CHAPTER 7

COUNTRYSIDE LANDSCAPE
VISUAL ASSESSMENT

Sally Schauman

Countryside is a recognizable unit containing a predominance of agricultural patterns and activities and defined by both cultural interpretations and the physical setting.

SCHAUMAN AND PFENGER 1982
Countryside is a comfortable concept. It is the landscape we believe we know and love. Public interest in this landscape is widespread and growing. The federal government admonishes us to save prime farmland, advertisers use quaint scenes of farm life to sell their products, and interest groups form national coalitions to conserve countryside life and land. Our reactions to countryside go beyond buying coffee mugs with cows painted on them. Thousands of people have moved to rural areas in the past decade (Economic Research Service 1981). This dramatic population shift has resulted in growth and change in areas which had changed only slightly in the past. New factories, shopping centers, bypass roads, five-acre estates, farmettes, recreational vehicle campgrounds, and water resource projects transform landscapes where previously only the crop may have changed through the years. These landscapes are often the sites for surface mining, transmission lines, slurry conveyors, oil-gas pipelines, and water supply conduits. Clearly, the countryside is a landscape of present change—a landscape that is going to look different in the future.

Visual changes are often the least understood and yet the most controversial aspect of land use change. The process of assessing visual changes in countryside landscapes can be understood by considering the five following facets:

1. Assessment context
2. Client/user
3. Landscape
4. Evaluation
5. Overall process

ASSESSMENT CONTEXT

Understanding the context is the first step in developing a visual assessment. Context means the ultimate use of the assessment. Contexts vary (see Figure 7.1) from those in which a calculated answer is most important to those in which the dialogue is most important. Some visual assessments serve best as catalysts for community action. This is particularly true in small countryside communities where few, if any, professional planners are on staff. The main purpose of these assessments is not the professional’s evaluation, but the local residents’ increased awareness of their visual environment and its probable future appearance. The professional’s role is to facilitate this enhanced awareness. To do this, the professional may use any one of the many visual assessment techniques from preference testing (Kaplan 1979) to rating forms listing visual factors such as color and form (BLM 1980a; Smardon et al. 1983). For example, the U.S. Soil Conservation Service (SCS) helped the town of Acton, Massachusetts, conduct visual quality assessment. A citizen’s committee photographed local scenes and buildings and administered a Q-sort (forced rating) preference test (Pitt and Zube 1979) to neighbors. Although the test did not meet the standards of research protocol, it was highly effective. Developers were interested in what landscapes people preferred, and the town government moved to acquire visual easements on pastoral landscapes located at the entrance to town. Practitioners who use visual assessment in the dialogue-important context understand the role of the social interaction plays in countryside areas.

Even when people live great distances apart, they may consider themselves neighbors within a community. People in small towns expect to be involved. In the experience of this author, the dialogue of visual assessment provides more opportunity than any other planning technique for dealing with visual change in countryside areas. At its best, the visual assessment process can help the visually illiterate to read their landscape. As Penning-Rossell states, “We need to identify what people believe are the facets of landscape value, rather than what the researcher, the historian, the landscape architect and planner think they believe.” (Penning-Rossell, 1981). Dialogue important visual assessment should be tried first unless the context is clearly an impact assessment of a highly controversial project where the battle lines have already been etched.

On the other end of the continuum are visual assessments done in the context of litigation. In these instances, the process and its methods of
quantification must stand up to intense scrutiny. The professional conducting the visual assessment can depend upon testifying as to the validity of the methods. In these cases, the visual assessment resembles research and the measurement methods must be reliable, valid and generalizable. These assessments must validate answers to narrowly defined questions. Practitioners must scrupulously document everything from the process design to field notes. For example, if photos are used, the practitioner must be prepared to testify that he or she took Photo A and can verify the photographic specifications as to lens, location, time of day, and so forth. Obviously, the cost of documentation can be great and often may be overlooked by the inexperienced. Sometimes practitioners believe they are operating in the middle range of the assessment context (Figure 7.1) only to find themselves backtracking to verify data that was gathered haphazardly earlier in the process.

CLIENT/USER

After establishing the assessment context, the practitioner then must ascertain the users’ attitudes and values for that special landscape. Even when the client/user group seems to be well understood, care should be taken to unveil the symbolic meanings associated with countryside landscapes, for more often it is symbolic meaning, not preference, which motivates our value judgments and reactions. More than any other landscape, the countryside conjures nostalgic rather than real interpretations. Often this symbolism goes beyond and does not include the actual physical realities of the landscape. Understanding landscape symbolism is crucial to our understanding of peoples’ reactions to landscapes. To date, research on landscape meaning is nascent, but nevertheless has shown interesting results.

In one study, the author asked more than 70 students in four universities to describe and draw a typical countryside landscape. Similarities of the descriptions were striking—most featured simple barns, pastures, woodlots, and fields. The students gave very little recognition to the distinctive appearance of their regional landscapes. Students in Mississippi, Indiana, Washington, and California described the countryside as if it were all the same. Since these were design students trained to observe the landscape, the study seemed to indicate that a nostalgic image of the countryside may be more influential than the actual landscapes. The countryside nostalgia may have early beginnings. In another study conducted at the University of Washington, researchers evaluated the pictorial descriptions of countryside landscapes in 200 children’s books. The pictures of farm scenes in these books were nostalgic stereotypes of farms prevalent more than 50 years ago. Even when other pictorial descriptions in a story were modern (characters were ethnically and racially mixed, gender stereotyping was eliminated, and modern events such as space exploration were included), the farm scenes were very similar—nostalgic and old-fashioned. They depicted farming as a gentle occupation in which every family had a few cows and other animals, fruit trees, vegetable gardens, and a small acreage on which all crops were grown. In this author’s judgement, nostalgic stereotypes rather than real images form a strong basis for the existing attitudes and values held toward countryside and potential visual changes.

It is useful to understand these stereotypes for they are voiced by users. The research and discussion by cultural geographers, sociologists, and historians has made it easier to sort out these stereotypical versions. One stereotype sees the landscape as sanctified because farming is a noble endeavor basic to all economic pursuits—perhaps even to democracy. This view is rooted in agrarianism, a concept popularized by Thomas Jefferson (Flinn and Johnson 1974). Since the farm family is a respected American ideal, to tamper with the sanctity of agricultural landscapes is to tamper with a fundamental freedom. It has been interesting for this author to note how strongly the agrarian attitude is held by those who neither farm nor live in countryside areas. These agrarian values often are transferred to corporate agricultural landscapes which are managed at a distance and which contain no farm family. Because agrarianism implies self-sufficiency, however, one should not assume farmers are interested only in utilitarian values for the landscape and not interested in beauty. Some farmers take great pride in the appearance of their work—examples are the careful choices of colors for new metal buildings to match existing ones, meticulous fence painting, and opposition to no-till farming because it looks “messy.”
The back-to-basics/flee-from-the-city user exemplifies another stereotypical attitude. This attitude places higher value on anything nonurban than on anything resembling the urban scene. Some researchers describe this as ruralism (Buttell and Flinn 1977; Falk and Pinkey 1978) and use it to explain the nonfarming rural resident’s decision to live in the countryside. In this author’s judgement, this attitude is the hardest to deal with because it is ambivalent and inconsistent. People holding this attitude have fled from the city to something else not defined clearly yet desired passionately. Sometimes ruralism values are in direct conflict with agrarianism and often lead to a no-growth stance for a community.

A third attitude and potent value system is related to the first two but is more straightforward. It is the attitude of pastoralism or as Marx (1968) explains, our search for happiness, order, and the meaning of life in the countryside. Pastoralism requires no utilitarian function of the landscape. The resulting perception is a romantic notion of peace, tranquility, and scenic beauty which has lured people to countryside retreats for centuries (Marx 1968; Vance 1972). People who hold these values move to the countryside have a certain visual expectation. They can tolerate visual change as long as it is not perceived as a threat to beauty and tranquility. Unlike ruralism, but similar to agrarianism, pastoralism is an attitude often held from afar. These are people who value the appearance of a serene countryside even though they do not live in it or use it.

To lump all countryside attitudes within one of these three categories is simplistic. The point of the distinction is to remind ourselves that present demographic trends result in a heterogeneous set of often conflicting attitudes among countryside residents. Often these attitudes are not conscious and do not surface until changes are contemplated. Most importantly, all of the attitudes involve symbolic rather than utilitarian values. As the geographers Sauer (1925) and Hart (1975) have long contended, the landscape is both a physical and a cultural concept. Perhaps more than any other landscape, the tended fields of the countryside symbolize our most revered meld of man, nature, and time. Those who attempt to assess visual change must understand this and integrate the physical and cultural components of countryside.

**LANDSCAPE**

In any visual assessment, one must choose a landscape unit and consistently describe its visual resource. Choosing an appropriate landscape unit would be easier if perceptual research had given us a clearer notion of the optimum size for human comprehension—a perceptual unit in the landscape. Unfortunately, research has not done this. Therefore, choosing a unit size becomes a function of the landscape’s homogeneity and the objectives of the assessment. Generally, the more homogeneous—appearing the landscape, the larger the units. In impact assessments, the unit size should relate to the scale of the proposed changes. In other assessments, size may vary. For example, if the purpose of the assessment is to designate countywide scenic easement areas, the units should relate to local viewsheds and to political boundaries. In other words, determining the size of landscape units is a judgment based on visibility and diversity of the landscape and the purpose of the assessment. With regard to the visual resource, research indicates several considerations.

First, deceptive descriptions such as natural and human-made should be avoided. The countryside is the inbetween landscape and consists of natural (riparian vegetation), man-made (fiberglass silos), human modifications of nature (cropfields), and nature’s modifications of human-made (oil fields and decaying barns). Natural and human-made are terms which have ambiguous interpretations in the countryside. Are the dark/light ribbons of dry land wheat farming natural because they follow the contour, or human-modified because they are evenly spaced? (See Figure 7.2.)

The visual resource is the consistently definable appearance of the landscape and may be described by the measurable visual elements; topography, water, vegetation, sky, human/animals and structures and the pattern of interacting among these elements. (adapted from U.S.D.A.S.C.S. 1978)

Considering the elements individually, some conclusions are reasonable. Topography is not as important visually in the countryside as in other landscapes because rugged topography usually is
not farmed in this country. Flatter crop and pasture lands account for more than 25 percent of all nonurban U.S. lands. This percentage rises significantly when parklands, wilderness and federal forests are excluded from the nonurban base. Since countryside areas often are rolling or flat, the horizon line tends to be a uniform visual edge. Any change which breaks up the uniformity becomes conspicuous. The horizontal nature of croplands makes them visually sensitive to the presence of vertical elements such as shelter-belt trees, windmills and transmission towers. When slight topographic relief exists, it often is visually exaggerated by contouring farm practices such as terracing and strip cropping (see Figure 7.2). Since there are fewer elevated viewpoints in the countryside than in more rugged landscapes, the plan views of ground surface patterns are seen less extensively. Thus disruptive patterns to the surface can be screened more easily.

Vegetation, in many ways, is the essential element of countryside landscapes—crops, lands, pastures, rangeland, and woodlots. As crops flower, fruit, and ripen, they provide a continuing visual focus. Some crops such as mature corn or evergreen citrus trees act as visual screens since at ground level little can be seen through them. In very flat agricultural landscape, irrigated row crops set up strong visual linear matrices. Any nonlinear form located amid these straight lines will stand out.

Most researchers agree that water is one of the most preferred visual elements in the landscape (Zube et al. 1974; Litton et al. 1974). Although most research has focused on nonagricultural landscapes, there is no evidence to indicate that irrigation, farm ponds, and other agriculturally related water would be viewed less favorably. It may be that irrigation water sparkling in the sunlight of an arid landscape provides a unique visual resource.

At first glance, the sky seems to be too ephemeral to be considered as a measurable visual unit. Yet visibility can be modified by pollution and is measurable. In some Western states, residents have long acknowledged the importance of a clear, expansive sky. For example, Montana auto plates proclaim the state to be “big sky country.”

In this author’s judgement, human activity or animals and structures provide reactions that are
strong and negative, but beyond that are not easily predictable. The image of a green pasture with contented cows is a vivid, perhaps quintessential, stereotype of farm activity. Does the same pasture with cows munching under concrete transmission lines receive the same praise? The farmer turning dark, moist earth in the spring to begin again the cycle of life evokes a feeling of goodness. Yet, the same farmer spreading manure may not win such a positive public reaction. We know people like to look at wooden barns and quaint farmsteads. Do the structures of modern farm technology evoke similar pleasant reactions? What is the function of Figure 7.3, and how do you think people react to it? It is not a grain elevator. To date, no research has been done to effectively sort out these ambiguities. The unpredictability of the public's reaction is another reason why the cultural component in the countryside should be given equal consideration with the physical landscape in all visual assessments.

Another consideration in landscape description is the pattern of interaction among the landscape elements. Recent research indicates that land use/cover or the pattern of interaction is an important factor in our perception of agricultural landscape. This finding varies from conventional professional wisdom, which to date has declared topography a single element and to be the most important basis in classifying land for visual analysis. However, previous classifications and most research has been focused on wildlands and forested landscapes. In one of the few research studies to focus on cropland, Nassauer decided that "land use is the most important indicator of meaning" and "meaning seems to be the most fundamental determinant of visual quality" (Nassauer 1979). In other studies done recently for the Soil Conservation Service, researchers concluded that "land form was not sensitive enough to be used as the basis for a classification system of predominantly agricultural landscapes, but that it should be included as a modifier" and "as part of ... evaluation" (Schauman and Pfender 1982). These researchers proposed a hierarchical taxonomic (place-independent) classification system based on land use/cover adjusted by local place-dependent modifiers. The proposed classification, Table 7.1, incorporates SCS definitions, classifications proposed by the U.S. Geological Survey for remote sensing data (Anderson et al. 1976), and common visual sense.

In the proposed system, modifiers are local landscape elements which do change our perceptions. They need not necessarily be contiguous to but are seen in combination with the classified land use/cover. At a regional scale, modifiers are mountains/hills, all forms of water

![Figure 7.3](image-url) Catfish food storage facility. Photo credit: S. Schauman.
### TABLE 7.1. Countryside Classification System

<table>
<thead>
<tr>
<th>LEVEL I</th>
<th>LEVEL II</th>
<th>LEVEL III</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cultivated Lands</strong></td>
<td><strong>Row crops</strong>&lt;br&gt;<strong>Solid-seeded crops</strong>&lt;br&gt;<strong>Crops requiring cultivation</strong></td>
<td><strong>Type of crop</strong>&lt;br&gt;<strong>Farming method</strong>&lt;br&gt;<strong>Cultivation factors</strong></td>
</tr>
<tr>
<td><strong>Orchards</strong></td>
<td><strong>Deciduous</strong>&lt;br&gt;<strong>Evergreen</strong>&lt;br&gt;<strong>Palms</strong></td>
<td><strong>Patterned and spacing</strong>&lt;br&gt;<strong>Species</strong>&lt;br&gt;<strong>Local/special cultivation factors</strong></td>
</tr>
<tr>
<td><strong>Grazable Lands</strong></td>
<td><strong>Range lands</strong>&lt;br&gt;<strong>Shrub and brush</strong>&lt;br&gt;<strong>Mixed</strong>&lt;br&gt;<strong>Native</strong>&lt;br&gt;<strong>Improved</strong>&lt;br&gt;<strong>Grazable woodlands</strong>&lt;br&gt;<strong>Species composition-variety</strong>&lt;br&gt;<strong>Proportion of species-density</strong>&lt;br&gt;<strong>Height variation</strong></td>
<td><strong>Herbaceous</strong>&lt;br&gt;<strong>Habitat</strong>&lt;br&gt;<strong>Status e.g., old field, etc.</strong></td>
</tr>
<tr>
<td><strong>Forest Lands</strong></td>
<td><strong>Deciduous</strong>&lt;br&gt;<strong>Evergreen</strong>&lt;br&gt;<strong>Mixed</strong></td>
<td><strong>Crown cover</strong>&lt;br&gt;<strong>Species-variety</strong>&lt;br&gt;<strong>Status e.g., old field, etc.</strong></td>
</tr>
<tr>
<td><strong>Built-Up Lands</strong></td>
<td><strong>Farmsteads, non-dairy</strong>&lt;br&gt;<strong>Thoroughbred horses</strong>&lt;br&gt;<strong>Cattle ranches</strong>&lt;br&gt;<strong>Mixed crop farms</strong>&lt;br&gt;<strong>Single-crop farms</strong>&lt;br&gt;<strong>Open-pastured animals</strong>&lt;br&gt;<strong>Confined animals, no pastures</strong>&lt;br&gt;<strong>Roofed structures, chickens</strong>&lt;br&gt;<strong>Non-roofed structures, corral, etc.</strong>&lt;br&gt;<strong>Special facilities, aquaculture, etc.</strong></td>
<td><strong>20,000 to 5,000</strong>&lt;br&gt;<strong>15,000 to 20,000</strong>&lt;br&gt;<strong>5,000 to 15,000</strong>&lt;br&gt;<strong>Less than 5,000</strong>&lt;br&gt;<strong>Crossroads ag. service center</strong>&lt;br&gt;<strong>Residential, resort and recreation</strong>&lt;br&gt;<strong>Industrial and commercial-isolated and remote from urban areas</strong></td>
</tr>
<tr>
<td><strong>Barren Land</strong></td>
<td><strong>Natural</strong>&lt;br&gt;<strong>Salt flats</strong>&lt;br&gt;<strong>Beaches, dunes</strong>&lt;br&gt;<strong>Bare rock</strong></td>
<td><strong>Human impacted</strong></td>
</tr>
</tbody>
</table>

**Combination Landscapes**

Source: S. Schumaun and M. Pfender, 1982.

including irrigation, nonagricultural structures, and sky. For example, perception of land use seen in the Pacific Northwest changes if one of the Cascade peaks is visible (see Figure 7.4). Similarly, our perception of land use in Long Island will be modified when highrise skylines form a backdrop. At a local level, mountains/hills, water, and structures remain important, but other modifiers such as human activity, animals, and non-crop vegetation become more significant. For example, hedgerows and solitary trees modify our perception of nearby fields and pastures (see Figure 7.5).

**EVALUATION**

Evaluation involves decisions as to who will evaluate and what criteria will be used. Most visual assessment professionals agree that a solitary practitioner can no longer make professional visual judgments in isolation and expect that these
FIGURE 7.4. Mountains and hills as modifiers. *Photo credit:* Soil Conservation Service, USDA.

FIGURE 7.5. Vegetation (hedgerows and single trees) as modifiers. *Photo credit:* Soil Conservation Service, USDA.
will be implemented or withstand legal scrutiny. One method of dealing with evaluation has been to use trained observers to rate landscapes. This method has had mixed success (Smardon et al. 1983; Vermont Transportation Board 1979). In the judgment of this author, visual assessment in the countryside is so intertwined with poorly understood cultural interpretations that neither professional nor lay-trained observers should be used as surrogates for the public in rating the landscape. The user—the public—should be the key player from the beginning. If the assessment context (see Figure 7.1) is community planning, then the widest participation of residents in the dialogue is preferable. If the context is litigation, then data from a cross-section of users in proportion to their use is important.

In evaluation, one can choose among the plethora of criteria emerging from research during the past 20 years (see Table 7.2). Some of the criteria measure the landscape’s ability to absorb change, others evaluate inherent visual qualities of the landscape which contribute to a higher quality visual resource, and a few criteria reckon with peoples’ preferences for certain landscape scenes. Visual resource quality criteria have emerged from a variety of research sources. Some of these include environmental psychologists studying peoples’ preferences for landscape and landscape architects analyzing various landscapes and the impact of change on these landscapes. Some of the criteria, their derivation and their applicability to countryside landscapes are:

1. Fragility or visual absorption capabilities (VAC). This is a measurement of the landscape’s range of abilities to absorb change. The criteria is a function of landform, vegetation, and visibility through the landscape. First proposed in 1969 (Jacobs and Way 1969a), it has been researched and applied extensively (Litton 1974; Yeomans 1979; Anderson et al. 1979). Although much of the discussion has focused on the VAC of forested landscapes, translation to countryside landscapes is possible. For projects where multiple sites are available, fragility/VAC can help determine the best site to either enhance visibility or to hide a project.

2. Character or congruence or contrast. Given various labels, this criteria is a judgment based on traditional visual design factors of form, line, color, texture, and scale. This fundamental notion is as old as landscape architecture (Hubbard and Kimball 1917; Simonds 1961; Laurie 1975), most recently reappearing as a contrast rating scheme

**TABLE 7.2. Comparison of Landscape Indicators**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>(DESCRIPTIVE) ONLY, NO EVALUATION</strong></td>
<td><strong>QUALITY INDICATORS</strong></td>
<td><strong>PHYSICAL DIMENSIONS CORRELATING WITH POSITIVE SCENIC VALUE</strong></td>
<td><strong>PERCEPTUAL CONTEXT CONTEXT</strong></td>
<td><strong>DIMENSIONS OF SCENIC RESOURCE VALUE</strong></td>
</tr>
<tr>
<td><strong>LANDSCAPE INDICATORS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boundaries &amp; edges</td>
<td>spatial definition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>landform &amp; topography</td>
<td>relief</td>
<td>landform</td>
<td>spatial configuration:</td>
<td>landform:</td>
</tr>
<tr>
<td></td>
<td>ground plane patterns</td>
<td>natural features of vegetative cover</td>
<td>--coherence</td>
<td>--edge contrast</td>
</tr>
<tr>
<td></td>
<td>water</td>
<td>water</td>
<td>--complexity</td>
<td>--spatial diversity</td>
</tr>
<tr>
<td>focal attractions</td>
<td>sitting vertical features</td>
<td>farm buildings</td>
<td>--legibility</td>
<td>--slope</td>
</tr>
<tr>
<td></td>
<td>land use</td>
<td></td>
<td>--mystery</td>
<td>--relative relief</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td>water</td>
<td>water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for evaluating the visual impact of projects proposed on federally managed lands (BLM 1980a). While easily used by landscape architects, the criterion is fraught with application problems in the countryside. First, it is much harder to describe form/line/color/texture/scale changes in a melded landscape than to describe these changes in one which is either predominantly natural or human-made. Secondly, there is scant evidence that lay people see, much less can consistently rate, these visual factors (Smardon et al. 1983; Feimer et al. 1981). In this author’s judgement, character/congruence/contrast can be used very effectively in community planning to help residents see the visual character of the countryside. A community planning example is the application by Vermont to designate scenic roads rated by local citizens (Vermont Transportation Board 1979). It should be used carefully as a precise measurement for rating visual impact in predominantly agricultural landscapes.

3. Fitness. This criterion measures the range of landscape conditions resulting from human stewardship—tidy, conserved, reclaimed, littered, battered, derelict. It is more a measurement of the care of the people who inhabit the landscape than of the landscape itself. As such, it is difficult to use this criterion in community planning because it can be insulting to some participants. On the other hand, it is an index which might be useful to demonstrate how a project might improve fitness or at least not diminish the local standard. It is a commonsense notion, correlated with preference (Ellsworth 1982) and is particularly relevant in the countryside. For these reasons, it was proposed recently to SCS (Schauman and Pfender 1982).

4. Structure or spatial definition. This is a measure of the “range of landscape conditions from those which offer limited but undefined views to those which offer no vista or where all views are blocked” (Schauman and Pfender 1982). Geographers’ theories (Appleton 1975), environmental psychologists’ research (Kaplan and Kaplan 1982) and classic landscape architectural wisdom (Simonds 1961) all conclude that humans are more comfortable in and therefore need or prefer landscapes which fall in the middle range of this criterion. In the flatter countryside, land cover contributes to spatial definition. At one end of the range are the flat, wide-open views characteristic of alfalfa fields; at the other end are the citrus groves which block all visual access. Structure or spatial definition may be the most important visual criterion contributing to quality in the countryside.

5. Information. This is a “range of landscape conditions from those which provide maximum information, in which all of the parts may be visible at first glance, to those which contain no interest or little information or contain disordered information” (Schauman and Pfender 1982). This criterion relates to structures or spatial definition, but is not the same. Psychologists tell us that the quantity of information is important to our comprehension of and comfort in the landscape (Kaplan and Kaplan 1982). Simply put, we try to make sense out of our visual world and, at times, it can be too bland or too chaotic. Information can emanate from natural or human-made elements. This criterion relates to “variety” as proposed as a visual quality criterion by the U.S. Forest Service (1974). This author prefers the term information over variety because the latter can be confused with other variety indices in the environment, for example, ecological factors. Landscape architects have researched and long maintained that visual interest relates to visual quality (McCarthy 1979; Greenbie 1976). This criterion focuses on the nature of that interest.

6. Preference. This ranges from “like very much” to “dislike very much.” It is a judgment on the whole scene derived from both conscious and unconscious notions. Since it seems similar to a vote, it can be used effectively in community planning to reduce resistance to visual assessment. It is useful as a planning tool (Kaplan and Kaplan 1982), as a part of a research protocol, and to calibrate the evaluation criteria listed above within a local context. Preference tests range from Q-sorts of photos and simple black/white rating sheets to sophisticated videotapes for rating simulated models of proposed changes.

7. Uniqueness. This is a rating of the special or one-of-a-kind quality of certain landscapes or artifacts. This criterion is most obvious and usually emerges early. In the countryside, it relates to the urban landmark described by Lynch (1960).

8. Vividness/intactness/unity. These are three criteria used together to evaluate visual quality. Applied extensively by one landscape architectural firm (Blair et al. 1979; Gray et al. 1979), they
were derived from the evaluation factors—unity, variety, and vividness proposed by Litton et al. (1974) for waterscapes. Essentially, the three criteria combine many of the evaluation factors noted above. The terms are familiar to visual designers but not necessarily to lay people. There is no research indicating that humans organize perceptions into these three factors. Caution should be taken when using these terms to simplify visual assessments. In one application, eight separate ratings were used to gather data for just one of the factors (Burnham et al. 1974).

**OVERALL PROCESS**

The context, user/client, landscape, and evaluation are all facets which must be finally integrated into an assessment process (see Figure 7.6 and Table 7.3). In search of an established visual process for the countryside, researchers recently surveyed the visual assessment literature of the past 16 years and concluded:

1. Visual assessments done in other countries are difficult to translate to the American countryside because our agricultural practices differ significantly.
2. Most of the studies have not been researched but have been visual impact assessments. These have tended to describe the countryside with less detail than the visual character of the proposed changes.
3. More research has been done for forests, wildlands, and coastal landscapes than for the countryside (Schauman and Pfender 1982).

In other words, no handy visual assessment process for the countryside exists such as the one developed and researched by the U.S. Forest Service for forest and wildlands (U.S. Forest Service 1974). For example, SCS, which provides technical information on the countryside, maintains that no one visual assessment process will work in all SCS contexts because of the paucity of research on the wide diversity of project scales, users, and landscape types. We should not be discouraged by the fact that there is no established visual assessment process for the countryside. This is desirable because the practitioner should develop a process appropriate to the specific assessment objectives rather than try to modify a

![Diagram](image-url)
process developed to meet other objectives. There are guidelines for developing an assessment process when the objective is to assess the visual impacts of a federal project as required by the National Environmental Policy Act. For example, a comprehensive set of guidelines has been written for evaluating impacts on water resource projects (U.S. Water Resources Council 1983).

While the visual assessment process needs to be developed specific to the project in question, some common notions do prevail. The following guidelines should be kept in mind:

1. Ask the right questions. In one visual assessment, the public stated that it objected to the color and shape of a project while it really objected to the project's view-blocking (Schumann 1982).

2. Conduct a preliminary analysis to determine the visibility (Felleman 1979, 1982), viewer, and the visual resource. Generally, the client/user has only a partial notion as to visibility and the range of viewers involved. One process for doing this is a procedure used by SCS (U.S.D.A.S.C.S. 1978). Also see Chapter 9.

3. Set clear limits for the assessment. Is the problem only visual or are other aesthetic considerations such as noise or odor involved?

4. Learn about existing and future farm practices. Many agricultural activities will change in the future. For example, dairy farming practices of confining cows in loafing sheds rather than putting them out to pasture affects visual quality. This is a trend which is increasing and somewhat predictable.

5. Keep the assessment process as free from the practitioner’s own stereotypes and biases as possible.

6. Keep abreast of recent research. This is not an impossible task and is well worth the effort. Research conclusions often emerge and challenge our notions of evaluating visual quality. For example, a recent dissertation by Sheppard gives us much needed new information concerning the technology and application of visual simulation techniques (Sheppard 1982). Also see Chapter 11.

7. Do your own homework. Don't assume that factors and techniques cited in reports have been based on research. Nothing can harm the credibility of visual assessment more than conclusions derived from shallow investigation. Remember that repetitive use by a wide variety of practitioners does not always indicate an accurate, researched fact.