Detecting foliar nutrient status of northern hardwoods from the sky

Alexander Young¹, Anna Schweiger², Melany Fisk³, Ruth Yanai¹

¹SUNY Environmental Science and Forestry (contact: aryoung@syr.edu), ²Université de Montréal, ³Miami University of Ohio

Introduction

Airborne remote sensing of forests would improve efficiency of collecting tree-level information across a landscape, but understanding how this remotely sensed vegetation information relates to nutrient availability in forests is difficult without experimental nutrient manipulation.

Methods and analysis workflow

Since 2011, annual additions of N (as NH4NO3; 30 kg/ha/yr) and P (as NaH2PO4; 10 kg/ha/yr) have been added to 9 forested stands at the Bartlett Experimental Forest to study nutrient limitation. In August 2017 the Airborne Observatory Platform of the National Ecological Observatory Network collected data for all 9 * 4 = 36 nutrient treatment plots. Here we test the ability to distinguish four nutrient treatment classes in an N*P factorial design.

Bartlett Experimental Forest, central New Hampshire, USA.

One of nine nutrient addition stands with N*P factorial design.

Only pixels identified as treetops using aerial LiDAR were used.

The PLSDA algorithm had 84% accuracy for the prediction of nutrient treatment using plotaveraged spectra. We used 75% of the plots for training and predicted the with-held 25% of the plots.

The PLSDA analysis revealed several wavelengths that were important for distinguishing N and P addition including reflectance at 1125 nm, 925, and 1545 nm.

A false colored image using the 3 most important wavelengths from PLSDA model.

Results

LDA ordination of nutrient treatment with soil P availability

- Treetop spectra from nutrient plots were readily grouped into nutrient addition using linear discriminant analysis.
- Field measurements of resin-available P (gray numbers) support linkages of above and below ground processes.

- The average reflectance in the visible (400-700 nm) increased with P (p = 0.001) and decreased with N addition (p < 0.001).
- The photochemical reflectance index (530+570)/(530-570) was higher with N addition (p = 0.02) indicating higher photosynthetic efficiency.

Discussion

The spectral properties of nutrient addition in these forests were readily predicted, suggesting unique spectral signatures associated with small-scale gradients in resource availability.

Airborne imaging spectroscopy shows promise for better informed forest management.

Acknowledgements

Previous MELNHE field crews and NEON data tutorials.