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Estimation of moments and quantiles using censored data
Charles N. Kroll and Jery R. Stedinger
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York

Abstract. Censored data sets are often encountered in water quality investigations and
streamflow analyses. A Monte Carlo analysis examined the performance of three
techniques for estimating the moments and quantiles of a distribution using censored data
sets. These techniques include a lognormal maximum likelihood estimator (MLE), a log-
probability plot regression estimator, and a new log-partial probability-weighted moment
estimator. Data sets were generated from a number of distributions commonly used to
describe water quality and water quantity variables. A "robust" fill-in method, which
circumvents transformation bias in the real space moments, was implemented with all
three estimation techniques to obtain a complete sample for computation of the sample
mean and standard deviation. Regardless of the underlying distribution, the MLE
generally performed as well as or better than the other estimators, though the moment
and quantile estimators using all three techniques had comparable log-space root mean
square errors (rmse) for censoring at or below the 20th percentile for samples sizes of
n = 10, the 40th percentile for n = 25, and the 60th percentile for n = 50.
Comparison of the log-space rmse and real-space rmse indicated that a log-space rmse
was a better overall metric of estimator precision.

Introduction

When a data set contains some observations within a re-
stricted range of values but otherwise not measured, it is called
a censored data set [Cohen, 1991]. Censored data sets are
commonly found in the fields of water quality, where labora-
tory measurements of contaminant concentrations are often
reported as "less than the detection limit." Censored data sets
are also found in water quantity analyses when river discharges
less than a measurement threshold level are reported as zero.
In some regions, historical river discharge records report over
half the annual minimum flows as zero [Hammett, 1984]. These
discharges may have been zero, or they may have been between
zero and the measurement threshold and thus reported as
zero. Of concern is how to efficiently estimate moments, quan-
tiles, and other descriptive statistics of the underlying contin-
uous distribution using such censored data sets.

The situation where all data below a fixed value are censored
is referred to as type I censoring. With type I censoring, the
number of values censored is a random variable. With type II
censoring, a fixed number of data points are always censored
and the censoring threshold is a random variable [David, 1981].
Censored water quality and water quantity data should resem-
ble type I censoring because the censoring threshold is fixed by
the measurement technology and the physical setting.

A number of studies have suggested the use of simple "re-
placement" techniques for estimating the mean and standard
deviation of type I censored data sets [Cohen and Ryan, 1989;
Newman et al, 1990]. These techniques replace all the cen-
sored observations with some value between zero and the de-
tection limit. Gilliom and Helsel [1986] and Helsel and Gilliom
[1986] examined the performance of a variety of techniques to
estimate the mean, standard deviation, median, and interquar-
tile range using type I censored water quality data. They
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showed that more sophisticated statistical techniques per-
formed better than these simple "replacement" methods. In
particular, the log-probability plot regression method provided
the best estimators of the mean and standard deviation, while
the lognormal maximum likelihood method provided the best
estimators of the median and interquartile range. Estimation
of quantiles other than the median was not considered by
Gilliom and Helsel. Helsel and Cohn [1988] extended Gilliom
and HelseFs work to data sets with several censoring thresholds.

This study extends the work of Gilliom and Helsel to the
estimation of several quantiles and considers new estimators.
The log-probability plot regression method (LPPR) and the
lognormal maximum likelihood method (MLE) are evaluated
along with a new method based on partial probability-weighted
moments (PPWM). As with the MLE and LPPR estimators,
our PPWM estimator assumes that the data are described by a
lognormal distribution. It employs with the logarithms of the
flow xlata the censored-sample probability-weighted moment
(PWM) estimators derived by Wang [1990] to obtain the pa-
rameters of a lognormal distribution. Wang employed his es-
timators in real space to fit a generalized extreme value (GEV)
distribution. The performance of probability weighted moment
estimators with complete samples has been examined for a
number of distributions, and in many cases, PWM estimators
of the higher moments and quantiles of a distribution have
performed favorably with product-moment and maximum like-
lihood estimators [Landwehr et aL, 1979; Hashing et aL, 1985;
Hashing and Wallis, 1987]. PWM estimators are linear combi-
nations of the observations and thus are less sensitive to the
largest observations in a sample than product-moment estima-
tors that square and cube the observations. The merit of prob-
ability-weighted moment estimators with censored samples has
yet to be analyzed.

This study focuses on estimation of the mean, standard de-
viation, and interquartile range of a distribution, as well as
quantiles with nonexceedance probabilities of 10% and 90%. A
"robust" fill-in method is implemented with each estimation
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technique to obtain a complete sample for computation of the
sample mean and variance. Gilliom and Helsel [1986] used this
"robust" fill-in method only with a log-probability plot regres-
sion estimator. In this study this method is also used with the
lognormal maximum likelihood and partial probability-
weighted moment estimators. Two different metrics are used
to compare estimators. Data are generated from distributions
commonly observed in the water quality and water quantity
fields, including three distributions not considered by Gilliom
and Helsel; their extreme case for the gamma distribution
(coefficient of variation = 2.0) was omitted.

Estimation Techniques
All three estimation techniques make the assumption that

the underlying distribution of the data is lognormal. Helsel and
Hirsch [1992, p. 360] observe that the lognormal distribution
has a flexible shape, and they provide a reasonable description
of many positive random variables with positively skewed dis-
tributions. The lognormal distribution has been shown to be a
good descriptor of low river flows [Vogel and Kroll, 1989] and
water quality data [Gilliom and Helsel, 1986].

Lognormal Maximum Likelihood Estimator
Consider an ordered censored data set Xl < X2 ''' ^ Xc <

Xc + l '— ^ Xn, where the first c observations are censored
and reported only as below some fixed measurement threshold.
Let Yt = In (Xt) and let T be the log of the measurement
threshold. Assuming that X is lognormally distributed and in-
dependent, the likelihood function for the data is

L - c\(n - c}\
T - n T'CTy

l=C + l
0-y

where <£ and <f> are the distribution and density function of a
standard normal variate, IJLY is the mean of the log-trans-
formed data, and oy is the standard deviation of the log-
transformed data. By taking the logarithm of (1) and setting
the partial derivatives with respect to JLLY and oy to zero, one
can solve for the maximum likelihood estimators (MLE) (LY
and 6y [Cohen, 1991].

Log-Probability Plot Regression Method
Again consider a log-transformed censored data set where

the first c of the n data values are censored. Plotting positions
for the uncensored observations are

n - c
i = c + 1, (2)

where / is the rank of the /th flow. This is the Blom-based
plotting position for censored data developed by Hirsch and
Stedinger [1987]. Liu and Stedinger [1991] found that quantile
estimators with the Hirsch-Stedinger Blom-based censored
data plotting position (equation (2)) had a smaller root mean
square error than estimators with a standard complete sample
Weibull plotting position [i/(n + 1)] when censored data
were present. Gilliom and Helsel [1986] used the standard
complete sample Weibull plotting position in their LPPR es-
timator, while Helsel and Cohn [1988] used a Weibull-based
plotting position with the Hirsch-Stedinger censored data plot-
ting position.

For the data above the threshold the logarithm of the or-
dered values, Y/5 are regressed against the corresponding "nor-
mal scores" corresponding to the model

I = (LY £/ = c (3)

where <£ 1(pi) is the inverse cumulative normal distribution
function evaluated at pi9 and (LY and aY are the resulting
estimators of the mean and standard deviation of the log-
transformed data obtained using ordinary least squares regres-
sion. These LPPR estimators are similar to those derived by
Gupta [1952] and have been implemented in a number of
studies of estimation with censored data sets [Gilliom and
Helsel, 1986; Helsel and Gilliom, 1986; Helsel and Cohn, 1988;
Helsel, 1990].

Partial Probability Weighted Moments
For a variable Y, probability-weighted moments are defined as

p, = E{Y[F(Y)]r} (4)

where F(Y) is the cumulative distribution function (CDF) for
Y. For a continuous random variable, PWMs can be written

(5)|3r= Y(F)FdF

where F = F(Y) and Y(F) is the inverse CDF of Y evaluated
at the probability F. For a censored sample, Wang [1990]
defined a PPWM as

Y(F)FrdF (6)
/Y

where PT — F(T), the probability of censoring, and T is the
censoring threshold.

Assuming the data X are lognormally distributed, and Y =
log (X), then Y is normally distributed. T is the log of the
censoring threshold. For the normal distribution the inverse
CDF for a random variable Y is

(7)

(8)

An approximation to &~l(F) is

3>-\F)±5. 05[F°-135 - (1 -

This is a good approximation of the normal inverse CDF for
0.005 < F < 0.995 [Joiner and Rosenblatt, 1971]. Substitut-
ing (8) and (7) into (6) yields

f i
Br(PT) = (VY + cry(5.05)[F°-135 - (1 - F)°-135])F' dF

J P
(9)

Br(PT) is an approximation of &r(PT) based on (8). For r = 0,

B0(PT) = ^g,(PT)] + o-yU2CPr)]

gi_(PT) = (1-PT) (10)

and for r = 1,
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(11)

g4(PT) = 5.05
[ 1 P
[2.135 2

P2/35 P r(l-P r)L

135 1.135

(1-Pr)2-135 1
(1.135)(2.135)J

For X1 < X2 < • • • < Xn, an unbiased estimator of fir(PT) is

[Wang, 1990]

, _ x 1 " ( i - ! ) ( / -2) • • • ( i - r ) „

where

yf- = 0 if AT,- < exp (71)

Yi=\n(Xi) i fAT f .>exp( r )

[1990] recommended estimating Pr as

PT=c/n

(13)

(14)

where c is the number of observation not exceeding T. Setting
equations for B0(PT) and B^(PT) equal to the estimators
b0(PT) and ^(P^), PPWM estimators of (LY and <3> are
obtained:

bl(PT)g1(PT)-b0(PT)g3(PT)
(15)

(16)

Unlike other applications of PWMs, here PPWM estimators
are applied to the log-transformed data. Applying a log trans-
formation to the data before calculating sample moments is
another approach to reducing the influence of the largest ob-
servations [Stedinger et al, 1993, p. 18-5]. Hosking [1989] de-
veloped a real-space PWM estimator for the parameters of a
lognormal distribution. The simplifications that Hosking em-
ployed in his derivation cannot be adapted to real-space
PPWM estimators with the lognormal distribution because the
integration of (6) is over a limited domain and not from 0 to 1
as in Hosking's formulation. A real-space PPWM estimator
with the lognormal distribution would require complicated in-
tegration procedures and were not explored in this study.

Estimation of Statistics
The focus of this study is the estimation of the mean (JLL),

standard deviation (or), interquartile range (IQR), and quan-
tiles with nonexceedance probabilities of 10% (^10) and 90%
(X90). The MLE, LPPR, and PPWM estimators describe the
mean and variance of the log-transformed data. The corre-
sponding estimator of the various quantiles is

XP = exp ((LY + (17)

where Xp is an estimate of Xp, a quantile with an nonex-
ceedance probability of p percent, and zp is the inverse of the
standard normal cumulative distribution function evaluated at
/?th percentile.

To obtain estimators of the mean and variance in real space,
one could transform the log-space mean and variance into the
real-space moments [Aitchison and Brown, 1957]. The real-
space estimators would be biased due to this transformation,
even if the log-space estimators are unbiased [Finney, 1941].
The real-space sample estimates of the mean and standard
deviation are most sensitive to the largest observations, and
lack of fit to these observations can produce substantial error
in these estimators. Several studies have examined techniques
which try to correct for this bias [Helsel and Cohn, 1988; Cohn
et al., 1989; Newman et al, 1990]. Helsel and Hirsch [1992, pp.
360-361] note that compensating for this bias requires an
assumption about distributional shape, which is impossible
when the underlying distribution of the data is unknown.

A solution to this problem is to combine the observed data
above the censoring threshold with estimators of the smallest
observations which were censored because they fell below the
measurement threshold. Estimates of the mean and standard
deviation are then obtained as the sample mean and sample
standard deviation of this new data set. Helsel and Hirsch
[1992] indicated that such estimation techniques are "robust"
because they perform well even when the data are not lognor-
mally distributed.

Gilliom and Helsel [1986] only employed this "robust"
method using the LPPR estimator, though this techniques
could be applied with any estimator. With this technique the
regression relationship is used to extrapolate the below thresh-
old observations. The plotting position for the c censored ob-
servations are

(18)

[Hirsch and Stedinger, 1987]. The censored observations are
then estimated by

i = exp [Ay + cry / = 1, (19)

using pt from (18). The mean and standard deviation of the
data are estimated as the sample mean and sample standard
deviation of the completed data set. This technique will be
used to obtain real-space estimators of the mean and standard
deviation associated with all three estimators. For each esti-
mator, estimates of the mean and standard deviation in loga-
rithmic space will be used in (19) to obtain estimates of the
censored observations. These estimates will be combined with
the uncensored observations to obtain the sample mean and
sample standard deviation of the completed data set.

Data Generation
Data for this experiment was generated from a number of

distributions which are commonly used to describe water qual-
ity and water quantity data. Gilliom and Helsel [1986] gener-
ated data from four distributions: lognormal, contaminated
lognormal, gamma, and delta. The contaminated lognormal
distribution they used is a combination of two lognormal dis-
tributions, Xl which describes 80% of the distribution, and X2
which describes 20% of the distribution. The moments of the
two distributions are related by ̂  — 1-5 A%l5 and crxJ^X2 =
2-Qo-x /nx . Gilliom and Helsel [1986] derived the moments of
this distribution. The delta distribution employed in Gilliom
and Helsel was a lognormal distribution plus a point mass of
5% at zero. Aitchison [1955] provides a general description of
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such a delta distribution. Based on uncensored water quality
records, Gilliom and Helsel suggest that these four distribu-
tions adequately describe the characteristics of most water
quality data. They considered each distribution with a coeffi-
cient of variation (CV) of 0.25, 0.5, 1.0, or 2.0.

While censoring could occur when recording daily or even
annual maximum river flows, it is most likely to occur when
recording annual minimum river flows. The true distribution of
river flows is not known, but several distributions have been
found to describe annual minimum flows. Tasker [1987] rec-
ommended the log-Pearson III and Weibull distributions for
estimating at-site frequency curves in Virginia. Condie and Nix
[1975] found a Weibull distribution provided a good fit to
Canadian rivers. Vogel and Kroll [1989] showed that a lognor-
mal model is reasonable for annual minimum flows in the
northeastern United States.

Based on these studies, data was generated from seven dis-
tributions: lognormal, contaminated lognormal, gamma, delta,
Weibull, log-Pearson III with log skew equal to 0.25, and log-
Pearson III with log skew equal to 1.0. For the log-Pearson III
distribution, the log skew are representative of small and large
values observed with annual minimum streamflow data
[Tasker, 1989]. The log-Pearson III is similar in shape to the
contaminated lognormal distribution. Both of these distribu-
tions have a thicker upper tail than the lognormal distribution.
The contaminated lognormal and delta distributions used here
were the same as those employed by Gilliom and Helsel [1986].

For each distribution, four variants based on a CV = 0.25,
0.5, 1.0, and 2.0 were included. The mean of the flows was set
to 1.0. A gamma distribution with a CV = 2.0 produces quan-
tiles less than the median which are very close to zero (the 50th
percentile of this distribution equals 0.17 and the 40th percen-
tile of this distribution equals 0.06). Owing to the extreme
character of a gamma distribution with CV = 2.0, data were
not generated from this distribution. Interestingly, Gilliom and
Helsel [1986] used results for gamma distribution with a CV =
2.0 to show that the MLE could be a poor estimator of the
mean and standard deviation for nonlognormal data.

Combining all combinations of distribution and CV (except
gamma with CV = 2) yields 27 different parent distributions.
Five thousand samples of 10, 25, and 50 observations (n = 10,
25, and 50) were generated for each of these 27 combinations.
Complete samples were generated as well as samples with
censoring levels set at the 10th, 20th, 40th, 60th, and 80th
percentile of the parent distribution. Data sets with less than
three uncensored observations were discarded. In practice,
these estimation procedures would not be performed when
only one or two observations are uncensored. Data sets were
generated until 5000 acceptable data sets were available.

The delta distribution used in this experiment is a lognormal
distribution with a point mass at zero having a probability of
5%. Since this distribution produces data equal to zero, the
estimation methods can not be performed for the case with 0%
censoring, and thus that case was excluded.

Performance Measures
Estimation methods were compared using two different per-

formance measures: the relative root mean square error in real
space (R-rmse), and the root mean square error in log space
(L-rmse). The bias of the estimators was also calculated,
though those results are not reported. The relative root mean

square error (R-rmse) of an estimator in real space was calcu-
lated as

R-rmse =

I 1/2

(20)

where 0, is an estimate of the statistic 6 and N is the number
of replicates of the experiment (5000 for each parent distribu-
tion). This metric is commonly used to evaluate the perfor-
mance of estimation methods and was employed by Gilliom
and Helsel [1986] and Helsel and Cohn [1988].

The second criterion is the log-space rmse, defined as

L-rmse =

1/2

(21)

With the log-space rmse underestimation errors receives more
weight than overestimation errors. This criterion was em-
ployed by Stedinger and Cohn [1986] and Fill [1994]. The real-
space metric given by (20) assigns symmetric losses to over and
underestimation errors of equal magnitude. The log-space
metric given by (21) assigns symmetric losses to equal percent-
age of over and underestimation errors. It is easily shown that
the two metrics are equivalent to first order for small errors.

The choice between competing estimators often requires a
trade-off between bias and mean square error. In some cases,
unbiased estimators may be scaled so that the resulting nega-
tively biased estimator has a smaller mean square error than
the original estimator. Consider the estimator of the variance
with normal data. The traditional unbiased estimator, s2, can
be scaled by a factor y = (n - l)/(n 4- 1), where n is the
sample size, to produce a biased estimator, ys2, with the small-
est mean square error among all estimators of the form ys2.
However, if the root mean square error was divided by the
expected value of the estimator, the resulting coefficient of
variation would be the same for both estimators. Thus the
scaled estimator has the same relative precision but is biased
and hence does not represent any real improvement over the
traditional estimator. The R-rmse performance criterion fa-
vors the scaled estimator over the traditional estimator, be-
cause the reduction in variance is greater than the squared
increase in bias. The L-rmse criteria is not fooled by such
scaling because the variance of the logarithm of an estimator is
unaffected by multiplying an estimator by a fixed scalar, and
any increase in the log-space bias due to scaling increases the
L-rmse of an estimator.

Results
This experiment includes results for data generated from the

three groups of parent distributions. The first group includes
results for samples drawn from lognormal distributions (LN).
Since the MLE, LPPR, and PPWM estimators all assume a
lognormal distribution, of interest is the performance of these
estimators when the data are generated from that distribution.
The second group (water quality (WQ)) comprises data gen-
erated from distributions commonly used to describe water
quality data: lognormal (LN), contaminated lognormal (CLN),
gamma (g), and delta (D). These were the distributions that
Gilliom and Helsel [1986] considered in their analysis of cen-
sored water quality data. The third group (low flow, LF) in-
cludes data generated from distributions commonly used to
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Table 1. R-rmse and L-rmse of Estimators as a Percentage of the True Value for Lognormal Data

Method

IQR MEAN

R-rmse L-rmse R-rmse L-rmse R-rmse L-rmse R-rmse L-rmse

Data set size is 25. Standard error of all estimates are <3% for all cases reported above.

s.d.

R-rmse L-rmse

MLE
LPPR
PPWM

MLE
LPPR
PPWM

MLE
LPPR
PPWM

MLE
LPPR
PPWM

24
23
23

27
30
28

47
63
57

106
168
72

22
22
22

26
28
27

46
57
60

72
100
164

23
25
25

24
25
25

24
26
26

23
26
29

Censoring at the Oth Percentile
22 24 23
22 23 24
22 23 24

Censoring at the 20th Percentile
23 24 24
23 25 25
23 25 25

Censoring at the 60th Percentile
24 29 26
24 30 28
24 29 28

Censoring at the 80th Percentile
20 34 29
22 40 33
29 45 35

23
23
23

23
23
23

23
23
24

24
29
32

21
21
21

21
21
21

21
21
22

20
24
37

42
42
42

43
43
43

45
46
45

48
50
49

45
45
45

46
46
46

49
51
49

53
58
45

describe annual minimum streamflows in the United States:
lognormal (LN), log-Pearson III (LPIII) with log skew of 0.25
and 1.0, and Weibull (W).

For n = 10 and censoring at the 80th percentile, the prob-
ability of two or fewer uncensored observations is 68%. Results
for censoring at the 80th percentile with n = 10 were there-
fore not considered meaningful. With n = 10 and censoring at
the 60th percentile, the probability of two or fewer uncensored
observations is 17%, while with n = 25 and censoring at the
80th percentile the probability is 10%. These cases were also
not considered meaningful in this analysis. Numerical results
for all cases are not reported here but are given byKroll [1996].

Group I: Lognormal Data (LN)
Table 1 contains the relative real-space root mean square

error (R-rmse) and log-space root mean square error (L-rmse)
of the estimators averaged over all CV values when the under-
lying distribution is lognormal for n = 25 and censoring occurs
at the Oth, 20th, 60th, and 80th percentiles. In general, the real-
and log-space metrics produce the same ranking of the esti-
mators. The exception is at high censoring, where the bias of
some estimators is large. For censoring at the 80th percentile
the PPWM estimator of Xw has a smaller real-space rmse than
the MLE and LPPR estimators, but a larger log-space rmse.
Note that the R-rmse and L-rmse for some estimators is
smaller with censoring at the 80th percentile than the 60th
percentile. This is probably due to rejecting a large number of
data sets with two or fewer uncensored observations when
censoring is at the 80th percentile.

Table 2. Performance of Estimators ofXw When
CV = 1.0, Sample Size n = 50, and Censoring is at
the 80th Percentile

Method

MLE
LPPR
PPWM

R-rmse

0.35
0.62
0.32

L-rmse

0.36
0.59
1.41

Mean

0.28
0.30
0.17

Median

0.27
0.27
0.15

Bias

0.04
0.06

-0.07

Table 2 is presented to compare the two metrics for Xw
estimators. When CV = 1.0, n = 50, and the censoring
threshold at the highest level: the 80th percentile. Table 2
reports the R-rmse, L-rmse, mean, median, and bias of the
estimators. The PPWM estimator has the smallest R-rmse but
the largest L-rmse. The MLE estimator has the smallest L-
rmse. Figure 1 illustrates the distribution of the three estima-
tors based on the 5000 replicates. The MLE and LPPR esti-
mators are less biased than the PPWM estimator but can also
yield large overestimates. In general, a probability density
function (pdf) symmetric about the true value is favorable. The
distribution of the PPWM estimator resembles a scaled version
of the distribution of the MLE or LPPR estimators. If one had
used R-rmse as a comparison metric, the PPWM estimator
would be better than the MLE and LPPR estimators for this
case. Based on the pdf, mean, and median of the estimators,
the MLE and LPPR estimators appear preferable to the
PPWM estimator. Using L-rmse as a metric, a similar conclu-
sion would be drawn. L-rmse gives greater weight to underes-
timation and less to overestimation and is not mislead by
scaled estimators which may produce a reduction in R-rmse.

<D

I
LL.

True value of Xw = 0.243.

0 0.1 0.2t 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
True X10 Value = 0.243 X10

Figure 1. Probability density function of X10 estimators with
CV = 1.0, n = 50, and censoring at the 80th percentile.
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f) PPWM to MLE: Low Flow Distributions

10 20 30 40 50 60 70 80
Censoring Percentile
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Figure 2. Performance ratios of LPPR to MLE and PPWM to MLE for lognormal, water quality, and low
flow data with n = 10, 25, and 50.

L-rmse appears to be a better performance criterion than R-
rmse for strictly positive estimators.

Based on L-rmse when the underlying distribution is lognor-
mal over the range of cases in Table 1, the MLE is the best
estimator of X10, X90, IQR, JUL, and or, though at extreme
censoring (80th percentile) the PPWM is the best estimator of
a. All estimators had comparable L-rmse for censoring at or
below the 40th percentile for n = 25. Although the results are
not reported here, when n = 10, all estimators had compa-
rable L-rmse for censoring at or below the 20th percentile, and
when n = 50, all estimators had comparable L-rmse for cen-
soring at or below the 60th percentile. In general, the MLE and
LPPR estimators of the standard deviation have a negative bias
at extreme censoring (80th percentile), while the PPWM has a
positive bias. This result may be due to rejecting data sets with
two or fewer uncensored observations. Since on average it
overestimates as opposed to underestimates the standard de-

viation, the PPWM estimator of the standard deviation pro-
duces a smaller L-rmse than the L-rmse of the MLE and LPPR
estimators, while the R-rmse of all estimators are almost identical.

To illustrate how well the LPPR estimator performs relative
to the MLE, a performance ratio (PR) for the estimators was
calculated as:

PR - [L-rmse(MLE)]/[L-rmse(LPPR)] (22)
Figure 2a is a plot of PR versus censoring percentile when the
underlying distribution is lognormal. Note that the results for
water quality and low flow distribution groups are also in-
cluded in Figure 2. For each censoring percentile, the 15 values
plotted for each group refer to the PR of the five statistics for
n = 10, 25, and 50. To avoid bias due to rejecting a large
number of samples, the cases with n = 10 for censoring at the
60th percentile and with n = 10 and 25 for censoring at the
80th percentile are omitted. As the censoring level increases,
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more of the PR are less than 1, indicating a higher L-rmse for
the LPPR estimator than the MLE estimator. This is especially
true for estimators of Xw. Figure 2b is a plot of the PR for the
PPWM compared to the MLE. As censoring increases, the
PPWM estimators have a higher L-rmse than the MLE esti-
mator, except for the standard deviation. The PPWM does
especially poorly when estimating Xw. Except for estimation
of the standard deviation at high censoring percentiles, the PR
of the LPPR estimators are usually closer to 1 than the PR of
the PPWM estimators, especially at higher censoring thresh-
olds. This indicates that the LPPR is generally a better esti-
mator than PPWM, though the performance differences are
modest except for Xlo estimators.

Estimation of X10 is interesting since the methods are gen-
erally forced to extrapolate below the censoring threshold. At
low censoring, most of the information about the distribution
and its lower tail is contained in the uncensored observations,
rather than number of uncensored observations, and all esti-
mation methods produce similar results. As the rate of censor-
ing increases, less overall information about the distribution is
contained in the above threshold observations and the relative
amount of information provided by the uncensored observa-
tions compared to the information provided by the censoring
rate decreases. These trends could be illustrated quantitatively
using the Fisher information matrix [Judge et al., 1985]. The
MLE uses the information provided by the censored observa-
tions more efficiently than the other estimators and thus pro-
duces an estimator of X10 with a smaller L-rmse than the other
estimators as the censoring rate increases.

With the lognormal distribution, the data in log-space are
described by a normal distribution. Use of L-rmse is therefore
equivalent to comparing the rmse of the estimators of X10 and
X90 for the normal distribution. From this perspective, the
PPWM is a real-space estimator for the normal distribution, as
opposed to a log-space estimator for the lognormal distribu-
tion. The rmse of the real-space estimators for the normal
distribution are the same as the L-rmse of the X10 and X90
estimators for the lognormal distribution given in Table 1.
Thus for the normal distribution the rmse of the three estima-
tors of Xw are generally equivalent when censoring is at or
below the 10th percentile for n = 10, below the 20th percen-
tile for n = 25, and below the 40th percentile for n = 50.

Group II: Water Quality Data (WQ)
Figure 2a contains the PR of the LPPR estimators to the

MLE estimators for results averaged over all water quality
(WQ) distributions. These results are similar to those for the
lognormal distribution discussed above. Figure 2c compares
the PR of LPPR estimators to the MLE estimators for each
water quality distribution. Even when the underlying distribu-
tion was not lognormal, the MLE estimators generally per-
formed better than the LPPR estimators, especially at higher
censoring levels. However, the LPPR estimator of X90 had a
smaller L-rmse than the MLE estimator when the underlying
distribution was gamma and censoring was at or below the 40th
percentile. The shape of a gamma distribution with a high CV
value differs considerably from the shape of a lognormal dis-
tribution.

Figure 2b contains the PR of the PPWM estimators to the
MLE estimators for results averaged over all water quality
distributions. Figure 2d compares the PR of the PPWM esti-
mators to the MLE estimators for the different water quality
distributions. For censoring at or below the 40th percentile, the

L-rmse of the PPWM estimator of the mean is slightly lower
than the L-rmse of the MLE estimator. At high censoring, the
PPWM is a better estimator of the standard deviation. The
MLE estimator of X90 performs poorly at low censoring when
the underlying distribution is gamma. Comparing Figures 2c
and 2d, the LPPR estimators generally are as good as or better
than the PPWM estimators. The exception is for estimators of
the standard deviation at high censoring levels.

Group III: Low Flow Data (LF)
Figure 2a contains the PR of the LPPR estimators to the

MLE estimators for results averaged over all low flow distri-
butions. Figure 2e compares the PR of LPPR estimators to the
MLE estimators for the different low flow distributions. In
general, the MLE estimators have a smaller L-rmse than the
LPPR estimators. The exception is the estimator of X90 when
the underlying distribution is Weibull, a distribution whose
shape differs significantly from the shape of the lognormal
distribution.

Figure 2b contains the PR of the PPWM estimators to the
MLE estimators for results averaged over all low flow distri-
butions. Figure 2f compares the PR of PPWM estimators to
the MLE estimators for the different low flow distributions.
When censoring is high, the L-rmse of the PPWM estimator of
the standard deviation is less than the L-rmse of the MLE
estimator. The MLE also performs poorly when estimating
X90 for the Weibull distribution. In general, the MLE estima-
tors have a smaller L-rmse than the PPWM estimators. Com-
paring Figures 2e and 2f, the LPPR estimators generally are as
good as or better the PPWM estimators, except when estimat-
ing the standard deviation at high censoring percentiles.

Conclusions
The following conclusions can be drawn from these experi-

ments:
1. The log-space rmse (L-rmse) and the relative real-space

rmse (R-rmse) produced similar ranking of the estimators,
except for some estimators with large negative biases. The
L-rmse places a larger penalty on underestimation errors and
a smaller penalty on over estimation errors than the R-rmse.
The L-rmse appears to be a better estimator performance
metric than the R-rmse because it is not mislead by estimators
which may represent a scaling that produces a negative bias
and a smaller R-rmse but no increase in information.

2. When the estimators were tested with data drawn from
a range of distributions representative of both water quality
and water quantity measurements, the ranking of the estima-
tors is generally the same. Regardless of the underlying distri-
bution, the MLE generally performed as well as or better than
the other estimators.

3. Across all three data groups: (1) The three estimators
(MLE, LPPR, and PPWM) generally produced comparable
L-rmse values when censoring was at or below the 20th per-
centile when n = 10, the 40th percentile when n = 25, and
the 60th percentile when n = 50. The exception was the
estimators of Xw, whose performance differed at even a lower
censoring percentile. (2) At higher censoring, the MLE usually
provided the best estimator of quantiles with a nonexceedence
probability of 10 and 90 percent, and the interquartile range.
The exception is estimators of X90 when the shape of the
underlying distribution was very different than that of a log-
normal distribution, and censoring was at or below the 40th
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percentile. (3) "Robust" fill-in methods produced efficient es-
timators of the mean and standard deviation when used with
all three estimators. The MLE generally provided the best
estimator of the mean and standard deviation. (4) In general,
the LPPR estimators are as good as or better than the PPWM
estimators. The LPPR estimators are easier to understand and
implement than the PPWM and MLE estimators and thus are
recommended for use in practice with medium to large sample
sizes and low to moderate censoring.

4. Unlike most other applications of probability-weighted
moments (PWMs), the PPWM estimator in this experiment is
applied to the logarithms of the data. A log transformation
reduces the influence of exceptionally large observations on
the estimators of higher moments and quantiles. When the
underlying distribution is lognormal, the PPWM, MLE, and
LPPR estimators Xlo and X90 are equivalent to real-space
estimators for the normal distribution, and the L-rmse is equiv-
alent to a real-space rmse. For normal data the performance of
the estimators was very similar for moderate censoring. At
higher censoring the MLE performs better than the other
estimators.
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