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By Richard M. Vogel,' Associate Member, ASCE,
and Charles N. Kroll,? Student Member, ASCE

ABSTRACT: Although a vast amount of literature exists on the selection of an
appropriate probability distribution for annual maximum floodflows, few studies
have examined which probability distributions are most suitable to fit to sequences
of annual minimum streamflows. Probability plots have been used widely in hy-
drology as a graphical aid to assess the goodness of fit of alternative distributions.
Recently, probability-plot correlation-coefficient (PPCC) tests were introduced to
test the normal, two-parameter lognormal and Gumbel hypotheses. Those proce-
dures are extended here to include both regional and at-site tests for the two-pa-
rameter Weibull and lognormal distributional hypotheses. In theory, PPCC-hy-
pothesis tests can only be developed for two-parameter distributions that exhibit a
fixed shape. Nevertheless, the PPCC is a useful goodness-of-fit statistic for com-
paring three-parameter distributions. The PPCC derived from fitting the two- and
three-parameter lognonmal, two- and three-parameter Weibull, and log-Pearson type
111 distributions to sequences of annual minimum seven-day low flows at 23 sites
in Massachusetts are compared. How the PPCC can be used to discriminate among
both competing distributional hypotheses for the distributions of fixed shape and
competing parameter-estimation procedures for the distributions with variable shape
is described. An approximate regional PPCC test is developed and used to show
that there is almost no evidence to contradict the hypothesis that annual minimum
seven-day low flows in Massachusetts are two-parameter lognormal.

INTRODUCTION

With increasing attention focused on surface-water-quality management,
many agencies routinely require estimates of the d-day, T-year, low flow
for the maintenance of water-quality standards. Such low-flow statistics are
now in common use for determining waste-load allocations, issuing and/or
renewing National Pollution Discharge Elimination System (NPDES) per-
mits, siting waste-treatment plants and sanitary landfills, and determining
minimum downstream-release requirements from hydropower, irrigation, water-
- supply, and cooling-plant facilities. The most widely used index of low flow
in the United States is the seven-day, ten-year low flow (Q7.10), defined as
the annual minimum average seven-day low flow that recurs, on average,
once every ten years (Riggs et al. 1980). Estimation of the Q5 4o from stream-
flow records consists of determination of a probability distribution of the
annual minimum seven-day low flows and selection of a statistically efficient
parameter-estimation procedure. Statisticians term these tasks distributional
hypothesis testing and point estimation, respectively. If possible, these two
tasks should be considered independently as is common practice in the field
of applied statistics (Benjamin and Cornell 1970).

An extensive amount of literature exists on the selection of statistically
efficient (minimum variance and unbiased) paramelcr-estimation procedures;
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in hydrology, most of those studies relate to fitting floodflow distributions.
To our knowledge, only a few studies (Gumbel 1954, 1958; Matalas 1963;
Condie and Nix 1975; Loganathan et al. 1985, 1986; Tasker 1987) have
examined different parameter-estimation procedures for fitting alternative -
models to sequences of annual minimum seven-day low flows. Using four
plausible three-parameter probability distributions, Condie and Nix (1975)
compared alternative parameter-estimation procedures for their ability to
generate acceptable lower bounds. According to Condie and Nix, an ac-
ceptable lower bound must fall in the interval between zero and the minimum
observed flow. On the basis of this criterion, Condie and Nix recommend
fitting the three-parameter Weibull (W3) distribution by the method of max-
imum likelihood (W3-MLE) if feasible solutions exist; otherwise they sug-
gest using the method of smallest obsereved drought (W3-MSOD) or the
method of moments (W3-MM), in that order. Tasker (1987) compared al-
ternative three-parameter probability distributions and fitting procedures by
the bootstrap method and recommended the use of either the log-Pearson
type 111 (LP3) using method of moments (LP3-MM) or the Condic and Nix
(1975) algorithm which was a close competitor. Matalas (1963) recom-
mended the use of the W3 distribution fit using the method of moments (W3-
MM) or the Pearson type Il (P3) using maximum likelihood estimates (P3-
MLE). Matalas did not consider the W3-MLE procedure, nor did he consider
the LP3 distribution. These three important studies by Condie and Nix, Tas-
ker, and Matalas were based on fitting alternative models to samples of an-
nual minimum seven-day low flows at 38 gaging stations in Canada, 20
gaging stations in Virginia, and 14 gaging stations in the eastern United
States, respectively. Nevertheless, their conclusions are consistent, consid-
ering the heterogeneity of the selected sites. Perhaps consistently good per-
formance should not be surprising for the W3 distribution given that it is
theoretically the parent model of extreme low flows (Gumbel 1954) and for
the LP3 distribution given its extreme flexibility as evidenced in numerous
studies of the distribution of annual peak floodflows. However, no cited
studies have examined the adequacy of two-parameter distributions, such as
the two-parameter lognormal (LN2) or the two-parameter Weibull (W2). The
studies by Matalas (1963) and Condie and Nix (1975) rejected the three-
parameter lognormal (LN3) model because they used the method of moments
(LN3-MM). Stedinger (1980) introduced an improved fitting procedure for
the LN3 distribution that would likely modify the conclusions of Condie and
Nix and Matalas. Tasker (1987) did not include the LN3 distribution in his -
study because Condie and Nix and Matalas rejected that distribution.

Prior studies have shown that W3-MLE and LP3-MM provide two rea-
sonable approaches to fitting low-flow frequency distributions, yet W3-MLE
requires a relatively complex numerical algorithm not suitable for many
practical applications and the LP3-MM procedure requires at-site estimates
of the skew coefficient, which are not very precise for the small samples
typically encountered (Wallis et al. 1974). When a two-parameter distribu-
tion provides an adequate description of annual minimum seven-day low
flows, one need not estimate the skew coefficient; quantlle estimators based
upon a two-parameter distribution often have lower variance then three pa-
rameter. alternatives.

Recently, probability-plot correlation-coefficient (PPCC) tests have been
introduced by Filliben (1975), Looney and Gulledge (1985), and Vogel (1986) -
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for testing the normal and LN2 hypotheses and by Vogel (1986) for testing
the Gumbel hypothesis. Such tests may be extended to other distributions
that exhibit fixed shape, such as the uniform, exponential, and W2 hy-
potheses. This study develops new PPCC tests for the uniform and W2 hy-
potheses and uses those tests, in addition to the LN2 PPCC test, to evaluate
the regional hypothesns that annual minimum seven-day low flows at 23 sites
in Massachusetts arise from the two-parameter alternatives, LN2 and W2,

Although the PPCC test statistic cannot be formally used to test three-
parameter distributional hypotheses, it can be used as a goodness-of-fit sta-
tistic that summarizes the linearity of a probability plot. Such procedures
were originally suggested by Filliben (1975). Matalas (1963) used proba-
bility plots in his comparisons of the fit of W3 and Pearson Type 111 dis-
tributions to low flows.

In this paper, the PPCC is used to rank the goodness of fit of various
parent probability models and to evaluate alternative parameter estimation
procedures. In addition, PPCC-hypothesis tests are used to test various dis-
tributional hypotheses for low flows on a site-by-site and regional basis with-
out reference to particular parameter-estimation procedures. These results
make it evident that procedures for describing the distribution of annual min-
imum seven-day low flows are not limited to the W3-MLE and LP3-MM
procedures in Massachusetts.

ProBABILITY-PLOT CORRELATION-COEFFICIENT HYPOTHESIS TESTS

Probability plots are used widely in the statistics and water resources lit-
erature. Although analytic approaches, such as the method of moments (MM)
or maximum likelihood estimates (MLE) for fitting probability distributions
to observed data, are, in theory, more efficient statistical procedures than
graphical curve-fitting procedures, many practitioners would not make en-
gineering decisions without the use of a graphical display (probability plot).
Filliben (1975), Looney and Gulledge (1985), Vogel (1986), and others have
proposed goodness-of-fit tests that are based upon information contained in
probability plots. In this section, we review existing tests for the normal and
lognormal hypotheses and introduce two new PPCC tests that will be used
later to evaluate alternative frequency models for sequences of annual min-
imum seven-day low flows.

A probability plot is defined as a graphical representation of the ith-order
statistic of the sample, y;, as a function of a plotting position, which is
simply a measure of the nonexceedance probability associated with the ith-
order statistic from the assumed standardized distribution. The ith-order sta-
tistic is obtained by ranking the observed sample from the smallest (i = 1)
to the largest (i = n) value, then y, equals the ith largest value. Many studies
[for example, Cunnane (1978) and Armell et al. (1986)] have recommended
the use of unbiased plotting positions. Unbiased plotting positions reproduce
the expected value of the ith-order statistic, E[y, ] based on an assumed
distribution. Although the original PPCC tests advocated by Filliben (1975)
used a biased plotting position which reproduced the median value of the
ith-order statistic, Looney and Gulledge (1985) showed that use of an un-
biased plotting position for the normal distribution can lead to a more pow-
erful (lower type Il errors) hypothesis test. In this study, unbiased plotting
positions are used, when available.

340



If the sample to be tested is actually distributed as hypothesized, one would
expect the plot of the ordered observations, y,, as a function of the order
statistic means (M,) to be approximately linear. The PPCC is simply a mea-
sure of the linearity of the probability plot. The PPCC test statistic is defined
as the product moment correlation coefficient between the ordered obser-
vations and the order statistic means for each assumed distribution function.
The PPCC test statistic is:

Z Yo — M, — M)

f =
\/ D (o = 9D (M; — MY
i=l j=1

in which M, = E[y,] for each hypothesized distribution; and y; = the ith
largest observed value of the y;. In general, to analytically construct a prob-
ability plot to estimate 7 in Eq. 1, the inverse of the hypothesized cumulative
distribution must be obtained because

M= FyME yall o oo )

in which l:“_v( y:;) = an approximation to the nonexceedance probability as-
sociated with the ith-order statistic from the assumed distribution. For ease
of notation, we define each unbiased plotting position as p, = F{E[yul};
hence,

ProBaBILITY-PLOT CORRELATION-COEFFICIENT TESTS FOR NORMAL
AND L.oGNORMAL HYPOTHESES

Joiner and Rosenblatt (1971) provide an approximation to the inverse of
the standard normal distribution. Their approximation

M; = 4900p " = (1 = P ) 4)

is used here and in the MINITAB!' statistical package (Minitab Inc. 1986);
more accurate approximations are available (Odeh and Evans 1974). (Note:
Use of trade names is for identification purposes only and does not constitute
endorsement by the U.S. Geological Survey.) An approximation to the un-
biased plotting position for the normal distribution suggested by Cunnane
(1978) and developed by Blom (1958) is

An estimate of the PPCC test statistic for a sample y;,, i = 1, n which is
hypothesized to be normal is found by substitution of Egs. 4 and S into Eq.
1. Analogously, the PPCC test statistic for a sample x,, i = I, n, which is
hypothesized as two-parameter lognormal, is found by substituting Eqgs. 4

&

341



and S into Eq. | using y; = In (x). Theoretical percentage points of the
distribution of an estimate of r when y, is normally distributed may be found
in Looney and Gulledge (1985) for n =1, 100. Those percentage points are
almost identical to the percentage points in Filliben (1975) and Vogel (1986)
who used a biased plotting position.

A PROBABILITY-PLOT CORRELATION-COEFFICIENT
TesT For UNIFORM DISTRIBUTION

The cumulative probability associated with the value of any random vari-
able is distributed uniformly over the interval [0, 1]. This fact is used later
to develop regional hypothesis tests for low-flow frequency distributions in
Massachusetts. In general, a uniform random variable, U, over the interval
[a,b] has probability density function:

1
flw) = —— @ S U S Dt (6a)
b—a
f) =0 OtHEIWISE « o v v e e ieeeenanonns e e (6b)
and cumulative distribution function (CDF):
Fw =0 T O I I (7a)
F(u) = — GBSl Z b oo (7b)
b—a
Fu) =1 T R R (7¢c)

In this case, the CDF is easily inverted to obtain
u=F F@Wl=a+B—-aF ) ..., e (8)

Again, defining p; = F {E[ug)} to be the unbiased plotting position which
in this case is the well-known Weibull plotting position p; = if(n + 1), we
obtain:

i
M" = + b Ed/ 3 | Bmaaummnantl T A T TR I R I S A L R R B L L S S
at( a)(n " l) &)

Although the Weibull plotting position is perhaps the most widely used plot-
ting position in hydrology, it is only unbiased when the random variable is
uniformly distributed (Cunnane 1978).

For testing the uniform hypothesis, the test statistic is given by Eq. 1 with
M, obtained from Eq. 9 and the y,, = u. This PPCC test statistic is invariant
to the distribution parameters a and b. One can show that:

, i
cov | uy, ——
[ P+ l]

R T R (10)

\/Var [uey) Var ( : )
n+1

which does not depend on the assumed parameters of the uniform distri-
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TABLE 1. Critical Points of 1,000 (1 — /) Where ¢ Is the Uriiform Probability-Plot
Correlation Coefficient )

Significance Levels

n | 001 | 005 | 010 | 025 | 050 [ 0.75 | 0.90 |0.95 | 0.99
M| @ ) (4) (6) (6) (7 ® | 9 | (0

10| 124.0 | 81.0 64.0 42.7 27.3 17.4 1.7 9.18 |5.79
15| 83.6 |56.3 44.4 30.2 19.6 | 12.8 8.94 |7.21 |4.87
20 63.3 | 424 34.0 23.1 15.2 10.1 7.09 |580 |4.02
25| 509 |34.2 27.4 18.8 [124 8.29 5.88 [4.82 |3.39
30| 43.2 |28.8 23.1 15.8 10.5 7.03 5.02 [4.13 |2.95
35| 36.8 |24.8 19.9 13.6 9.04 6.10 4.36 |3.62 |2.55
40| 32.1 |21.8 17.5 12.0 7.98 5.40 3.88 |3.21 {230
451 28.7 1194 15.5 10.7 7.12 4.81 3.47 |2.88 |2.08
50| 259 [17.6 14.1 9.71 6.43 4.37 3.5 261 | 1.9
55| 23.8 | 159 12.8 8.80 5.87 3.98 2.87 240 |1.72
60 | 21.7 | 14.6 11.7 8.09 5.39 3.66 2.65 |2.21 | 1.6l
65| 200 |13.4 10.8 7.48 4.99 3.39 246 (205 | 1.49
70| 18.4 | 12.5 10.0 6.96 4.65 3.17 2.30 {191 | 1.39
751 17.3 | 11.8 9.45 6.53 4.35 2.96 215 [ 1.79 | 130
80| 16.4 | 11.0 8.86 6.11 4.07 2.78 201 [1.67 |1.23
90| 14.4 9.84 7.92 5.45 3.64 2.47 1.80 | 1.49 | 1.09
100 | 13.2 8.78 7.09 4.91 3.27 2.24 1.63 | 1.36 | 0.995
200 6.58 | 4.45 3.58 2.47 1.65 1.13 0.824 | 0.688 | 0.503
500 2.61 1.77 1.43 0.993| 0.666 | 0.457 | 0.333 | 0.280 | 0.205
1,000 1.32| 0.888] 0.714 | 0.494| 0.333| 0.229| 0.167 | 0.140 | 0.104

Note: This table is based upon 100,000 replicate experiments for all values of n. An
example documents the use of this table. The fifth percentage point of # when n = 50 is
determined from fpos = 1 — 17.6 X 107° = 0.982. Interpolation of the critical points
may be accomplished by noting that In (n) and In [1,000(1 — #)] are approximately lin-
early related for each significance level.

bution. This result applies to any PPCC test statistic for a one- or two-pa-
rameter distribution that exhibits a fixed shape.

Because critical points of this test statistic are unavailable in the literature,
percentage points (or significance levels) were computed for sample sizes in
the range n = 10 to 1,000. This was accomplished by generating 100,000
sequences of uniform random variables each of length n and applying Egs.
9 and | to obtain 100,000 corresponding estimates of r denoted 7, i = 1,
..., 100,000. Critical points of the distribution of # were obtained by using
the empirical sampling procedure '

L = T 100.000p) + + « ¢ e v v oottt e it e e e (] l)

where r, denotes the pth quantile of the distribution of 7 and 4,000,y denotes
the 100,000p largest observation in the sequence of 100,000 generated val-
ues of 7. For large significance levels, p, and large samples, n, the per-
centage points of the distribution of 7 approach unity and become indistin-
guishable from that value. Therefore, it is more convenient to tabulate the
percentage points of 1,000 (1 — F). The results of these experiments are
summarized in Table 1.
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A PRoBABILITY-PLOT CORRELATION-COEFFICIENT TEST
FOR Two-PARAMETER WEIBULL DISTRIBUTION

Since its introduction to the water-resources literature by Gumbel (1954),
the extreme value type I distribution, commonly referred to as the Weibull
distribution, is considered a theoretically plausible distribution for low flows,
much as the extreme value type I or Gumbel distribution is considered a
theoretically plausible distribution for floodflows. The CDF of a three- pd-
rameter Weibull (W3) random variable, w, takes the form

w-e\]
F.,(w)=1-exp [—-( )] .................................. (12)
Ve

where the parameters €, v, and k must be estimated from a sample of stream-
flows. Two forms of the Weibull (extreme value type IlI) distribution exist,
one corresponding to the distribution of the maximum of many values and
another (Eq. 12) corresponding to the distribution of the minimum of many
values [see Benjamin and Cornell (1970), pp. 283-284, for a discussion}.
The three-parameter Weibull CDF may be expressed in its inverse form as:

Inw—¢e)y=In(v—¢€ + - P ln{ N[l =FWl} oo (13)

Here, one observes that In (w — €) is linearly related to In {—In [1 -
F.(w)]}; hence, a probability plot is constructed by plotting these two vari-
ables against each other. This requires an estimate of the lower bound e;
thus, a hypothesis test that does not depend on the distribution’s parameters
cannot be developed for the W3 distribution. However, if one sets € equal
to zero, we obtain the two-parameter Weibull (W2) distribution for which
we can construct a PPCC hypothesis test that does not depend on the pa-
rameter-estimation procedure.

For the W2 distribution, the PPCC test statistic is again defined by Eq. 1
using y;, = In (w,) and using:

1
M, =F.'(p)=In(v) + p In[=In (1 =pY) evveriii (14)

where p; = Gringorten’s (1963) plotting position for the Gumbel distribu-
tions:

If a random variable g has a Gumbel distribution, then a Gumbel probability
plot produces a linear relation between g, and In [—In (p)] (Vogel 1986).
From Egs. 13 and 14, it is clear that a Weibull (W2) probability plot is
analogous to a Gumbel probability plot because one plots In [w(,,] as a func-
tion of In [—In (1 — p;)]. Hence, Gringorten's plotting position is appropriate
for either distribution. Unbiased plotting positions for the generalized ex-
- treme value distribution (Amell et al. 1986) depend on the shape parameter
of the distribution, k; thus, they are not suitable for use in a distributional
hypothesis test. The W2 PPCC test is invariant to the fitting procedure used
to estimate v and k in Eq. 14. The proof is similar to Eq. 10 here and Eq.
11 in Vogel (1986).
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TABLE 2. Critical Points of 1,000 (1 — 7) where 7 I8 Two-Parameter Weibull Prob-
ability-Plot Correlation Coefficient

001 | 005 | 0.10 | 025 | 050 | 0.75 | 0.90 | 0.95
) Q) (4) () (6) @) @ | O

132.0 90.9 73.8 49.6 31.9 20.0 12.7 9.66
107.0 72.6 58.0 39.4 25.6 16.5 11.0 8.65
97.2 61.6 48.9 333 21.7 14.2 9.71 | 7.68
86.0 54.0 42.3 28.7 18.9 12.6 8.70 | 6.97
77.1 47.5 37.5 25.5 16.8 11.2 7.85 | 6.32
71.9 44.1 344 23.2 15.3 10.2 7.14 | 5.83
66.6 40.1 31.3 21.1 13.9 9.28 6.59 | 5.36
62.6 37.0 28.7 19.3 | 12.8 8.64 6.12 | 4.97
60.1 35.3 27.2 18.2 12.0 8.06 5.71 | 4.71
55.5 33.1 25.5 17.0 1.3 7.61 5.40 | 4.42
53.2 30.7 23.8 16.1 10.6 7.18 5.14 | 4.21
51.1 29.1 22.5 15.1 9.99 6.80 4.86 | 4.00
48.2 27.8 214 14.4 9.53 6.45 4.62 | 3.78
48.1 26.7 20.5 13.7 9.06 6.11 4.40 | 3.62
4.8 25.8 19.7 13.2 8.63 5.87 420 | 3.47
42.1 23.4 17.9 11.9 7.93 5.41 3.88 | 3.20
394 22.3 16.9 11.3 7.41 5.06 3.62 | 2.99
24.1 13.2 10.1 6.68 4.43 3.04 222 | 1.86
12.2 6.60 4.96 3.30 2.20 1.52 1.11 | 0.93

6.73 3.79 2.82 1.90 1.27 0.88 0.64 | 0.54

Note: This table is based upon 50,000 replicate experiments except for the cases n =
500 and 1,000 for which only 10,000 replicate experiments were performed. The fifth
percentage point of F when n = 50 is determined from fyos = 1 — 35.3 X 107% = 0.9647.
Interpolation of the critical points may be accomplished by noting that In (n) and In [1,000(1
— F)} are approximately linearly related for each significance level.

Because critical points of this test statistic are unavailable in the literature,
percentage points (or significance levels) were computed for sample sizes in
the range n = 10 to 1,000. This was accomplished by generating 50,000
sequences of W2 random variables each of length n and applying Eqgs. 14,
15, and 1 to obtain 50,000 corresponding estimates of #. Critical points of
the distribution of r were obtained by use of the empirical sampling pro-
cedure described earlier for the uniform PPCC test, except that 50,000 ex-
periments were performed for each value of n. The percentage points of the
distribution of 1,000 (1 — #) are summarized in Table 2 for the Weibull
distribution.

Low-FLow Freaquency HypPoTHESIS TESTS IN MASSACHUSETTS

The tests introduced in the previous section for the LN2 and W2 distri-
butions are employed here to test the hypotheses that annual minimum seven-
day, low flows in Massachusetts arise from each of those distributions. Twenty-
three of the U.S. Geological Survey’s streamflow-gaging stations in Mas-
sachusetts with the following attributes were selected:
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TABLE 2. Critical Points of 1,000 (1 — 7) where 7 I8 Two-Parameter Weibull Prob-
ability-Plot Correlation Coefficient

Significance Levels

n 001 | 005 | 0.10 | 025 | 050 | 0.75 | 0.90 | 0.95 | 0.9
) ) @) (4) () (6) @ @ | 9 | @00

10 | 132.0 90.9 73.8 49.6 31.9 20.0 12.7 9.66 | 5.80
15 1 107.0 72.6 58.0 39.4 25.6 16.5 11.0 8.65 | 5.59-
20 97.2 61.6 48.9 333 21.7 14.2 9.71 | 7.68 | 5.09
25 86.0 54.0 42.3 28.7 18.9 12.6 8.70 | 6.97 | 4.75
30 71.1 47.5 37.5 25.5 16.8 11.2 7.85 ] 6.32 | 4.24
35 71.9 4.1 344 23.2 15.3 10.2 7.14 | 5.83 | 3.98
40 66.6 40.1 31.3 21.1 13.9 9.28 6.59 | 5.36 | 3.70
45 62.6 37.0 28.7 19.3 | 12.8 8.64 6.12 | 497 | 3.42
50 60.1 35.3 27.2 18.2 12.0 8.06 5.71 | 471 | 3.24
55 55.5 33.1 25.5 17.0 1.3 7.61 5.40 | 4.42 | 3.15
60 53.2 30.7 23.8 16.1 10.6 7.18 5.14 | 4.21 | 2.96
65 51.1 29.1 22.5 ] 15.1 9.99 6.80 | 4.86 | 4.00 | 2.78
70 48.2 27.8 214 14.4 9.53 6.45 4.62 | 3.78 | 2.69
75 48.1 26.7 20.5 13.7 9.06 6.11 440 | 3.62 | 2.54
80 44.8 25.8 19.7 13.2 8.63 5.87 420 | 3.47 | 2.46
90 42.1 23.4 17.9 11.9 7.93 5.41 3.88 | 3.20 | 2.27
100 39.4 22.3 16.9 11.3 7.41 5.06 3.62 |1 299 | 2.11
200 24.1 13.2 10.1 6.68 4.43 3.04 2221 1.86 | 1.35
500 12.2 6.60 4.96 3.30 2.20 1.52 1.11 | 093 | 0.69
1,000 6.73 3.79 2.82 1.90 1.27 0.88 0.64 | 0.54 | 041

Note: This table is based upon 50,000 replicate experiments except for the cases n =
500 and 1,000 for which only 10,000 replicate experiments were performed. The fifth
percentage point of # when n = 50 is determined from fo0s = 1 — 35.3 X 107° = 0.9647.
Interpolation of the critical points may be accomplished by noting that In (n) and In [1,000(1
— F)] are approximately linearly related for each significance level.

Because critical points of this test statistic are unavailable in the literature,
percentage points (or significance levels) were computed for sample sizes in
the range n = 10 to 1,000. This was accomplished by generating 50,000
sequences of W2 random variables each of length n and applying Eqs. 14,
15, and 1 to obtain 50,000 corresponding estimates of 7. Critical points of
the distribution of r were obtained by use of the empirical sampling pro-
cedure described earlier for the uniform PPCC test, except that 50,000 ex-
periments were performed for each value of n. The percentage points of the

distribution of 1,000 (1 — #) are summarized in Table 2 for the Weibull
distribution.

Low-FLow Freauency HypoTHESIS TESTS IN MASSACHUSETTS

The tests introduced in the previous section for the LN2 and W2 distri-
butions are employed here to test the hypotheses that annual minimum seven-
day, low flows in Massachusetts arise from each of those distributions. Twenty-
three of the U.S. Geological Survey’s streamflow-gaging stations in Mas-
sachusetts with the following attributes were selected:
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TABLE 4. Statlstics of Significance Levels Assoclated with Two-Parameter Log-
normal and Two-Parameter Welbull Distributional Hypotheses

SIGNIFICANCE LEVELS Redionl
- egiona
Regional Mean Standard Deviation significance
hypothesis | Theoretical | Observed | Theoretical | Observed P level
(1) (2) (3) (4) (5) (6) (7)
LN2 0.5 0.42 0.289 0.30 0.983 0.45
w2 0.5 0.21 0.289 0.25 0.886 0.005

null hypothesis, one must reject one site under the LN2 null hypothesis and
ten sites under the W2 null hypothesis. Under either null hypothesis one
would expect to reject 5% of the sites if the type I error is 5%. Therefore,
one would expect one rejection among 23 sites, as is the case under the LN2
hypothesis. Clearly, 10 rejections under the W2 hypothesis are unacceptable.

A Regional-Hypothesis Test

The significance levels corresponding to each hypothesis test at each site
in Table 3 are simply cumulative probabilities associated with the distribu-
tions of 7. Such significance levels are, in theory, uniformly distributed over
the interval [0, 1], if the sites are considered to be independent. Thus, under
the null hypothesis, the 23 values of significance levels corresponding to the
LN2 and W2 hypotheses in Table 3 should have sample mean and standard
deviations approximately equal to 0.5 and 0.289, respectively. Table 4 il-
lustrates that the observed values are very close to the theoretical values

under the LN2 regional hypothesis but not under the W2 hypothesis.

- A regional hypothesis test may be performed by applying a uniform PPCC
hypothesis test on the significance levels in Table 3, assuming that there are
23 independent samples (sites). The values of 7 in Table 4 are computed
using Eqs. | and 9 with y;, in Eq. 1 equal to the significance levels in Tabie
3. The regional significance levels associated with the LN2 and W2 alter-
natives are then determined using the uniform PPCC test statistic in Table
1. If one accepts a 5% type | error probability, one must reject the W2
regional hypothesis but not the LN2 regional hypothesis.

The regional hypothesis test makes it quite evident that the low flows are
poorly approximated by the W2 hypothesis on a regional basis. Yet, if one
were to simply perform a W2 hypothesis test site-by-site, allowing a type 1
error probability of 1%, then the W2 hypothesis would only be rejected at
four sites. Such site-by-site hypothesis testing can be misleading; the re-
gional-hypothesis test described here is favored.

Goobness oF Fit oF Low-FLow FREQUENCY DISTRIBUTIONS

Filliben (1975) and Vogel (1986) have recommended the use of the PPCC
test statistic for comparing the goodness of fit of competing distributions and
parameter-estimation procedures. In this section, the goodness of fit of the
LN3, W3, and LP3 probability distributions are compared using the PPCC
test statistic. Because computation of the PPCC test statistic for three-pa-
rameter distributions requires estimation of at least one of the distribution’s
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parameters, regional hypothesis tests cannot be performed for three-param-
eter alternatives. Use of any of the critical points of the test statistic 7 pro-
vided here for testing a three-parameter distribution will lead to fewer re-
jections of the null hypothesis than one would anticipate. This is because
only two parameters are estimated in the construction of the PPCC tests
developed here and elsewhere, yet three parameters are required to fit the
LN3, LP3, and W3 distributions. For this reason, hypothesis tests are not
used for three-parameter alternatives. Instead, the PPCC test statistic is only
used as a goodness-of-fit statistic to discriminate among alternative param-
eter-estimation procedures and competing probability models.

Probability Plots for Lognormal Distribution

Three methods of fitting a lognormal distribution to annual minimum seven-
day low flows in Massachusetts are compared by analytically constructing
a probability plot using Egs. 1, 4, and 5. Here, the values of Y& in Eq. 1
are computed as:

Y = In (X(,') ha "l\') ............................................... (16)

where the x;, are the ordered annual minimum seven-day low flows and %
is an estimate of the lower bound of the low flows. For the two-parameter
lognormal distribution, T is set equal to zero and the procedure is termed
LN2. For the LN2 distribution, one obtains identical estimates of 7 using
method of moments (MM) estimators or maximum likelihood estimators (MLE)
because 7 is invariant to the parameters of the distribution. For the three-
parameter lognormal distribution, two procedures are compared. Matalas
(1963), Condie and Nix (1975), and Stedinger (1980) described the method
of moments procedure, which we term LN3-MM, Stedinger recommended
the use of a quantile lower bound estimator, which we term LN3-STLB
(Stedinger 1980, Eq. 20; or Loucks et al. 1981, Eq. 3.60). Because the LN3-
MM and LN3-STLB procedures for estimating T in Eq. 16 are well docu-
mented in the literature, we do not repeat those equations here.

Fig. 1 illustrates the values of 7 for each of the 23 sites described in Table
3 using the LN2, LN3-MM, and LN3-STLB procedures. In general, the LN2
and LN3-STLB procedures produce much more linear probability plots than
the LN3-MM procedure, as is evidenced from the larger values of # asso-
ciated with those procedures (to improve the presentation of the results, the
sites are arbitrarily ordered by increasing values of 7 associated with the LN2
PPCC test). On the basis of these results, it is not surprising that Matalas
(1963) and Condie and Nix (1975) rejected the LN3-MM procedure for fit-
ting low-flow frequency distributions. However, rejection of the LN3-MM
procedure need not imply rejection of the LN3 distribution. The LN3-MM
procedure requires a sample estimate of the skew coefficient to obtain an
estimate of 7 in Eq. 16; such sample estimates are known to be highly un-
stable (Wallis et al. 1974). Both the LN2 and LN3-STLB procedures provide
an excellent fit to the distribution of low flows in Massachusetts. In fact,
the LN3-STLB procedure always resulted in values of 7 greater than 0.976,
except at site 2, where Stedinger’s lower bound could not be computed.

Probability Plots for Weibull Distribution
Three methods of fitting a three-parameter Weibull distribution (W3) to
annual minimum seven-day low flows in Massachusetts are compared using
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the PPCC test statistic. The PPCC test statistic is defined in Eq. 1 with the
Y. given by: :

y(,') = ln [‘V(,‘) - é] ............................................... (17)

in which wy, = the ordered annual minimum seven-day low flows; and &€ =
an estimate of the lower bound of the low flows. Reasonable estimates of
€ must be less than the smallest observation w,,, otheswise Eq. 17 is un-
defined. The M, in Eq. 1 are defined as: '

M=In[-In(1-p)].......... P (18)

where the p; are obtained from Eq. 15. Analogous to the lognormal distri-
bution, each of the fitting procedures for the W3 distribution amount to dif-
ferent approaches for estimating the lower bound €. Tables 3 and 4 docu-
mented that the W2 procedure failed a regional hypothesis test; hence, that
procedure is dropped from consideration here. The approaches considered
here for fitting a W3 distribution are: (1) The method of moments (W3-MM);
(2) the method of maximum likelihood (W3-MLE); and (3) the method of
smallest observed drought (W3-MSOD). Gumbel (1954, 1958), Matalas
(1963), Deininger and Westfield (1969), Condie and Nix (1975), and Kite
(1977) describe the WE-MM procedure. Cohen (1975), Condie and Nix (1975),
and Kite (1977) describe the W3-MLE procedure. Gumbel (1963), Deininger
and Westfield (1969), Condie and Nix (1975), and Kite (1977) describe the
W3-MSOD procedure. Because all three procedures are fully described else-
where, the equations are not repeated here. Each of these procedures were
used to estimate the lower bound € in Eq. 17, and corresponding estimates
of 7 were obtained by substitution of Eqs. 17 and 18 into Eq. I, where the
p. are obtained from Eq. 15. The estimates of r are summarized in Fig. 2
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corresponding to these three-parameter estimation procedures. Overall, the
W3-MSOD procedure resulted in higher values of # (and thus more linear
probability plots) than the W3-MM and W3-MLE procedures. Furthermore,
reasonable estimates of 7 were obtained at all 23 sites using the W3-MSOD
procedure, whereas many of the other procedures failed to produce feasible
estimates of the parameters of the distribution. For example, the W3-MM
procedure generated values of the lower bound, &, which were greater than
the smallest observation, wy,,, at nine out of 23 sites (or roughly 39% of the
sites). Similarly, Matalas (1963) found & > w, using the W3-MM procedure
at ten out of 34 streams (roughly 29% of the sites) in his investigation.

The W3-MLE procedure often fails to provide feasible parameter values.
The W3-MLE procedure requires the simultaneous solution of three nonlin-
ear equations in €, v, and k. Because the parameter v can be removed from
two of those equations, the procedure reduces to the solution of two non-
linear equations in € and k which must be solved simultaneously. The W3-
MLE procedure did not converge, and, hence, no feasible solution (for ex-
ample, € > w,, existed at eight of 23 sites (roughly 35% of the sites). As
in the study by Loganathan et al. (1985), the W3-MLE procedure failed to
converge at 14 out of 20 sites (70% of the sites) in their investigation.

Condie and Nix (1975) provide the following recommendations for fitting
a W3 distribution:

Maximum likelihood should be used in the first instance to estimate
the parameters. If a lower boundary parameter is not found within the
range zero to the minimum of the data series, then try estimating pa-
rameters by the method of the smallest observed drought, and finally
by moments. ’
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Their algorithm is based principally on the ability of each parameter esti-
mation procedure to generate values of € in the interval [0,w,)]. In this study,
negative estimates of € are allowed, and the objective is to obtain the most
linear probability plot (highest value of 7). Fig. 2 indicates that even when
the W3-MLE procedure converged, corresponding estimates of 7 were usu-
ally significantly lower than for the W3-MSOD procedure. Hence, the W3-
MSOD is clearly preferred in this study because it always leads to feasible
solutions. The W3-MLE procedure requires a relatively complex numerical
algorithm; our algorithm was verified by testing it on the sample of 100
observations from a Weibull population given by Dubey (1967, Table 1),
as is common practice in the field of statistics [for example, Wingo (1972),
pp. 91-92}.

On the basis of the results in Fig. 2, we favor the W3-MSOD procedure
over either the W3-MM or W3-MLE procedures in Massachusetts because
it always led to feasible solutions, it produced consistently linear probability
plots, and it is computationally convenient compared to the W3-MLE pro-
cedure. Fig. 2 also illustrates that the PPCC test statistic is a useful tool for
discriminating among alternative parameter-estimation procedures.

Probability Plots for Log-Pearson Type III Distribution

The log-Pearson type Iil (LP3) distribution is used widely by hydrologists
for modeling floodflow frequencies. The Interagency Advisory Committee
on Water Data (“Guidelines™ 1982) recommends fitting the LP3 distribution
by applying the method of moments for the P3 distribution to the logarithms
of annual maximum floodflows. Their recommendations are based on Beard’s
(1974) comprehensive study of flood flows. No comprehensive studies of
the type performed by Beard have been performed for low flows. Never-
theless, Loganathan et al. (1986, p. 131) and Tasker (1987, p. 1077) state
that the LP3 distribution is used widely to model low-flow frequencies. In
fact the U.S. Geological Survey’s WATSTORE data retrieval and analysis
system (Hutchinson 1975) routinely fits an LP3 distributipn to low flows by
using the method of moments in log space for the P3 distribution (LP3-MM).
To confirm the suspicion that the LP3-MM procedure provides a reasonable
model of low-flow frequencies, we favor the use of probability plots and the
PPCC test statistic. Loucks et al. (1981, p. 116) recommend the use of the
Wilson-Hilferty transformation for constructing a probability plot for the three-
parameter gamma distribution. We use the Wilson-Hilferty transformation
to construct probability plots for the LP3 distribution and to estimate the
corresponding PPCC statistic.

For the LP3 distribution, the PPCC test statistic is defined in Eq. 1 with

the y,, = In [x,] where the x;, are the ordered, observed annual minimum
seven-day low flows. The M, in Eq. 1 are determined using
2 Go~'(py G 2
M,.=m,+s,{— |+-——"’_’_-—]-- ...................... (19)
G 6 36 G

in which m,, 5,, and G = sample estimates of the mean, standard deviation,
and skew coefficient of the y;; and &~ '(p) = the inverse of a standard
normal random variable which is obtained by substitution of Eq. 5 into Eq.
4. The Wilson-Hilferty transformation gives quantiles of a gamma distri-
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FIG. 3. Probabllity-Plot Correlation-Coefficient Test Statistics Corresponding to
LP3-MM, LN3-STL8, and W3-MSOD Procedures

bution in terms of quantiles of a standard normal distribution; hence, Blom’s
plotting position (Eq. 5) is used because it is unbiased for the normal dis-
tribution. Eq. 19 provides an accurate approximation to the inverse of the
LP3 distribution as long as —3 < G = 3, which is the case here. When the
skew coefficient G lies outside this interval, Kirby’s (1972) modified trans-
formation may be used instead of Eq. 19, although even Kirby’s modified
transformation fails to reproduce the marginal distribution for large values
of G and/or if the flows exhibit significant autocorrelation (Obeysekera and
Yevjevich 1985). An unbiased estimator of the skew coefficient G is em-
ployed here which corresponds to method 9 in Bobee and Robitaille (1977)
and the indirect method of moments in Kite (1977, p. 126). Lettenmaier and
Burges (1980) provide alternative bias correction factors for estimators of
both the standard deviation and skew coefficient of the LP3 distribution; in
fact a variety of alternative procedures are available, as is evidenced in a
study by Bobee and Robitaille (1977) of 11 competing parameter-estimation
procedures for the LP3 distribution. Our goal here is to simply compare the
fit of the LP3 distribution with altemnative three-parameter distributions; hence,
we only consider this one parameter-estimation procedure.

Fig. 3 compares the values of 7 obtained using the three fitting procedures:
LP3-MM, W3-MSOD, and LN3-STLB. Fig. 3 illustrates that the LP3-MM
procedure resulted in more nearly linear probability plots than the W3-MSOD
and LN3-STLB procedures at 17 out of 23 sites (74% of the sites). Similarly,
the LN3-STLB procedure resulted in more nearly linear probability plots
than the W3-MSOD procedure at 17 out of 23 sites.

Figs. 4 and 5 illustrate probability plots at two sites (sites 3 and 6) on
lognormal probablhty paper. Here the circles are obtained by plotting the
annual minimum seven-day low flows as a function of the M; obtained from
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Eqs. 4 and 5. The probability plots corresponding to the LN2-MLE, LN3-
STLB, and LP3-MM procedures also are illustrated along with their corre-
sponding PPCC values. As shown in Fig. 1, sites 3 and 6 resulted in rela-
tively low values of 7 for the LN2 procedure compared with the other sites.
Figs. 4 and 5 provide a graphical representation of the differences between
these three fitting procedures and the corresponding values of 7. At most of
the other sites, the differences among the 7 are smaller than evidenced in
Figs. 4 and 5, in which case the three procedures are almost indistinguish-
able.

All of the procedures in Fig. 3 produced probability plots with values of
f in excess of 0.97. Figs. 1-3 suggest that the LN2, LN3-STLB, W3-MSOD,
and LP3-MM procedures all provide reasonable approaches for fitting low-
flow frequency distributions in Massachusetts.

MobeL CHoOICE

When fitting a hypothesized distribution function to observed data, and
plotting the resulting cumulative distribution function using the procedures
described here, one anticipates a linear probability plot. Yet, a linear prob-
ability plot only provides sample evidence in our quest to prove the null
hypothesis. The design engineer also must consider the sampling properties
of the quantile eshmate which, in lhlS instance, is Q7 10

Fig. 6 compares the estimates, Q, 10, using the LN2-MLE and LP3-MM
procedures. The maximum likelihood procedure (LN2-MLE) is used to fit
the LN2 distribution because it was recommended by Stedinger (1980). As
anticipated from the linearity of their corresponding probability plots, both
procedures generate almost identical estimates of Q, o at all 23 sites.
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ing LN2-MLE and LP3-MM Procedures
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A tradeoff exists between the lincarity of each probability plot and the
precision (i.e., root mean square error, RMSE) of corresponding estimates
of Oy, Clearly three- or even four-parameter distributions can generate more
lincar probability plots than a two-parameter distribution, at the expense of
additional sampling error in the parameters. For example, the LP3-MM pro-
cedure requires estimation of a third parameter, G, not required by the LN2-
MLE procedure, and estimates of G are known to be highly unstable for
most of the sample sizes encountered in this study (see Wallis et al. 1974).
Hence one may anticipate that estimation of a third or even fourth parameter
could produce quantile estimates with higher RMSE than a two-parameter
alternative, particularly in situations when the sample size is small and the
two-parameter model provides a reasonable fit, as is the case in this study
for the LN2 distribution. For example, Stedinger (1980) documents a variety
of situations in which the RMSE of quantile estimates resulting from use of
the LN2-MLE procedure is lower than the RMSE of quantile estimates re-
sulting from the use of the LN3-STLB procedure when streamflows arise
from an LP3 parent. :

Quantile estimation is further confounded by the issue of independence.
Typically, sequences of annual minimum seven-day low flows exhibit serial
correlation which tends to inflate the RMSE of corresponding estimates of
Q;.10. For example, the average estimate of the first-order serial correlation
for the basins of this study is 0.19 with sample estimates which range from
~0.12 to 0.56. Tasker (1983) provides a measure of the effect of serial
correlation on the effective record length associated with quantile estimates
for the LN2 and LP3 distributions.

CONCLUSIONS

Probability plots and the probability-plot correlation-coefficient (PPCC)
test statistic are introduced for testing alternative low-flow distribution hy-
potheses and for discriminating among competing paramiter-estimation pro-
cedures. The PPCC hypothesis test for the uniform distribution derived here
is shown to be useful for testing regional distributional hypotheses assuming
sites are independent. Regional PPCC hypothesis tests are available for test-
ing the normal, lognormal (LN2), Weibull (W2), and Gumbel two-parameter
hypotheses. In addition, this study derives PPCC test statistics for the three-
parameter lognormal (LN3), Weibull (W3), and log Pearson type-111 (LP3)
distributions. PPCC test statistics are computed at 23 unregulated sites in
Massachusetts, and the following conclusions have been reached:

I. The regional hypothesis that annual minimum seven-day low flows in Mas-
sachusetts arise from a W2 distribution is rejected; however, there is almost no
evidence to support the rejection of the LN2 regional hypothesis for the same
low flows.

2. The PPCC test statistic was found to be a useful tool for discriminating
among competing probability distributions and parameter-estimation procedures.
Seven procedures were compared for their ability to generate linear probability
plots for low flows. Overall, four of those seven procedures (LN2, LLN3-STLB,
W3-MSOD, and LP3-MM) consistently produced linear probability plots as mea-
sured by the PPCC test statistic. Of those four procedures, the LP3-MM pro-
cedure usually performed slightly better than the other procedures. This result
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agrees with Tasker’s (1987) conclusions for Virginia streams.

3. Previous studies have rejected the lognormal probability distribution be-
cause those studies used the method of moments. We found the LN2 and the
LN3-STLB procedures to be competitive with other preferred alternatives such
as LP3-MM and W3-MSOD. In fact, the LN3-STLB procedure performed slightly
better than the W3-MSOD at most sites in Massachusetts. The LN3-MM pro-
cedure performed poorly, as it did in previous studies by Matalas (1963) and
Condie and Nix (1975), for other locations in the United States and Canada.

4. A complex tradeoff exists between the linearity of a probability plot and
the precision of estimates of design quantiles. Probability distributions with three
or more parameters tend to produce quite linear probability plots, because ad-
ditional parameters allow more flexibility in terms of the location, scale, and
shape of the modeled distribution. However, this additional flexibility often oc-
curs at the expense of a loss in precision associated with estimated quantiles.

5. The PPCC test statistic, based on information contained in a probability
plot, is computationally convenient and is easily extended to other one- and two-
parameter distributional hypotheses not reported here. As long as the hypothe-
sized cumulative distribution function of a random variable can be expressed (or
approximated) in its inverse form, the PPCC test statistic 7 in Eq. 1 is easily
calculated. We hope that future studies will extend the PPCC tests described
here to other regions so more general conclusions regarding the distribution of
low flows can be yeached.
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