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ABSTRACT: Although a vast amount of literature exists on the selection of an
appropriate probubility distribution for annual maximum fluodflows, few studies
huve examined which probability distributions ure most suitable to fit to sequences
of annual minimum streamflow!;. Probabilily plots have been u!;ed widely in hy-
drology as a gruphicul uid to assess the goodnes!; of fu of ultemative distributions.
Recently, probubility-plot correlution-cl!efficient (PPCC) te!;ts were introduced to
test the normul, two-parameter lognonnul und Gumbel hypotheses. Those proce-
dures are extended here to include both regional und ut-site tests for lhe two-pa-
rumeter Weibull und lognonnal distributionul hypotheses. In theory, PPCC-hy-
pothe!;is te!;ts cun only be developed for two-parameter distributions that exhibil a
fixed shape. Nevertheless, the PPCC is a useful goodness-of-fit statistic for com-
paring three-parameter distributions. The PPCC derived from fitting the two- and
thrce-pararneter lognonnal, two- and three-purarneter Weibull, and log-Pearson type
III distributions to sequences of annual minimum seven-day low flows at 23 sit~s
in Massachusetts are compared. How the PPCC can be used to discriminate among
both competing distributional hypotheses for the distributions of fixed !;hape and
competing pur-dmeter-estimation pn)Cedurcs for the distributions with vuriable shape
is described. An upproximate regional PPCC test is developed und used to show
that there is almost no evidence to contradict the hypothesis that unnual minimum
seven-day low flows in Massachusetts are two-parameter lognonnul.

INTRODUCTION

With increasing attention focused on surface-water-quality management,
many agencies routinely require estimates of the d-day, T -year, low flow

for the maintenance of water-quality standards. Such low-flow statistics are

now in common use for detern1ining waste-Ioad allocations! issuing and/or

renewing National Pollution Discharge Elimination System (NPDES) per-
mits, siting waste-treatment plants and sanitary landfills, and determining
minimum downstream-release requirements from hydropower, iITigation, water-

supply, and cooling-plant facilities. The most widely used index of low flow

in the United States is the seven-day, ten-year low flow (Q1.IO), defined as

the annual minimum average seven-day low flow that recurs, on average,

once every ten years (Riggs et al. 1980). Estimation of the Q1.IO from stream-
flow records consists of detern1ination of a probability distribution of the

annual minimum seven-day low flows and selection of a statistically efficient

parameter-estimation procedure, Statisticians tern1 these tasks distributional
hypothesis testing and point estimation, respectively. If possible, these two

tasks should be considered independently as is common practice in the field

of applied statistics (Benjamin and Cornell 1970).
An extensive amount of literature exists on the selection of statistically
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in hydrology, most of those studies relate to fitting floodflow distributions.
To our knowledge, only a few sludies (Gumbel 1954, 1958; Malalas 1963;
Condie and Nix 1975; Loganathan et al. 1985, 1986; Tasker 1987) have
examined different parameter-estimalion procedures for fitting alternative
models to sequences of annual minimum seven-day low flows. Using four
plausible three-parameter probability distributions, Condie and Nix ( 1975)
compared alternative parameter-estimation procedures for their ability to
generate acceptable lower bounds. According to Condie and Nix, an ac-
ceptable lower bound must fall in the interval between zero and the minimum
observed flow. On the basis of this criterion, Condie and Nix recommend
fitting the three-parameter Weibull (W3) distribution by the method of max-
imum likelihood (W3-MLE) if feasible solutions exist; otherwise they sug-
gest using the method of smallest obsereved drought (W3-MSOD) or the
method of moments (W3-MM), in that order. Tasker (1987) compared al-
ternative three-parameter probability distributions and fitting procedures by
the bootstrap method and recommended the use of either the log-Pearson
type III (LP3) using method of moments (LP3-MM) or the Condie and Nix
(1975) algorithm which was a close competitor. Matalas (1963) recom-
mended the use of the W3 distribution fit using the method of moments (W3-
MM) or the Pearson type III (P3) using maximum likelihood estimates (P3-
MLE). Matalas did not consider the W3-MLE procedure, nor did he consider
the LP3 distribution. These three important studies by Condie and Nix, Tas-
ker, and Matalas were based on fitting alternative models to samples of an-
nual minimum seven-day low flows at 38 gaging stations in Canada, 20
gaging stations in Virginia, and 14 gaging stations in the eastern United
States, respectively. Nevertheless, thcir conclusions are consistent, consid-
ering the heterogeneity of the selected "~ites. Perhaps consistently good per-
formance should not be surprising for the W3 distribution given that it is
theoretically the parent model of extreme low flows (Gumbel 1954) and for
the LP3 distribution given its extreme flexibility as evidenced in numerous
studies of the distribution of annual peak floodflows. However, no cited
studies have examined the adequacy of two-parameter distributions, such as
the two-parameter lognormal (LN2) or the two-parameter Weibull (W2). The
studies by Matalas ( 1963) and Condie and Nix ( 1975) rejected the three-
parameter lognormal (LN3) model because they used the method of moments
(LN3-MM). Stedinger ( 1980) introduced an improved fitting procedure for
the LN3 distribution that would likely modify the conclusions of Condie and
Nix and Matalas. Tasker (1987) did not include the LN3 distribution in his
study because Condie and Nix and Matalas rejected that distribution.

Prior studies have shown that W3-MLE and LP3-MM provide two rea-
sonable approaches to fitting low-flow frequency distributions, yet W3-MLE
requires a relatively complex numerical algorithm not suitable for many
practical applications and the LP3-MM procedure requires at-site estimates
of the skew coefficient, which are not very precise for the small samples
typically encountered (Wallis et al. 1974). When a two-parameter distribu-
tion provides an adequate description of annual minimum seven-day low -

flows, one need not estimate the skew coefficient; quantile estimators based
upon a two-parameter distribution often have lower variance then three-pa-

rameter alternatives.
Recently, probability-plot correlation-coefficient (PPCC) tests have been

introduced by Filliben (1975), Looney and Gulledge (1985), and Vogel (1986)
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for testing the normal and LN2 hypotheses and by Vogel (1986) yor testing
the Gumbel hypothesis. Such te~t~ may be extended to other di~tributions
that exhibit fixed shape, such as the uniform, exponential, and W2 hy-
potheses. This study develops new PPCC tests for the uniform and W2 hy-
potheses and u~es those test~, in addition to the LN2 PPCC test, to evaluate
the regional hypothesis that annual minimum seven-day low flows at 23 sites
in Ma~sachusetts ari~e from the two-parameter alternatives, LN2 and W2.

Although the PPCC test statistic cannot be formally used to test three-
parameter distributional hypotheses, it can be used as a goodness-of-fit sta-
tistic that summarizes the linearity of a probability plot. Such procedures
were originally suggested by Filliben (1975). Matalas (1963) used proba-
bility plots in his comparisons of the fit of W3 and Pearson Type III dis-

tributions to low flows.
In this paper, the PPCC is used to rank the goodness of fit of various

parent probability models and to evaluate alternative parameter estimation
procedures. In addition, PPCC-hypothesis tests are used to test various dis-
tributional hypotheses for low flows on a site-by-site and regional basis with-
oul reference to particular parameter-estimation procedures. These results
make it evident that procedures for describing the distribution of annual min-
imum seven-day low flows are not limited to the W3-MLE and LP3-MM

procedures in Massachusetts.

PROBABtLITY-PLOT COARELATION-COEFFICIENT HYPOTHESiS TESTS

Probability plots are used widely in the statistics and water resources lit-
erature. Although analytic approaches, such as the method of moments (MM)
or maximum likelihood estimates (MLE) for fitting probability distributions
to observed data, are, in theory, more efficient statistical procedures than
graphical curve-fitting procedures, many practitioners would not make en-
gineering decisions without the use of a graphical display (probability plot).
Filliben (1975), Looney and Gulledge (1985), Vogel (1986),"and others have
proposed goodness-of-fit tests that are based upon information contained in
probability plots. In this section, we review existing tests for the normal and
lognormal hypotheses and introduce two new PPCC tests that will be used
later to evaluat.e alternative frequency models for sequences of annual min-
imum seven-day low flows.

A probability plot is defined as a graphical representation of the ith-order
statistic of the sample, Y(i)' as a function of a plotting position, which is
simply a measure of the nonexceedance probability associated with the ith-
order statistic from the assumed standardized distribution. The ith-order sta-
tistic is obtained by ranking the observed sample from the smallest (i = I )
to the largest (i = n) value, then Y(i) equals the ith largest value. Many studies

[for example, Cunnane (1978) and Ameli et al. (1986)1 have recommended
the use of unbiased plotting positions. Unbiased plotting positions reproduce
the expected vttlue of the ith-order statistic, E[y(iJ based on an assumed
di~tribution. Although the original PPCC tests advocated by Filliben ( 1975)
used a bia~ed plotting position which reproduced the median value of the
ith-order statist,ic, Looney and Gulledge (1985) showed that use of an un-
biased plotting position for the normal distribution can lead to a more pow-
erful (lower type II errors) hypothesis test. In this study, unbiased plotting
positions are used, when available.
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If the sample to be tested is actually distributed as hypothesized, one would
expect the plot of the ordered observations, Y(i)' as a function of the order
statistic means (M i) to be approximately linear. The PPCC is simply a mea-
sure of the linearity of the probability plot. The PPCC test statistic is defined
as the product moment correlation coefficient between the ordered obser-
vations and the order statistic means for each assumed distribution function.
The PPCC test statistic is:

"

~ (Y(i) -y)(Mi -M)

i=1
f= 1~(y(i)-j)2~(A1j-A1)2 V i~1 j=1

in which Mi = E[y(iJ for each hypothesized distribution; and y(j) = the ith

largest observed value of the Yi. In general, to analytically construct a prob-
ability plot to estimate f in Eq. I, the inverse of the hypothesized cumulative
distribution must be obtained because

--I A
A1; -Fy {Fyly(;J} (2)

in which f.(yi) = an approximation to the nonexceedance probability as-

sociated with the ith-order statistic from the assumed distribution. For ease
of notation, we define each unbiased plotting position as Pi = F y{E[y(IJ]};

hence,

( I )

M;=F-J(pJ (3)

PROBABILITY-PLOT CORRELATION-COEFFICIENT TESTS FOR NORMAL

AND LOGNORMAL HYPOTHESES

Joiner and Rosenblatt ( 1971) provide an approxilnation to the inverse of
the standard normal distribution. Their approximation

M;=4.91[p?14-(I-pJoI4] (4)

is used here and in the MINIT AB I statistical package (Minitab Inc. 1986);

more accurate approximations are available (Odeh and Evans 1974). (Note:
Use of trade names is for identification purposes only and does not constilute
endorsement by the U.S. Geological Survey.) An approximation lo the un-
biased plotting position for the normal distribution suggested by Cunnane
(1978) and developed by Blom (1958) is

3
i--

8Pi = I

n+4

(5)

An estimate of the PPCC test statistic for a sample Yi' ; = I, n which is

hypothesized to be normal is found by substitution of Eqs. 4 and 5 into Eq.
I. Analogously, the PPCC test statistic for a sample x" ; = I, n, which is

hypothesized as two-parameter lognormal, is found by substituting Eqs. 4
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and 5 into Eq. 1 using Yi = In (xJ. Theoretical percentage points of the
distribution of an estimate of r when Yi is nonT\ally distributed may be found
in Looney and Gulledge (1985) for n = I, 100. Those percentage points are

almost identical to the percentage points in Filliben (1975) and Vogel (1986)

who used a biased plotting position.

A PROBABIL\TV-PLOT CORRELATION-COEFFICIENT
TEST FOR UNIFORM DISTRIBUTION

The cumulative probability associated with the value of any random vari-
able is distributed unifonT\ly over the interval [0, 1] .This fact is used later
to develop regional hypothesis tests for low-flow frequency distributions in
Massachusetts. In general, a unifonT\ random variable, U, over the interval

[a,b) has probability density function:

I!,,(u)=- ifasusb (6a)
b-a

!,,(u)=0 otherwise ; (6b)

and cumulative distribution function (CDF):

F,,(u)=0 u<a (7a)

u-aF,,(u)=- asu~b (7b)
b-a

F,,(u)=1 u>b (7c)

In this case, the CDF is easily invel1ed to obtain

u=F;;'[F,,(u)}=a+(b-a)F,,(u) (8)

Again, defining pi = F ,,{E[U(iJ} to be the unbiased plotting position which
in this case is the well-known Weibull plotting position pj = i/(n + I), we

obtain:

Mj=a+(b-a)(~) (9)

Although the Weibull plotting position is perhaps the most widely used plot-
tingposition in hydrology, it is only unbiased when the random variable is

unifonT\ly distributed (Cunnane 1978).
For testing the uniform hypothesis, the test statistic is given by Eq. I with

Mi obtained from Eq. 9 and the y(j) = U(il. This PPCC test statistic is invariant

to the distribution parameters a and b. One can show that:

covr u(jj, -.!-1
L .n + IJ

r = ~ (10)

which does not depend on the assumed parameters of the unifonT\ distri-
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A PROBABlLITY-PLOT CORRELATION-COEFFICIENT TEST
FOR TWO-PARAMETER WEIBULL DISTRIBUTION

Since its introduction to the water-resources literature by Gumbel ( 1954) ,
the extreme value type III distribution, commonly referred to as the Weibull
distribution, is considered a theoretically plausjble distribution for low flows,
much as the extreme value type lor Gumbel distribution is considered a
theoretically plausible distribution for floodflows. The CDF of a three-pa-
rameter Weibull (W3) random variable, w, takes the form

Fw(w) ;;: 1- exp [-(~)]t (12)

where the parameters e, V, and k must be estimated from a sample of stream-
flows. Two forms of the Weibull (extreme value type 111) distribution exist,
one corresponding to the distribution of the maximum of many values and
another (Eq. 12) corresponding to the distribution of the minimum of many
values [see Benjamin and Comell (1970), pp. 283-284, for a discussionJ.
The three-parameter Weibull CDF may be expressed in its inverse form as:

I
In(w-E);;:ln(v-E)+-ln{-ln[I-Fw(w)}} (13)

k

Here, one observes that In (w -E) is linearly related to In { -In [ I -

Fw(w)]}; hence, a probability plot is constructed by plotting these two vari-
abIes against each other. This requires an estimate of the lower bound E;
thus, a hypothesis test that does not depend on the distribution's parameters
cannot be developed for the W3 di!itribution. However, if one sets E equal
to zero, we obtain the two-parameter Weibull (W2) distribution for which
we can construct a PPCC hypothesis test that does not depend on the pa-
rameter-estimation procedure.

For the W2 distribution, the PPCC test statistic is again defined by Eq. I
using Y(i) ;;: In ( W(iJ and using:

I
Mi ;;:F:1(Pi) ;;: In (v) +-In[-ln(l-pi)} (14)

k

where Pi = Gringorten's (1963) plotting position for the Gumbel distribu-

tions:

i -0.44
Pi;;: (15)

n + 0.22

If a random variable 8 has a Gumbel distribution, then a Gumbel probability
plot produces a linear relation between 8(i) and In [-In (Pi)] (Vogel 1986).
From Eqs. 13 and 14, it is clear that a Weibull (W2) probability plot is
analogous to a Gumbel probability plot because one plots In [ W(iJ as a func-
tion of In [-In (I -Pi)]. Hence, Gringorten's plotting position is appropriate
for either distribution. Unbiased plotting positions for the generalized ex-
treme value distribution (Ameli et al. 1986) depend on the shape parameter
of the distribution, k; thus, they are not suitable for use in a distributional
hypothesis test. The W2 PPCC test is invariant to the fitting procedure used
to estimate v and k in Eq. 14. The proof is similar to Eq. 10 here and Eq.
II in Vogel (19B6).
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TABLe 2. Critical Points of 1,000 (1 -f) where f Is Two-Parameter Welbull Prob-

ablllty-Plot Correlation Coefficient ~-

Significance Levels

0.01

(2)

132.0
107.0

97.2
86.0

77.1

71.9
66.6
62.6
60.1
55.5
53.2

51.1
48.2
48.1
44.8
42.1
39.4
24.1
12.2
6.73

0.50

(6)

31.9
25.6
21.7
18.9
16.8
15.3
13.9
12.8
12.0
11.3
10.6
9.99
9.53
9.06
8.63
7.93
7.41
4.43
2.20
1.27

0.75
(7)

20.0
16.5
14.2
12.6
11.2
10.2
9.28
8.64
8.06
7.61
7.18
6.80
6.45
6.11
5.87
5.41
5.06
3.04
1.52
0.88

0.90

(8)

12.7

11.0

9.71

8.70

7.85

7.14

6.59

6.12

5.71

5.40

5.14

4.86

4.62

4.40

4.20

3.88

3.62

2.22

1.11

0.64

0.95

(9)

9.66

8.65

7.68

6.97

6.32

5.83

5.36

4.97

4.71

4.42

4.21

4.00

3.78

3.62

3.47

3.20

2.99

1.86

0.93

0.54

0.99

(10)

0.05

(3)

90.9
72.6
61.6
54.0
47.5
44.1

40.1

37.0
35.3

33.1
30.7
29.1
27.8
26.7
25.8
23.4
22.3
13.2
6.60
3.79

0.10

(4)

73.8
58.0
48.9
42.3
37.5
34.4

31.3
28.7
27.2
25.5
23.8

22.5
21.4
20.5
19.7
17.9
16.9
10.1
4.96
2.82

0.25

(5)

49.6

39.4

33.3

28.7

25.5

23.2

21.1

19.3

18.2

17.0

16.1

15.1

14.4

13.7

0.2

11.9

11.3

6.68

3.30

1.90

(1)

Note: This table is based upon 50,000 replicate experiments except for the cases n =

500 and 1,000 for which only 10,000 replicilte experiments were perfonned. The fifth
percentage point of f when n = 50 is determined from foo, = I -35.3 x 10-) = 0.9647.

Interpolation of the critical points may be accomplished by noting that In (n) and In [ 1,000( I

-f ») are approximately linearly related for each significance level.

Because critical points of this test statistic are unavailable in the literature,
percentage points (or significance levels) were computed for sample sizes in
the range n = 10 to 1,000. This was accomplished by generating 50,000

sequences of W2 random variables each of length n and applying Eqs. 14,
15, and 1 to obtain 50,000 corresponding estimates of f. Critical points of
the distribution of r were obtained by use of the empirical sampling pro-
cedure described earlier for the unifonn PPCC test, except that 50,000 ex-
periments were perfonned for each value of n. The percentage points of the
distribution of I ,000 (I -f) are summarized in Table 2 for the Weibull
distribution.

Low-FLow FREQUENCY HYPOTHESiS TESTS IN MASSACHUSETTS

The tests introduced in the previous section for the LN2 and W2 distri-
butions are employed here to test the hypotheses that annual minimum seven-
day, low flows in Massachusetts arise from each of those distributions. Twenty-
three of the U.S. Geological Survey's streamflow-gaging stations in Mas-
sachusetts with the following attributes were selected:
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TABLE 4. Statistics of Significance Levels Associated wIth Two-Parameter Log-
normal and Two-Parameter Welbull Distributional Hypotheses

SIGNIFICANCE LEVELS
..RegionalRegional Mean Standard Deviation significance

hypothesis Theoretical Observed Theoretical Observed p level

(1) (2) (3) (4) (5) (6) (7)

LN2 0.5 0.42 0.289 0.30 0.983 0.45
W2 0.5 0.21 0.289 0.25 0.886 0.005

null hypothesis, one must reject one site under the LN2 null hypothesis and
ten sites under the W2 null hypothesis. Under ei1her null hypo1hesis one
would expect to reject 5% of the sites if the type I error is 5%. Theref()re,
one would expect one rejection among 23 sites, as is the case under the LN2
hypothesis. Clearly, 10 rejections under the W2 hypothesis are unacceptable.

A Regional-Hypothesis Test
The significance levels corresponding to each hypothesis test at each site

in Table 3 are simply cumulative probabilities associated with the distribu-
tions of f. Such significance levels are, in theory , uniformly distributed over
the interval [0, I] , if the sites are considered to be independent. Thus, under
the null hypothesis, the 23 values of significance levels corresponding to the
LN2 and W2 hypotheses in Table 3 should have sample mean and standard
deviations approximately equal to 0.5 and 0.289, respectively. Table 4 il-
lustrates that the observed values are very close to the theoretical values
under the LN2 regional hypothesis but not under the W2 hypothesis.

A regional hypothesis test may be performed by applying a uniform PPCC
hypothesis test on the significance levels in Table 3, assuming that there are
23 independent samples (sites). The values of f ill Table 4 are computed
using Eqs. I and 9 with Y(i) in Eq. I equal to the significance levels in Table
3. The regional significance levels associated with the LN2 and W2 alter-
natives are then determined using the uniform PPCC test statistic in Table
I. If one accepts a 50;-;; type I error probability, one must reject the W2
regional hypothesis but not the LN2 regional hypothesis.

The regional hypothesis test makes it quite evident that the low flows are
poorly approximated by the W2 hypothesis on a regional basis. Yet, if one
were to simply perform a W2 hypothesis test site-by-site, allowing a type I
error probability of 1%, then the W2 hypothesis would only be rejected at
four sites. Such site-by-site hypothesis testing can be misleading; the re-
gional-hypothesis test described here is favored.

GOODNESS OF FIT OF Low-FLow FREQUENCY DISTRIBUTIONS

Filliben (1975) and Vogel (1986) have recommended the use of the PPCC
test statistic for comparing the goodne,ss of fit of competing distributions and
parameter-estimation procedures. In this section, the goodness of fit of the
LN3, W3, and LP3 probability distributions are compared using the PPCC
test statistic. Because computation of the PPCC test statistic for three-pa-
rameter distributions requires estimation of at least one of the distribution's
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parameters, regional hypothesis tests cannot be performed for three-param-
eter alternatives. Use of any of the critical points of the test statistic f pro-
vided here for testing a three-parameter distribution will lead to fewer re-
jections of the null hypothesis than one would anticipate. This is because
only two parameters are estimated in the construction of the PPCC tests
developed here and elsewhere, yet three parameters are required to fit the
LN3, LP3, and W3 distributions. For this reason, hypothesis tests are not
used for three-parameter alternatives. Instead, the PPCC test statistic is only
used as a goodness-of-fit statistic to discriminate among alternative param-
eter-estimation procedures and competing probability models.

Probability Plots for Lognormal Distribution
Three methods of fitting a lognormal distribution to annual minimum seven-

day low flows in Massachusetts are compared by analytically constructing
a probability plot using Eqs. I, 4, and 5. Here, the values of Y(i) in Eq. I
are computed as:

Y(i)=ln(x(i)-T) (16)

where the X(i) are the ordered annual minimum seven-day low flows and T
is an estimate of the lower bound of the low flows. For the two-parameter

lognormal distribution, T is set equal to zero and the procedure is termed
LN2. For the L~2 distribution, on~ obtains identical estimates of f using
method of moments (MM) estimators or maximum likelihood estimators (MLE)
because f is invariant to the parameters of the distribution. For the three-

parameter lognormal distribution, two procedures are compared. Matalas
(1963), Condie and Nix (1975), and Stedinger (1980) described the method
of moments procedure, which we tenn LN3-MM. Stedinger recommended
the use of a quantile lower bound estimator, which we tenn LN3-STLB

(Stedinger 1980, Eq. 20; or Loucks et al. 1981, Eq. 3.60). Because the LN3-
MM and LN3-STLB procedures for estimating T in Eq. 16 are well docu-
mented in the literature, we do not repeat those equations here.

Fig. I illustrates the values of f for each of the 23 sites described in Table
3 using the LN2, LN3-MM, and LN3-STLB procedures, In general, the LN2
and LN3-STLB procedures produce much more linear probability plots than
the LN3-MM procedure, as is evidenced from the larger values of f asso-
ciated with those procedures (to improve the presentation of the results, the
sites are arbitrarily ordered by increasing values of f associated with the LN2
PPCC test). On the basis of these results, it is not surprising that Matalas
( 1963) and Condie and Nix ( 1975) rejected the LN3-MM procedure for fit-
ting low-flow frequency distributions. However, rejection of the LN3-MM
procedure need not imply rejection of the LN3 distribution. The LN3-MM
procedure requires a sample estimate of the skew coefficient to obtain an
estimate of T in Eq. 16; such sample estimates are known to be highly Un-
stable (Wallis et al. 1974). Both the LN2 and LN3-STLB procedures provide
an excellent fit to the distribution of low flows in Massachusetts. In fact,
the LN3-STLB procedure always resulted in values of f greater than 0.976,
except at site 2, where Stedinger's lower bound could l1ot be computed.

Probability Plots for Weibull Distribution
Three methods of fitting a three-parameter Weibull distribution (W3) to

annual minimum seven-day low flows in Massachusetts are compared using
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FIG. 1. Probablllty-Plot Correlatlon-CoeNlclent Test Statistics Corresponding to
LN2, LN3-MM, and LN3-STLB Procedures

the PPCC test statistic. The PPCC test statistic is defined in Eq. 1 with the

Y(i) given by:

Y(i)=ln(lv(j)-f.]...0 0 0 0..0.0... (17)

in which IV(i) = the ordered annual minimum seven-day low flows; and E =

an estimate of the lower bound of the low flows. Reasonable estimates of
E must be less than the smallest observation W(I), othe~wise Eq. 17 is un-
defined. The Mi in Eq. I are defined as:

M,=ln(-ln(l-pi)]0..0 : , (18)

where the Pi are obtained from Eq. 15. Analogous to the lognormal distri-
bution, each of the fitting procedures for the W3 distribution amount to dif-
ferent approaches for estimating the lower bound E. Tables 3 and 4 docu-
mented that the W2 procedure failed a regional hypothesis test; hence, that
procedure is dropped from consideration here. The approaches considered
here for fitting a W3 distribution are: ( 1) The method of momen[s (W3-MM);
(2) [he method of maximum likelihood (W3-MLE); and (3) the method of
smallest observed drought (W3-MSOD). Gumbel ( 1954, 1958), Matalas
(1963), Deininger and Westfield (1969), Condie and Nix (1975), and Kite
(1977) describe the WE-MM procedure. Cohen (1975), Condie and Nix (1975),
and Kite ( 1977) describe the W3-MLE procedure. Gumbel ( 1963), Deininger
and Westfield (1969), Condie and Nix (1975), and Kite (1977) describe the
W3-MSOD procedure. Because all three procedures are fully described else-
where, the equations are not repeated here. Each of these procedures were
used to estima[e the lower bound E in Eq. 17, and corresponding estima[es
of f were ob[ained by substi[u[ion of Eqs. 17 and 18 into Eq. 1, where the
p, are obtained from Eqo 15. The estimates of r are summarized in Fig. 2
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corresponding to these three-parameter estimation procedures. Overall, the
W3-MSQD procedure resulted in higher values of f (and thus more linear
probability plots) than the W3-MM and W3-MLE procedures. Furthennore,
reasonable estimates of f were obtained at all 23 sites using the W3-MSOD
procedure, whereas many of the other procedures failed to produce feasible
estimates of the parameters of the distribution. For example, the W3-MM
procedure generated values of the lower bound, E, which were greater than
the smallest observation, W(I), at nine out of 23 sites (or roughly 39% of the
sites). Similarly, Matalas ( 1963) found E > W(I) using the W3-MM procedure
at ten out of 34 streams (roughly 29% of the sites) in his investigation.

The W3-MLE procedure often fails to provide feasible parameter values.
The W3-MLE procedure requires the simultaneous solution of three nonlin-
ear equations in e, v, and k. Because the parameter v can be removed from
two of those equations, the procedure reduces to the solution of two non-
linear equations in e and k which must be solved simultaneously. The W3-
MLE procedure did not converge, and, hence, no feasible solution (for ex-
ample, E > w(j) existed at eight of 23 sites (roughly 35% of the sites). As
in the study by Loganathan et al. (1985), the W3-MLE procedure failed to
converge at 14 out of 20 sites (70% of the sites) in their investigation.

Condie and Nix ( 1975) provide the following recommendations for fitting
a W3 distribution:

Maximum likelihood should be used in the first instance to estimate
the parameters. If a lower boundary parameter is not found within the
range zero to the minimum of the data series, then try estimating pa-
rameters by the method of the smallest observed drought, and finally
by moments.
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Their algorirhm is based principally on rhe abiliry of each paramerer esri-
marion procedure to generare values of E in rhe interval [0, W(IJ. In this study,
negative estimates of E are allowed, and the objective is to obtain the most
linear probability plot (highest value of f). Fig. 2 indicates that even when
the W3-MLE procedure converged, corresponding estimates of f were usu-
ally significantly lower than for the W3-MSOD procedure. Hence, the W3-
MSOD is clearly preferred in this study because ir always leads to feasible
solutions. The W3-MLE procedure requires a relatively complex numerical
algorithm; our algorithm was verified by resting ir on the sample of I()()
observations from a Weibull population given by Dubey ( 1967, Table I ),
as is common practice in the field of statistics [for example, Wingo (1972),

pp. 91-92j.
On the basis of the results in Fig. 2, we favor the W3-MSOD procedure

over either the W3-MM or W3-MLE procedures in Massachusetts because
it always led to feasible solutions, it produced consistently linear probability
plors, and ir is computationally convenient compared to the W3-MLE pro-
cedure. Fig. 2 also illustrates that the PPCC test statistic is a useful tool for
discriminaring among alternative parameter-estimation procedures.

Probability Plots for Log-Pearson Type III Distribution
The log-Pearson type III (LP3) disrribution is used widely by hydrologists

for modeling floodflow frequencies. The Interagency Advisory Committee
on Water Data ("Guidelines"" 1982) recommends fitting the LP3 distribution
by applying the merhod of moments for the P3 distribution to the logarithms
of annual maximum floodflows. Their recommendations are based on Beard's
(1974) comprehensive study of flood flows. No comprehensive studies of
the type performed by Beard have been performed for low flows. Never-
theless, Loganathan et al. (1986, p. 131) and Tasker (1987, p. 1077) state
that the LP3 distribution is used widely to model low-flow frequencies. In
fact the U.S. Geological Survey's WATSTORE data retrieval and analysis
system (Hutchinson 1975) routinely fits an LP3 distributipn to low flows by
using the method of moments in log sPilce for the P3 distribution (LP3-MM).
To confirm the suspicion that the LP3-MM procedure provides a reasonable
model of low-flow frequencies, we favor the use of probability plots and the
PPCC rest statistic. Loucks et al. ( 1981, p. 116) recommend the use of the
Wilson-Hilferty transformation for consn-ucring a probability plot for the three-
parameter gamma distribution. We use the Wilson-Hilferty transformation
to construcr probability plots for the LP3 distribution and to estimate the
corresponding PPCC statistic.

For the LP3 distribution, the PPCC test statistic is defined in Eq. I with
the Y(i) = In [X(iJ where the X(i) are the ordered, observed annual minimum

seven-day low flows. The M, in Eq. 1 are determined using

Mi;:my+Sy{~[1 +~-~]J-~} (19)

in which my, Sy, and G = sample estimates of the mean, standard deviation,
and skew coefficient of the y(j); and $-I(pj) = the inverse of a standard

normal random variable which is obtained by substitution of Eq. 5 into Eq.
4. The Wilson-Hilferty transformation gives quantiles of a gamma distri-
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bution in terms of quantiles of a standard normal distribution; hence, Blom's
plotting position (Eq. 5) is used because it is unbiased for the normal dis-
tribution. Eq. 19 provides an accurate approximation to the inverse of the
LP3 distribution as long as -3 s G s 3, which is the case here. When the
skew coefficient G lies outside this interval, Kirby's ( 1972) modified trans-
formation may be used instead of Eq. 19, although even Kirby's modified
transformation fails to reproduce the marginal distribution for large values
of G and/or if the flows exhibit significant autocorrelation (Obeysekera and
Yevjevich 1985). An unbiased estimator of the skew coefficient G is em-
ployed here which corresponds to method 9 in Bobec and Robitaillc ( 1977 )
and the indirect method of moments in Kite ( 1977, p. 126). Lettenmaier and
Burges ( 1980) provide alternative bias correction factors for estimators of
both the standard deviation and skew coefficient of the LP3 distribution; in
fact a variety of alternative procedures are available, as is evidenced in a
study by Bobec and Robitaille ( 1977) of 11 competing parameter-estimation
procedures for the LP3 distribution. Our goal here is to simply compare the

fit of the LP3 distribution with alternative three-pararneter distributions; hence,
we only consider this one parameter-estimation procedure.

Fig. 3 compares the values of f obtained using the three fitting procedures:
LP3-MM, W3-MSOD, and LN3-STLB. Fig. 3 illustrates that the LP}..MM
procedure resulted in more nearly linear probability plots than the W3-MSOD
and LN3-STLB procedures at 17 out of 23 sites (74% of the sites). Similarly,
the LN3-STLB procedure resulted in more nearly linear probability plots
than the W3-MSOD procedure at 17 out of 23 sites.

Figs. 4 and 5 illustrate probability plots at two sites (sites 3 and 6) on
lognormal probability paper. Here the circles are obtained by plotting the
annual minimum seven-day low flows as a function of the Mi obtained from
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A tradeoff exists between the linearity of each probability plot and the
precision (i .e. , root mean square error, RMSE) of corresponding estimates
of Q7.11!. Clearly three- or even four-parameter distributions can genemte more
linear probability plots than a two-parameter distribution, at the expense of
additional sampling error in the parameters. For example, the LP3-MM pro-
cedure requires estimation of a third parameter, G, not required by the LN2-
MLE procedure, and estimates of G are known to be highly unstable for
most of the sample sizes encountered in this study (see Wallis et al. 1974).
Hence one may anticipate that estimation of a third or even fourth parameter
could produce quantile estimates with higher RMSE than a two-parameter
alternative, particularly in situations when the sample size is small and the
two-parameter model provides a reasonable fit, as is the case in this study
for the LN2 distribution. For example, Stedinger ( 1980) documents a variety
of situations in which the RMSE of quanti le estimates resulting from use of
the LN2-MLE procedure is lower than the RMSE of quantile estimates re-
sulting from the use of the LN3-STLB procedure when streamflows arise

from an LP3 parent .
Quantile estimation is further confounded by the issue of independence.

Typically, sequences of annual minimum seven-day low flows exhibit serial
correlation which tends to inflate the RMSE of corresponding estimates of
Q7,IO. For example, the average estimate of the first-order serial correlation
for the basins or this study is 0.19 with sample estimates which range from
-0.12 to 0.56. Tasker (1983). provides a measure of the effect of serial
correlation on the effective record length associated with quantile estimates

for the LN2 and LP3 distributions.

CONCLUSIONS

Probability plots and the probability-plot correlation-coefficient (PPCC)
test statistic are introduced for testing alternative low-flow distribution hy-

potheses and for discriminati~g among compe,ting pa~am.rter,-estim~tion pro-
cedures. The PPCC hypothesis test for the uniform distribution derived here

is shown to be useful for testing regional distributional hypotheses assuming
sites are independent. Regional PPCC hypothesis tests are available for test-
ing the normal, lognormal (LN2), Weibull (W2), and Gumbel two-parameter
hypotheses. In addition, this study derives PPCC test statistics for the three-
parameter lognormal (LN3), Weibull (W3), and log Pearson type-II1 (LP3)
distributions. PPCC test statistics are computed at 23 unregulated sites in
Massachusetts, and the following conclusions have been reached:

I. The regional hypothesis that annual minimum seven-day low flows in Mas-
sachusetts arise from a W2 distribution is rejected; however, there is almost no
evidence to support the rejection of the LN2 regional hypothesis for the same

low flows.
2. The PPCC test statistic was found to be a useful tool for discriminating

among competing probability distributions and parameter-estimation procedures.
Seven procedures were compared for their ability to generate linear probability
plots for low flows. Overall, four of those seven procedures (LN2, LN3-STLB,
W3-MSOD, and LP3-MM)consistently produced linear probability plots as mea-
sured by the PPCC test statistic. Of those four procedures, the LP3-MM pro-
cedure usually perfonned slightly better than the other procedures. This result
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agrees with Tasker's (1987) conclusions for Virginia streams.
3. Previous studies have rejected the lognormal probability distribution be-

cause those studies used the method of moments. We found the LN2 and the
LN3-STLB procedures to be competitive with other preferred alternatives such
as LP3-MM and W3-MSOD. In fact, the LN3-STLB procedure performed slightly
better than the W3-MSOD at most sites in Massachusetts. The LN3-MM pro-
cedure perfonned poorly, as it did in previous studies by Matalas (1963) and
Condie and Nix (1975), for other locations in the United States and Canada.

4. A complex tradeoff exists between the linearity of a probability plot and
the precision of estimates of design quantiles. Probability distributions with three
or more parameters tend to produce quite linear probability plots, because ad-
ditional parameters allow more flexibility in temls of the location, scale, and
shape of the modeled distribution. However, this additional flexibility often oc-
curs at the expense of a loss in precision associated with estimated quantiles.

5. The PPCC test statistic, based on infonnation contained in a probability
plot, is computationally convenient and is easily extended to other one- and two-
parameter distributional hypotheses not reported here. As long as the hypothe-
sized cumulative distribution function of a random variable can be expressed (or
approximated) in its inverse fonn, the PPCC test statistic f in Eq. I is easily
calculated. We hope that future studies will extend the PPCC tests described
here to other regions so more general conclusions regarding the distribution of
low flows can be reached.
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