SELECTION SYSTEM: REPRODUCTION METHODS

Ralph D. Nyland
Department of Forest and Natural Resources Management
SUNY College of Environmental Science
and Forestry
Syracuse, NY 13210

Nyland - 2010

All rights reserved
Use of all or parts of this permission prohibited
without express consent of Ralph D. Nyland

Background reading:

Sources cited:

in Northern Hardwoods Using Different Cutting Cycle Lengths. Unpubl. manuscr. SUNY Coll. Environ.
Sci. and For. Syracuse, NY

Leak, W.B., and S.M. Filip. 1977. Thirty-eight years of group selection in New England northern

Fac. For. Misc. Publ. NO. 13 (ESF 87-002), Soc. For. Publ. No. 87-03
Recall that uneven-aged silviculture requires three prescriptions:

1- Residual density and cutting cycle length
2- Residual diameter distribution and maximum DBH
3- An appropriate reproduction method

... to uniformly intersperse the age classes

... to arrange them by family groups

For now focus on an **appropriate reproduction method** ...

... to uniformly intersperse the age classes

or

... to arrange them by family groups
Selection system silviculture
(GREEN shows the reproduction method)
One approach …

SINGLE-TREE SELECTION METHOD

Remove individual mature trees here and there from across the stand area …

... from an area (ground space) equivalent to that allocated to the mature age class

The space opened …

… that previously occupied by single mature trees

... cut from across the stand area, taking out widely dispersed mature trees

The area per age class:

\[A = \frac{43,560}{(R \div CC)} \]

Where:

- \(R \) = years to grow an individual tree to maturity
- \(CC \) = interval between cuttings (the cutting cycle)
- 43,560 = ft²/ac
… cutting individual trees here and there across the stand

It assumes this kind of age class intermixing …
Like this …

Within single-tree selection system:

The reproduction method ...

Overmature & Defective #1
Dukes Experimental Forest
May 2009
Within single-tree selection system:

The reproduction method ...

- open the spaces occupied by widely-dispersed SINGLE mature trees

- remove sufficient individual mature trees to cover the area allocated to the different age classes

... with AREA = 43560 ÷ (R ÷ CC)

Single-tree selection method ...

Always ADDING tending ...

... to make it a system
Uniformly dispersed cutting …

… of mature trees and for the tending

Single-tree selection system …
By *ADDING* tending ...

- thinning intermediate age classes to allocate resources in their space to fewer of the best trees
To this ...

Based on this ...

... representing a composite of residual trees in several age classes
Single-tree selection system -- before cut

Single-tree selection system -- after cut

... uniformly distributed at the proper density
… tending and regeneration by cutting single trees

THE SELECTION SYSTEM

- a new age class in the space previously given over to the mature trees

- a tending of the immature age classes

- a harvest of excess trees

… and a timber sale to provide revenues from the process
A stand under single-tree selection system … ….

... with trees of the different age classes uniformly interspersed

And what does single-tree selection method lead to …

- low light levels near the ground
- poor environmental conditions for species of low shade tolerance
- largely shade-tolerant species in the regeneration

.... at least with traditionally used stocking levels
Regenerating dominantly shade-tolerant species ... like sugar maple

Unless you cut heavily and leave a low residual stocking ...

Such as these options ...

TABLE 10-2
ALTERNATE RESIDUAL STRUCTURES TO PRODUCE LARGE SAWTIMBER WITH DIFFERENT LENGTH CUTTING CYCLES FOR NORTHERN HARDWOOD STANDS UNDER SELECTION SYSTEM (AFTER HANSEN AND NYLAND n.d.; NYLAND 1986, 1987).

<table>
<thead>
<tr>
<th>ddb</th>
<th>15 yrs.</th>
<th>20 yrs.</th>
<th>25 yrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ft²/ft²)</td>
<td>(ft³/ac)</td>
<td>(ft³/ac)</td>
<td>(ft³/ac)</td>
</tr>
<tr>
<td>2–5</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6–11</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>12–16</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>17+</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>85</td>
<td>70</td>
<td>65</td>
</tr>
</tbody>
</table>
... e.g., leaving 65 ft2/ac for a 25-year cutting cycle

With elevated light near the ground due to the open canopy ...
… increasing chances of regenerating a component of less shade-tolerant species

How about GROUP SELECTION METHOD …

… given a scattered clustering of trees in different age classes by family groups
Group selection method:

Remove groups of 2 or 3 financially mature trees growing adjacent to each other …

… or more depending on the species characteristics
Group selection method:

Remove groups of 2 or 3 financially mature trees growing adjacent to each other …

… do this across an area (in groups) equivalent to that allocated to the mature age class
Cutting of family groups...

... of mature trees and for the tending

Group selection method:

Remove groups of 2 or 3 financially mature trees growing adjacent to each other …

...do this across an area (in groups) equivalent to that allocated to the mature age class

And disperse the groups across the stand area …
… with group locations depending on the clustering of mature trees

… to regenerate a new cohort by groups inside these larger openings
Within the context of group selection system ...

THE REPRODUCTION METHOD:

- identify family groups of mature trees

 … the size and shape of these groups depends on the arrangement of each “family group”

- cut family groups from the area allocated to the mature age class

 … with Area = 43560 ÷ (R ÷ CC)
Grouped by age class …

… after group selection system treatment
Always adding the tending …

… group openings for regeneration, PLUS thinning the clusters of immature trees

Group selection system -- before cut
Group selection system – after cut

… with uniformly distributed residual trees at the proper density between the former mature groups
NOTE THIS!

20-inch sugar maple tree has a crown area of

1500 ft2 of space

A 3-tree group would cover

4,500 ft2 of space

... a group opening about
1 tree height wide
With a 15-year cutting cycle …

… and growing each age class for 100 years

… you would have about 7 age classes per acre

Each age class will occupy

6,223 ft2 of space

And to keep the age classes in balance …

… you can cut 3 groups per 4 acres

To maintain a balance among the age classes …

... representing a composite of residual trees in several age classes
And always add tending …

- thinning the immature family groups over the remainder of the stand area …

... to regulate the number per age class

... and concentrate the growth onto the best trees

… regeneration by groups, plus tending of the immature classes
And you get …

- a new age class arranged in new family groups in the area previously occupied by mature trees
- tending of family groups of immature ages
- a harvest of timber

… a system if you do it ALL!!!
Some characteristics of group selection method ...

- Site resources increase more *within the group space* than with single-trees selection method

- Surrounding trees modify the environment somewhat, making conditions less harsh than in large openings

- Root competition, soil moisture, nutrient withdrawals, and light / temperature levels change considerably within the group space

With brighter conditions inside the group openings ...

... particularly if circular in shape
But in the space **between** the group openings ...

... environmental conditions do **NOT** change sufficiently for establishment and long-term development of regeneration

... particularly for species of low shade tolerance

But inside group openings of sufficient size ...

... you can regenerate **SOME** less shade-tolerant species/trees, given an adequate seed source

... but **ONLY** in the group space opened by cutting **AT LEAST** 2 to 3 mature trees (and circular openings)

... *widths AT LEAST 1.5 to 2 times tree height*
Higher light …

... better for the less shade-tolerant species

SOME limitations to group selection as a reproduction method …

-- trees don’t necessarily occur in well-arranged family groups that occupy equally proportional areas within a stand

-- inventory methods don’t conveniently identify or locate family groups and their spatial distribution

... thus you have difficulty knowing what to cut to create & maintain a balance among the age classes
These limitations complicate marking for a group selection cutting …

... especially after the first entry

So we face uncertainty about …

... where and how many
Think about this alternative ...

PATCH-SELECTION SYSTEM ...

After Lezh and Filp 1977

PATCH-SELECTION ...

... a hybrid method

... splitting the reproduction area between single-tree and patch cutting

... some fixed-area circular patches fitted to the silvical characteristics of the target species

... most of the regeneration area in single-tree removals
Mostly single-tree removals …

… but adding some patches, too

Patch cutting and single-tree selection methods put together …

… across an area (crown space) equivalent to that allocated to the mature age class
Cutting designed patches AND uniformly dispersed individual trees …

… of mature trees and for the tending

A patch …

… and single-tree cutting
And add tending in between …

… regenerate …tend … harvest

Stand ready for patch-selection treatment …
Note the patch opening …

Patch-selection as a reproduction method:

- Cut trees to regenerate the area allocated to the mature age class

 …over SOME of this area cut fixed-size patches tailored to silvical characteristics of the target species

 … for the REMAINDER of the regeneration area, cut individual mature trees

- Distribute the patches based on convenience, or by some geometric design
Patch - selection system -- before cut

Patch - selection system -- after cut
The higher light levels inside the patches …

… will support development of the less shade-tolerant species

… given a seed source

… more diverse species
To make this into a silvicultural system ...

... **ADD tending of the intermediate age classes**

Keeping the balance with patch-selection system ...

... representing a composite of residual trees in several age classes

So how many of these patches can you cut per acre ...

... *to cover the proportion of area allocated to each age class*
NOTE THIS!
20-inch sugar maple has a crown area of

1500 FT2

If you use 1/5-acre patches

... each patch covers

8,712 ft2

With a 15-year cutting cycle ...

... and growing each age class for about 100 years

... you would have about 7 age classes per acre

Each age class will occupy

6,223 ft2 of space
And to keep the age classes in balance ...

... you must integrate the numbers of patches
 (e.g., @ 8,712 ft² / fifth-acre patch)

... with cutting individual mature trees
 (e.g., @ 1500 ft² / tree)

... to cover ONLY the area allocated to the
mature age class
 (e.g., 6,223 ft² of space per acre)

{See Notation 11-2 for an example}
All these selection systems have these common features:

- Remove mature trees from a \textit{FIXED} proportion of the stand area

 \textit{... regenerate each new age class in the space previously occupied by mature trees}

- Thin the stand area allocated to immature age classes

 \textit{...to concentrate the growth potential of that space onto fewer of the best trees}

- Apply regeneration, tending, and harvesting \textbf{concurrently}

 \textit{... and if you do, you have a \textit{silvicultural system}}
Otherwise, just exploitation ...