicollinearity can cause regression esti-climatic grids produced a greater improvement than TOPO, with a
mators to have inflated and correlated errors, which can producemedian of 74.6%, a maximum of 92.7%, and a minimum of
inaccuracies in subsequent hypothesis tests regarding paramete34.4% (SE% median, maximum, and minimum were 97.0, 617,
significance(Johnston 1972 To handle this situation, a variance and 32.6%, respectively
inflation factor (VIF), which indicates the possible presence of When three databases were includedlL3), the median
multicollinearity, was employedRawlings et al. 1998 The VIF Adj-R? increased to 77.5%, with a maximum of 94.0% and a

Watershed Characteristics Comparison
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100 mum 112%, and the minimum 10.4%. These results indicate that

the inclusion of hydrogeologic indices in low-flow models pro-
duces dramatic increases in model performance.

Hee

—e

T

—o o

80 1

Variable Comparisons

The derived watershed characteristics allow for an interesting
comparison between similar watershed characteristics and their
impact on low streamflow models. In this section, a number of
these comparisons are made. To facilitate the discussion, Table 1
contains a column representing the percentage of the time an
explanatory variable entered a final model. For all variables ex-
cept hydrogeology, this includes the 29 models where HCDN,
PRISM, and TOPQALL3) were included, as well as when Hy-
drogeology(ALL4) was included, for a total of 58 models. For
the hydrogeologic variables, only the 29 models from ALL4 are
considered.

Of the topographic parameters, drainage area entered the re-
gression models most frequently. When drainage area did not
enter a model, main channel length did. Eng and Brut$aea9
showed that channel length and drainage area are typically highly
correlated within a region. To avoid multicollinearity programs, in
most regions drainage area and main channel length were never

60

Adj_R?

40

20 L T * T T T

0 1 2 3 4 5 6 7

1-HCDN 2-HCDN+PRISM 3-HCDN+TOPO
4-ALL3 5-HCDN+HYDROGEO 6-ALL4

Fig. 1. Adjust coefficient of variation (AdjR?) for models from 29
regions across the conterminous United States using six data sets

minimum of 34.4%, while the median SE% was 90.1%, with a
maximum of 470% and a minimum of 32.6%. With the inclusion
of the new digitally derived spatial statistics, low-flow regional included in the same modéhe VIF was greater than 10
regression models were improved in every region of the United All three slope estimators entered some of the final models,
States. Unfortunately, in many regions low-flow regional regres- With the average watershed slog8LOPE3J entering slightly
sion models are still inadequate since they produce estimatorsmore often than the other two slope estimators. Gauge elevation
with large variances, and thus are not suitable for design pur-from the USGS HCDN entered the model much more often than

poses. the gauge elevation from the DEM, indicating potential inaccura-
In this analysis, we also considered the inclusion of three es-cies within the DEM or errors associated with siting the gauge
timators of the baseflow recession constafig)(and one estima-  Wwithin the DEM.
tor of the baseflow indeXBFI). These hydrogeologic indices None of the PRISM precipitation statistics entered the model
were estimated from the historic records at each of the sites,more often than the HCDN value of mean annual precipitation.
and thus we are currently unable to estimate these indices accuOf the PRISM precipitation statistics, the 10th percentile of aver-
rately at ungauged sites. Of interest is whether these indices im-age precipitation over the period from June to August entered
prove low-flow regional regression models. With the inclusion of most often. This statistic was derived from the 40-years of low

these indices with only the HCDN variables (HCDN
+HYDROGEO), the median AdR? rose to 90.8%, with a maxi-
mum of 98.4% and a minimum of 69.2%, while the SE% median
was 55.9%, with a maximum of 166% and a minimum of 13.1%.
When all four data source@LL4) were included, the median
Adj-R? was 93.1%, the maximum was 98.5%, and the minimum
was 79.5%, while for the SE% the median was 43.3%, the maxi-

1000

0 1 2 3 4 5 6 7

1-HCDN  2-HCDN+PRISM 3-HCDN+TOPO
4-ALL3 5-HCDN+HYDROGEO 6-ALL4

Fig. 2. Percent standard error of predictiBE%) for models from
29 regions across conterminous United States using six data sets

resolution monthly precipitation time series grids. Of the higher
resolution monthly average precipitation grids, statistics for the
summer and early fall months generally entered the models more
often than those for the winter months. Results potentially indi-
cate that spring recharge of groundwater resources is less impor-
tant to low streamflow processes than summer precipitation quan-
tities.

In general, the PRISM temperature grids did not enter the
models frequently. The exception is for the 90th percentile of the
maximum and minimum temperature for the period from Septem-
ber to November. This result indicates the importance of evapo-
transpiration to low-flow processes in some regions during the-
later summer and early fall months, which is when low
streamflows primarily occur. The statistics derived from the
STATSGO (MUID) soils database generally performed poorly,
with no variable entering more than 5% of the models.

For every region examined, either the baseflow recession con-
stant estimators or the baseflow index entered the final model. Of
the baseflow recession constant estimakoys,, which was de-
rived using three-day moving averages, was almost always pre-
ferred to the other two baseflow recession constant estimators.
K,_» was developed to smooth lower bounds on the change in
streamflow over timedQ/dt), which occurs due to varying pre-
cision of reported streamflow valuds, 5 was probably not pre-
ferred due to the reduction in sample size for this estimator. BFI,
which attempts to capture groundwater storage characteristics, en-
tered 31% of the final models. Results again emphasize the im-
portance of hydrogeology in low streamflow prediction.
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Table 2. Final Regression Models

ALL3: All variables except

ALL4: All variables Kb and baseflow index
States Number of sites Variables in the model Adj-R?> SE% Variables in the model ~ Adj-R?> SE%
Maine, New Hampshire, and 31 DA KB2 PJUN 954 25.0 DA PAN ELEV 92.3 326
Vermont
Connecticut, Rhode Island, and 20 DA KB2 94.5 53.1 DA PRECIP POCT OML 93.5 54.4
Massachusetts
New York 34 DA ELEV JANMIN KB2 97.5 19.5 DA PRECIP JANMIN CPRCP 932 328
CPRCP BTMIN
New Jersey 21 DA KB1 APRCP PFEB 96.9 27.8 DA ELEV CPRCP PJUN PAUG 91.3 51.4
SLOPE3 RDH SLOPES3 BDL WDH WDH
Pennsylvania 30 DA KB2 BFI CPRECP 94.4 28.9 DA PMAY SLOPE2 WDL 79.2 61.8
Delaware and Maryland 24 DA KB2 PFEB 93.1 35.6 DA RDH WDH 87.3 46.8
Virginia 32 DA LENGTH KB2 BFI 95.2 25.1 DA PAPR PAUG RDH 70.8 80.7
BTMAX AWCH
Georgia 58 DA ELEV KB2 BFI POUT 96.2 44.6 DA ELEV1 CPRPC PMAY PJUN90.4 130
PJUL SLOPE3 OML
North Carolina and 46 DA KB2 BFI SLOPE2 90.1 51.3 DABPRCP PJUN PJUL SLOPE3 79.9 134
South Carolina
Florida 21 KB2 PSEP 85.1 112 LENGTH DPRECP PAPR 75.2 174
Alabama, Tennessee, and 29 DA SLOPE1 PRECIP KB2 97.6 22.6 DA PRECIP 55.4 175
Kentucky BFI PAUG ELEV
Ohio and West Virginia 22 DA KB2 BTMAX PJUL 95.8 28.7 DA LENGTH BTMAX BPRECIP84.5 44.0
SLOPEBR
Indiana and Michigan 27 DA KB2 BTMAX 97.2 31.7 DAINTENS 81.0 99.0
Wisconsin and Minnesota 43 DA LENGTH, PRECIP, 70.7 59.9 DA PRECIP ATMIN 67.4 933
ATMIN
lowa 27 DA SLOPE1 BFI APRPC 93.1 34.7 DAINTENS DPRCP PAPR PSEP 90.9 68.5
PSEP PFEB
Illinois 23 DA KB2 APRPC PSEP PNOV 96.6 43.3 DA APRCP PJUN 90.2 74.2
Missouri 20 DA KB2 PAN 97.4 39.9 DA ELEV INTENS POUT 71.2 107
SLOPE2
Mississippi 24 DA KB2 PAPR PAUG PSEP 98.5 10.4 LENGTH PRECIP 72.2 77.3
PAN LCV
Arkansas and Louisiana 26 DA PRECIP BFI 90.8 56.2 JANMIN ATMIN SLOPE3 WDH  60.5 158
Texas 26 DA KB2 APRCP DTMAX 88.2 72.4 DA ELEV INTENS CTMAX 80.5 111
New Mexico and Arizona 26 DA PRECIP KB2 87.2 56.2 DA ELEV PNOV RDH 717 90.3
Colorado, Nevada, and Utah 44 DA PRECIP KB2 87.6 54.7 DA PRECIP 775 789
Kansas, Nebraska, and Oklahoma 25 DA KB2 BFI APRCP 91.8 37.2 DA 37.7 470
DTMAX
Wyoming and South Dakota 36 DA PRECIP KB2 SLOPE3 83.7 60.0 DA PRECIP 70.2 100
Montana and North Dakota 27 DA PRECIP BFI 90.8 58.6 DA ELEV PFEB PJUN 82.2 90.1
Idaho 54 DA ELEV PRECIP KB2 95.2 45.4 DA ELEV PRECIP CTMIN PJUL 89.8 74.5
APRCP CTMIN
Washington 30 DA SLOPE1 PRECIP KB2 95.6 34.2 DA INTENS SLOPE2 89.8 56.1
APRCP
Oregon 43 LENGTH KB2 PAUG 91.8 44.2 LENGTH ELEV INTENS 67.6 109
JANMIN ATMIN SLOPEBR
California 61 DA JANMIN KB2 APRCP 92.2 61.8 DA APRCP 66.6 191
ATMIN
Regional Performance flow processes in Wisconsin and Minnesota. Our results agree

The models developed for each of the regions using the ALL3 and With the findings of Vogel and Krol{1990 and Dingman and
ALL4 variable databases are presented in Table 2. ALL3 contains Lawlor (1995 that low-flow regional regression models perform
all variables except hydrogeology, and ALL4 contains all vari- Well in the northeastern United States, even without the inclusion
ables. In general, low-flow regional regression models perform of hydrogeologic variables. Models in the southern regions gen-
well in the northern United States. Wisconsin and Minnesota are erally perform worse than those in the northern regions. Addition-
an exception. Snow accumulation and snow melt processes areilly, model performance along the southeastern coastal regions is
not captured in the databases we developed, and may impact lowgenerally better than the southwestern coastal regions.
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The regions that produce the worst low-flow models are: Kan- sites for most regions of the United States. Our hope is that
sas, Nebraska, and Oklahoma; Alabama, Tennessee, and Ken- this study will inspire future research to explore additional
tucky; and Arkansas and Louisiana. One reason for this may be digitally gridded information that can better characterize the
these regions are relatively large, and thus some of the processes  hydrogeology of watersheds, because it is this information
that impact the regional differences in low-flow processes are not that should yield the greatest improvements in our ability to
captured by the databases. Interestingly, when hydrogeologic develop regional low-flow models.
variables are included in the models, all of these regions produce9. The results of this paper provide regional water resource
Adj-R? values in excess of 90%, and SE% less than 40%. planners an indication of which watershed characteristics

may aid in describing the low streamflow processes. This
information should aid in the modeling and management of
Conclusions and Future Directions low streamflows.

Spatial processing of newly available gridded topographic, me-

teorologic, geologic, and geomorphic data using a geographic in- paferences

formation systen{GIS) can generate spatially representative wa-

tershed based information useful for the development of regional Aitchison, J.(1955. “On the distribution of a positive random variable

hydrologic models. T_hls_ initial study has generated a new set of having a discrete probability mass at the origid.”Am. Stat. Assoc.,
watershed characteristics for the HCDN watersheds that were 55 g91_gosg.

then used to develop regional relationships for estimating low- games, C. R(1986. “Methods of estimating low-flow statistics for un-

flow statistics. This database is publicly available on the internet  gaged streams in the lower Hudson River Basin, NY.5. Geologi-

at http://www.esf.edu/erfeg/cnkroll/research. Our results indicate  cal Survey Water Resources Investigations Rep483Q U.S. Geo-

the following: logical Survey, Reston, Va.

1. In all regions of the conterminous United States, low-flow Bingham, R. H.(1986. “Regionalization of low-flow characteristics of
regional regression models were improved with the inclusion ~ Tennessee streamsU.S. Geological Survey Water Resources Inves-
of watershed characteristics from the newly developed spa-  figations, Rep. 854191, U.S. Geological Survey, Reston, Va.
tially processed digital databases, when compared with wa- Burroughs, P. A(1986. Principles of geographical information systems

tershed characteristics derived from more traditional manual __'°F 'and resources assessme@iford University Press, New York.
approaches. Condie, R., and Nix, G. A(1975. “Modeling of low-flow frequency

> Th f £l fl . | . del distributions and parameter estimatiorPtoc., Int. Water Resource
. € periormance ofr low-fliow regional regression modeils SymposiumWater for Arid Lands, Teheran, Iran.

varies widely across the United States. In general, the bestpeyore, 3. 1(1994. Probability and statistics for engineering and the

models were obtained in northern regions of the United  gciencesath Ed., Duxbury Press, Belmont, Mass.

States. Dingman, S. L., and Lawlor, S. G1999. “Estimating low-flow quan-
3. The inclusion of hydrogeologic variables greatly improved tiles from drainage-basin characteristics in New Hampshire and Ver-

low-flow regional regression models. This result emphasizes  mont.” Water Resour. Bull.31(2), 243—-256.

the importance of developing new approaches for estimating Douglas, E. M., Vogel, R. M., and Kroll, C. N2000. “Trends in flood

hydrogeologic variables at ungauged watersheds. and low flows in the United States: Impact of spatial correlatiah.”
4, The inclusion of climatic variables generally had only a Hydrol., 240(1-2), 90-105.

small impact on the models. This could be due to a lack of Durrans, S. R(1996. “Low-flow analysis with a conditional Weibull tail
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vestigation into the impact of climatic grid resolution on the Purans. S. R., Ouarda, T. B. M. J., Rasmussen, P. F., andeBdhe
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5. The delineation of watershed boundaries using a 1-km DEM En dr?iog;crlgrga?s(;)énlgv—é;ég «Generality of drouaht flow charac-
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improvements in modeling low streamflow in some regions  Professional Paper, 75€C, C228-C236 U.S. Geological Survey, Re-
of the United States. ston, Va. _ o )
7. While low-flow regional regression models of adequate pre- Hell’seeSI'OLﬁ(.)eZ.’EEg\(ljie':Ir;g\:\; 56”5"('1993' Statistical methods in water
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ated with the estimation of low-flow statistics at ungauged Jennings, M. E., Thomas, W. O., Jr., and Riggs, H(1®94. “Nation-
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