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ABSTRACT 
 
D.S. Hong.  Effects of Nitrogen and Phosphorus Addition on Foliar Nutrient Concentrations of 
Six Northern Hardwood Species, 40 pages, 3 tables, 3 figures, 2019. APA style guide used. 
 
 
 Understanding how trees respond to nutrient availability and allocate nutrients is 
important in addressing nutrient status and limitation in various ecosystems.  While nutrient 
limitation status is well documented in some ecosystems, it is not consistent in northeastern 
temperate forests.  And few studies have compared responses of multiple species to nutrient 
availability.  In this study, we examined the effects of nitrogen and phosphorus addition on foliar 
N and P across ten forest stands in the White Mountains of New Hampshire.  Unsurprisingly, 
foliar N and P, overall, increased when the respective nutrient was added; the percent increase in 
foliar P was much higher than that of foliar N.  However, they exhibited decreases when the 
other nutrient was added.  Pin cherry had higher foliar N and P concentrations than American 
beech, red maple, sugar maple, white birch, and yellow birch.  With this information on foliar N 
and P, we hope to improve upon thresholds of N:P ratios previously reported to indicate N versus 
P limitation.  
 
Key Words: foliar nutrients, nitrogen, phosphorus, nutrient availability, nutrient limitation. 
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Chapter 1: Literature Review 

 Plant productivity is dependent on light, water, and nutrients and can be limited by any of 

these resources.  LLHbLJ¶V LaZ RI WKH MLQLPXP (LLHbLJ, 1842) VWaWHV WKaW SOaQW JURZWK LV OLPLWHd 

by the resource in the lowest supply relative to plant demand; if one of the essential plant 

resources is deficient when others are abundant, plant growth will be constrained (Ulrich & Hills, 

1973).  The more resource-limited an individual is, the more its productivity increases in 

response to the addition of said resource (Chapin et al, 1987).   

Since the beginning of the Industrial Revolution, biogeochemical cycles have been 

altered via fossil fuel combustion, agriculture practices, and mining (Galloway et al, 1995; 

Vitousek et al. 1997; Galloway 2004; Vitousek et al. 2010; Peñuelas et al. 2012).  Carbon 

dioxide (CO2) has increased by 30% in the atmosphere and the rate of nitrogen (N) input into the 

terrestrial N cycle has doubled from 1.9 Tg N per year in 1900 to 3.8 Tg N per year in 2000, as 

more atmospheric N is fixed (Smil, 1990 & 1991; Vitousek & Matson, 1993; Ayers et al, 1994; 

Galloway et al, 1995; Vitousek et al, 1997; Galloway et al, 2003; Sutton et al, 2011).  The 

availability and the mobility of N has increased over large regions of Earth (Vitousek et al, 

1997).  While N contributes to plant growth and agricultural productivity as it is responsible for 

the formation of amino acids, proteins, and DNA of plant tissues, excess N has negative impacts 

on the environment (Vitousek and Howarth, 1991).  In the atmosphere, elevated N input from 

anthropogenic processes can increase the amount of reactive oxides of N, consequently 

increasing the concentrations of N2O, a greenhouse gas (Prinn et al, 1990; Albritton et al, 1995), 

and producing acid rain and photochemical smog (Chamedies et al, 1994).  On the ground, 

increased N availability enhances productivity and biomass accumulation, which can lead to 

changes in the global cycle of carbon (C), as more organic C is stored within the terrestrial 
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systems, further altering the rate of increase of CO2 in the atmosphere and the response of 

ecosystems to this increase (Peterson & Melillo, 1985; Aber et al, 1989; Schimel, 

1995).  Moreover, nitrates can leach through soils, resulting in losses of soil cations such as 

calcium and potassium and increases in soil and water acidity (McNulty & Aber, 1993; Likens et 

al, 1996; Nixon et al, 1996; Tamme et al, 2009).  These negative impacts of excess N in natural 

systems together contribute to losses of biological diversity (Tilman, 1987 & 1996; Aerts & 

Berendse, 1988; Huenneke et al, 1990; Aber et al, 1995; Vitousek et al, 1997, Bobbink et al, 

2010). 

Another consequence of elevated N deposition and alteration of the global N cycle due to 

human activities is the shift in resource limitation.  Nitrogen was once widely limiting in many 

terrestrial, particularly in temperate and boreal, regions (Gutschick, 1987; Lee et al, 1983; 

Binkley, 1986; Tilman, 1988; Vitousek et al, 1993; LeBauer & Treseder, 2008) and marine 

(Howarth, 1988) ecosystems due to the quantity required compared to other necessary nutrients 

and the cost to acquire and utilize it (Gutschick, 1981; Dickson, 1989; Vitousek & Howarth, 

1991).  Moreover, inorganic N compounds that are readily available for plants, such as NO3
-, 

NO2
- and NH4

+ account for less than 5% of the total N in soil (Brady and Weil, 2008).  However, 

limitation by other elements, especially phosphorus (P), has been reported in terrestrial (Walker 

& Syers, 1976; Vitousek et al, 2010; Cleveland et al, 2013) and freshwater (Schindler, 1977) 

ecosystems, largely due to the large pool of N in the atmosphere, coupled with increased human-

induced N input (Elser et al, 2009 & 2010; Crowley et al, 2012). 

Like N, P is a critical determinant of plant growth and productivity along with other 

macro- and micro-nutrients (Chapin et al, 2011).  Phosphorus is essential for plants as it plays a 

critical role in respiration and photosynthesis, as well as cell development and storing energy in 
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the form of ATP, rRNA, and phospholipids (Taiz & Zeiger, 2006).  While most of P can be 

found in P-rich minerals, such as apatite, very little P is readily available for plant uptake 

because both biological and geochemical processes make P nearly immobile in most soils 

(Uehara & Gillman, 1981; Cole & Heil, 1981; Cole et al, 1989; Wood et al, 1984).  Moreover, 

excess N can limit available P in forests (Mohren et al, 1986; Tessier & Raynal, 2003; Gress et 

al, 2007; Braun et al, 2010).  N-induced soil acidification can inhibit P mineralization and 

therefore availability (Compton & Cole, 1998).  Nitrogen addition experiments have found a 

decrease in fine root biomass (Nadelhoffer, 2000) and mycorrhizal activity (Wallenda & Kottke, 

1998; Nilsson & Wallander, 2003), which can lead to a decrease in P uptake by plants (Vitousek 

et al, 2010). Lastly, plants and crops are often harvested and removed from stands, reducing P 

return to the soil via decomposition, which is also true for N. 

 The conceptual model by Walker & Syers (1976) on the pattern and regulation of soil P 

pools and availability during long-term soil and ecosystem development indicates that plant 

production is generally limited by P on old soils because P availability decreases as primary 

minerals are depleted over time through weathering, leaching, occlusion by secondary minerals, 

and the formation of recalcitrant soil organic matter (Uehara & Gillman, 1981; Cole & Heil, 

1981; Cole et al, 1989; Wood et al, 1984; Fox, 1991).  In contrast, over time, N fixation and 

deposition should increase the quantity and biological availability of N in the system until 

available N reaches a stoichiometric balance with P, a rock-derived nutrient (Stevens & Walker, 

1970; Walker & Syres, 1976; Gorham et al, 1979).  For example, Vitousek & Farrington (1997) 

found that forest growth in Hawaiian montane rainforests was limited by P on old soils (4.1 

million year old), N on young soils (300 year old), and co-limited by N and P on intermediate 

soils (20,000 year old). 
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Many studies have investigated limitation by N and P in various ecosystems and 

sites.  For example, N was found to be limiting plant growth in old fields (Pratt, 1984; Tilman, 

1986 & 1987), wet grasslands (Vermeer, 1986), and arctic tundra communities (Haag, 

1974).  Phosphorus was reported to be limiting in Dutch and Australian heathlands (Heddle & 

Specht, 1975; Aerts & Brendse, 1988), North Carolina bogs (Simms, 1987), and Scottish 

serpentine grasslands (Carter et al, 1988).  In a study conducted in Jamaican montane forest, 

several species increased stem growth in response to N and P fertilization (Tanner et al, 1990).  

In a Venezuelan montane forest, N and P together increased stem growth and litterfall, but 

neither element did so alone (Tanner et al, 1992).  But some recent studies have found evidence 

that limitation has shifted from N to P due to anthropogenic addition of N (Richardson et al, 

2004; Menge & Field 2007; Elser et al, 2009; Penuelas et al, 2012; Lu et al; 2013; Hayes et al, 

2014). 

 Nutrient manipulation studies are perhaps the best way to evaluate nutrient limitation 

(Pardo et al, 2011), but in the absence of nutrient manipulation, foliar N and P concentrations 

and N:P ratios can be used to indicate plant nutrient status and nutrient limitation to primary 

productivity in ecosystems (Black, 1968; Grime, 1979; Sterner & Elser, 2002; Gusewell et al, 

2005; Agren, 2008).  N:P ratios have also been used to establish thresholds of nutrient limitation 

(Koerselman & Meuleman, 1996; Verhoeven et al, 1996; Aerts & Chapin, 2000; Gusewell & 

Koerselman, 2002).  Because foliar nutrients reflect soil nutrient availability and fertility at the 

site (Aerts & Chapin, 2000; Hobbie & Gough, 2002; Han et al, 2005; Townsend et al, 2007), 

they can indicate how individual plants respond to nutrient availability and provide a means to 

evaluate nutrient deficiency and monitor changes due to natural and anthropogenic disturbances 

(Mitchell, 1936; Small, 1972; Leaf, 1973; Boerner, 1984; Aerts & Chapin, 2000). 
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While foliar nutrients, in general, are expected to increase with the addition of that 

nutrient (Vitousek, 1998; Olander & Vitousek, 2000; Galloway et al, 2008; Lu & Han, 2010; 

Jones & Power, 2012), they can also exhibit other responses to elevated nutrient availability.  

Some studies have found increased plant-available N and P concentrations with the addition of 

the other nutrient (Gusewell et al, 2003; Niinemets & Kull, 2005; Jones & Power, 2012; Lu et al, 

2013), and this may be due to the tightly-coupled roles of N and P. 

Responses of these foliar nutrient indices can vary due to interspecific differences 

because often times in multispecies communities, plant species coexist that have different 

strategies in nutrient acquisition and different nutrient demands (DiTomasso & Aarssen, 1989; 

Koerselman & Meuleman, 1996).  Studies have found varying responses to fertilization by 

different species within the same site (Davidson et al, 2004; Townsend et al, 2007).  Hence, it 

may be important to look at foliar N, P, and N:P at the species and community level to 

investigate nutrient limitation (Drenovsky & Richards, 2004; Craine et al, 2008). 

 As anthropogenic processes continue to alter nutrient cycling and availability in natural 

ecosystems, it is important to monitor plant responses to these changes.  Nutrient manipulation 

studies can help us better understand and predict potential changes in soil and plant responses to 

changing nutrient availability and provide some insights into nutrient limitation.  Because foliar 

nutrients generally reflect soil nutrient availability, they can be used to predict nutrient 

limitation.  In this study looking at the responses of multiple species to factorial N and P addition 

in northern hardwood forests, we hope to improve our understanding of nutrient limitation at our 

multispecies site. 
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Chapter 2: Effects of nitrogen and phosphorus addition on foliar nutrient concentrations of 

six northern hardwood species 

 

Introduction 

Nitrogen limitation of primary productivity and other biological processes is common in 

terrestrial ecosystems, particularly in temperate (Mitchell & Chandler, 1939; Miller, 1981) and 

boreal regions (Agren, 1983; van Cleve & Zasada, 1976; van Cleve et al, 1983; Bonan, 1990) 

and in marine ecosystems (Howarth, 1988) due to the large quantity required compared to other 

essential nutrients and the cost to acquire and utilize N (Gutschik, 1981 & 1987; Lee et al, 1983; 

Binkley, 1986; Kimmins, 1987; Tilman, 1988; Tamm, 1991; Vitousek and Howarth, 1991; 

Vitousek et al, 1993).  However, since the beginning of the Industrial Revolution, the N cycle 

has been altered via fertilizer production and application and fossil fuel combustion (Galloway et 

al, 1995; Vitousek et al, 1997; Galloway, 2004; Vitousek et al, 2010; Peñuelas et al. 2012), 

which together doubled N input into the terrestrial N cycle between 1900 and 2000 (Vitousek & 

Matson, 1993; Galloway et al, 1995; Sutton et al, 2011).  With more N in the soil, plant 

production can become less limited by N availability (Ayers et al, 1994; Vitousek et al, 1997; 

Galloway et al, 2003). 

With this shift in N availability, phosphorus (P) is expected to become more often 

limiting as increased N supply enhances primary production, and thus, demand for both N and P 

(Vitousk et al, 2010).  Economic theory suggests that plants will allocate resources so as to 

remain co-limited by multiple resources (Bloom et al, 1985), and the Multiple Element 

Limitation model (MEL) predicted a shift from N to P limitation in secondary succession as 

northern hardwood forests recover from harvesting disturbances, until recycling of N and P 



13 
 

becomes stoichiometrically balanced (Rastetter et al, 2013).  Fertilization studies in Hawaiian 

montane rainforests showed that primary successional ecosystems were primarily N-limited, 

whereas later successional ecosystems were P-limited (Vitousek, 2004; Vitousek & Farrington, 

1997).  This pattern reflects the progressive depletion of primary mineral P by weathering as 

soils develop (Peltzer et al, 2010; Menge et al, 2012). 

The Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE) project 

(Fisk et al, 2014) was established to study N and P acquisition and limitation through a series of 

nutrient manipulations in northern hardwood forests.  There have been conflicting reports of 

nutrient limitation in this forest type, with some studies finding a greater growth response to P 

and others finding a greater response to N (Vadeboncoeur, 2010).  In the MELNHE sites, fine 

root growth responses to nutrient addition suggested P limitation in mid-aged forests and N 

limitation in mature forests (Naples & Fisk 2010).  However, aboveground growth responses to 

factorial N and P addition suggested P limitation in both mid-aged and mature stands, but N 

limitation in the youngest stands (Goswami et al, 2018).  The differences in species composition 

in stands of different ages may explain some of these differences in responses to nutrient 

addition.  

 In this study, we report foliar nutrient concentrations 4 to 6 years after the initiation of N 

and P fertilization in ten stands in the MELNHE study, focusing on the six most abundant 

species.  We predicted that tree species, stand age and site quality would influence responses of 

foliar nutrient concentrations to N and P addition, but that overall the concentration of each 

nutrient would increase in response to the addition of that nutrient. We also tested for interactive 

effects of N and P addition on foliar nutrients perhaps suggestive of unbalanced inorganic 

nutrition or NxP colimitation (Elser et al, 2007; Harpole et al, 2011; Rastetter et al, 2013). 
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Methods 

Site Description 

This study took place in ten stands in the White Mountains of central New Hampshire, 

USA: six at the Bartlett Experimental Forest, two at the Hubbard Brook Experimental Forest, 

and two at Jeffers Brook (Table 1).  The sites are on different bedrock types and the stands vary 

in age and species composition (Bae et al. 2015; Table 1).  All soils are primarily well drained 

acid Spodosols of sandy-loam texture developed in glacial drift, deposited approximately 14,000 

years ago (Vadeboncoeur et al. 2014).  The climate is humid continental, with annual 

temperature and precipitation averaging 4.4°C and 1300 mm at Bartlett Experimental Forest,  

5.7°C and 1400 mm at Hubbard Brook Experimental Forest  (Bailey et al. 2003), and 6.3°C and 

990 mm at Jeffers Brook (Wake et al, 2014).  Nitrogen deposition in this region exceeded 8 kg N 

ha-1 yr-1 for much of the 1980s and 1990s but declined sharply in the early 21st century to about 

2-4 kg N ha-1 yr-1 (NADP, 2014). 

Species composition in the forest stands is typical of the northern hardwoods forest type; 

we studied American beech (Fagus grandifolia), pin cherry (Prunus pensylvanica), red maple 

(Acer rubrum), sugar maple (A. saccharum), white birch (Betula papyrifera) and yellow birch 

(B. alleghaniensis) (Table 1).  Species composition varied by stand, mainly due to successional 

changes in dominance.  All the stands originated following intensive forest harvest with the age 

of the stands at the time of sampling ranging from 25 to over 100 years (Table 1). 

Experimental plots in these stands were established as a part of the Multiple Element 

Limitation in Northern Hardwood Ecosystems (MELNHE) project (Fisk et al. 2014).  All stands 

in Bartlett Experimental Forest and the mature stands at Hubbard Brook Experimental Forest and 
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Jeffers Brook contained four 50 x 50 m plots that have been treated annually since 2011 with 

either N (30 kg N/ha/yr as NH4NO3), P (10 kg P/ha/yr as NaH2PO4), or N+P (at the same rates), 

and an untreated control.  Each plot included a 10 m wide buffer to avoid edge effects and 

sampling was conducted within the interior 30 x 30 m.  In the mid-aged stands at Hubbard Brook 

Experimental Forest and Jeffers Brook, the four plots were 30 x 30 m with a 5 m buffer and  

received the same treatment.  In a few cases, trees were sampled from the buffer because there 

were not enough trees in the measurement area. 

 

Sample Collection 

Pre-treatment foliage was collected in 2008, 2009 and 2010, and post-treatment foliage 

was collected in 2014, 2015 and 2016, in the last week of July and first week of August.  Foliage 

was collected using a 12-gauge shotgun except in pre-treatment collection in the two young 

stands at Bartlett Experimental Forest, which were sampled with a pole pruner as the trees were 

still small in stature.  Leaves were usually collected from 3 trees of each species in each plot 

from sun-exposed portions of the middle to upper canopy.  There were 28 plot-species 

combinations in which 4 trees were sampled pre-treatment, often due to different trees being 

sampled in different years.  Post-treatment there were 4 species-plot combinations represented by 

only 1 tree and 13 represented by only 2 trees, ostensibly because there were too few trees of that 

species in the plot. 

 

Sample Processing  

At least 10 leaves per tree were selected for analysis, avoiding those that showed 

evidence of disease or damage from buckshot or herbivory.  Leaves were oven-dried at 60°C to 
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constant mass and ground in a Wiley mill to pass through a 40- mesh screen.  Carbon and N 

concentrations were determined through combustion in a CN elemental analyzer (FlashEA 1112 

analyzer, Thermo Scientific).  Concentrations of P were determined by dry ashing ~0.25 g of 

ground sample at 470°C in a muffle furnace and digesting on a hot-plate with 5 or 10 mL of 6N 

HNO3 (Siccama et al. 1994).  Concentrations of Ca, K, Mg, Mn, and Sr were also determined on 

the dry-ashed samples (Appendix).  The digests were analyzed by inductively coupled plasma 

optical emission spectrometry (ICP-OES; Optima 5300 DV, Perkin-Elmer).  In all analyses, one 

blank, two replicates of standard material (NIST 1515 or arginine), and one duplicate sample 

were processed with each group of 30-40 samples.  An in-house quality control followed by a 

blank was run after every 10 samples, and the machine was recalibrated if >5% drift was 

observed in the in-house standards. 

For the standard reference material, recovery of N was within 5% of the certified value 

for 14 of 17 samples (with a mean of -1%), and within 10% for the remaining 3 samples (with a 

mean of -7%).  For P, recovery was within 5% of the certified value for 28 of 34 samples (with a 

mean of 1.5%), within 10% for 3 samples (with a mean of 6.6%), and within 15% for the 

remaining 3 samples (with a mean of 10.8%).  RHSOLcaWH VWaQdaUdV dLIIHUHd b\ � 4% IRU each pair 

(ZLWK a PHaQ RI 3.6%) aQd �4% IRU HacK SaLU RI dXSOLcaWH VaPSOHV (ZLWK a PHaQ RI 3.1%).  

Duplicate samples were averaged for subsequent analyses. 

 

Data Analysis 

Foliar nutrient concentrations were averaged by species within each plot because only 

36% of the trees sampled pretreatment could be paired with post-treatment samples; many trees 

in the young stands were <10 cm dbh and not tagged.  We tested for systematic interannual 
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differences in pre-treatment and post-treatment foliar N and P concentrations because these 

would contribute a bias; not every tree was sampled in every year.  We used a linear mixed-

effects model (nlme package in R; Pinheiro et al. 2016) and a nested analysis of variance 

(ANOVA) with year and species as fixed effects and plot (nested within stand) as random 

effect.  The concentrations did not differ systematically by year for either pre-treatment foliar N 

(F=1.73, p = 0.19) or P (F=0.90, p = 0.34) or post-treatment foliar N (F=3.61, p = 0.06) or P 

(F=0.64, p = 0.42). 

We tested for treatment effects on post-treatment foliar N and P concentrations and foliar 

N:P, using a linear mixed-effects model and a nested analysis of covariance (ANCOVA) with 

pre-treatment foliar concentrations as a covariate.  Interactions between treatments (N and P 

addition) were included, and species and stand age were included as fixed effects.  Stands, nested 

within forest site (BEF, HBEF or JB), were included as random effects in a factorial, split-split 

design, where the first split is at the treatment plot level and the second is at the species level 

within a plot.  Forest stand was the unit of replication (n = 10).  This factorial approach compares 

response variables in plots with N addition (i.e. N and N+P plots) to those with no N addition 

(i.e. control and P plots); similarly, we compare plots with P addition to those with no P addition.  

We also ran separate analyses for each species using the same approach as above, but without 

species in the model. 

We used post-hoc Tukey comparisons of least-squares means to test the differences 

among our treatments for cases in which the main effects were significant across all 

analyses.  All statistical tests and graphs were performed using R (Version 1.1.463). 
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Results 

Foliar nitrogen 

 As expected, N addition increased foliar N concentrations, by 11% on average across ten 

stands and six species (F=52.61, p < 0.01 for the main effect of N addition in ANCOVA; Table 2 

& 3; Figure 1).  Surprisingly, foliar N concentrations were lower with P addition, by 3% 

(F=4.39, p < 0.03).  The effects of N and P additions together on foliar N were the same as the 

predicted main effects of N and P addition (i.e. N x P interaction was not significant for foliar N; 

F=0.18, p = 0.67). 

Foliar N concentrations varied by species (F=11.47, p < 0.01; Table 2; Figure 1).  Pin 

cherry had 14% higher foliar N concentration than American beech (p < 0.01; Table 3), 20% 

higher than red maple (p < 0.01), 13% higher than sugar maple (p < 0.02), 18% higher than 

white birch (p < 0.01), and 14% higher than yellow birch (p < 0.01).  Another notable difference 

was that American beech had 6% higher foliar N than white birch (p = 0.11). 

 We also looked at the response of each species to treatment.  Foliar N of pin cherry, sugar 

maple, and white birch responded only to N addition.  In comparison to trees in plots receiving 

no N, adding N increased foliar N concentrations of pin cherry by 18% (F=16.49, p < 0.01; Table 

2 & 3; Figure 1), those of sugar maple by 11% (F=43.30, p < 0.01), and those of white birch by 

12% (F=12.90, p < 0.01). 

Foliar N of red maple and yellow birch responded to P as well as to N addition.  Red 

maple had 13% higher foliar N in plots with N addition than in plots without N (F=33.91, p < 

0.01 for the main effect of N addition in ANCOVA; Table 2 & 3; Figure 1), and had 5% lower 
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foliar N in plots with P addition than in plots without P (F=12.46, p < 0.01).  Yellow birch had 

8% higher foliar N concentrations with N addition (F=11.34, p < 0.01), but 4% lower with P 

addition (F=3.39, p < 0.08).  For red maple, adding N and P together resulted in lower foliar N 

than the predicted main effects of N and P addition (F=12.32, p < 0.01 for N x P interaction).  No 

other species showed a significant interactive effect of N plus P addition on foliar N.   

 American beech was the only species that differed in foliar N concentration across age 

classes (F=6.09, p < 0.05; Table 2 & 3; Figure 1), with trees in young stands having 14% higher 

foliar N than those in mature stands (p < 0.04).  Overall, foliar N of American beech responded 

to N addition with 10% higher concentrations (F=24.24, p < 0.01 for the main effect of N 

addition in ANCOVA), but did not respond to P addition (F=0.85, p = 0.36). 

 

Foliar phosphorus 

 Community-wide foliar P concentrations, on average, were 42% higher with P addition 

(F=164.33, p < 0.01 for the main effect of P addition in ANCOVA; Table 2 & 3; Figure 2) and 

7% lower with N addition (F=7.06, p < 0.01).  Foliar P was lower when N and P were added 

together in comparison to the main effects of N and P addition (F=1.92, p < 0.16 for N x P 

interaction): addition of N and P together showed 39% higher foliar P than N addition alone (p < 

0.001), but 9% lower than P addition alone (p = 0.03).   

Overall, foliar P varied by species (F=7.79, p < 0.01; Table 2 & 3; Figure 2).  Pin cherry 

had 40% higher foliar P than American beech (p < 0.01), 27% more than red maple (p < 0.01), 

24% more than sugar maple (p < 0.01), 25% more than white birch (p < 0.01), and 14% more 
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than yellow birch (p = 0.02).  The only other significant species differences were for yellow 

birch, which had 21% higher foliar P than American beech (p < 0.01) and 17% higher than red 

maple (p = 0.08). 

LRRNLQJ aW HacK VSHcLHV¶V response to treatment, foliar P of American beech, sugar maple 

and white birch responded to P addition but were not affected by N addition.  In comparison to 

plots without P addition,  foliar P of American beech was 22% higher with P addition  (F=83.55, 

p < 0.01 for the main effect of P addition in ANCOVA; Table 2 & 3; Figure 2).  Similarly, sugar 

maple foliar P was 38% higher (F=27.59, p < 0.01) and white birch foliar P was 41% higher 

(F=66.25, p < 0.01) with P addition. 

White birch did not respond to N addition alone but adding N and P together showed 

lower foliar P than the predicted main effects of N and P addition (F=2.37, p < 0.15 for N x P 

interaction; Table 2 & 3; Figure 2): white birch trees that were treated with both N and P showed 

50% higher foliar P than those treated with just N (p < 0.001) and 9% higher than those treated 

with just P (p = 0.40).  Foliar P concentrations of white birch in young stands were 11% lower 

than those in mid-aged stands (F=5.45, p = 0.14). 

Foliar P of pin cherry, red maple and yellow birch was higher with P addition but lower 

with N addition.  With P addition, foliar P concentrations were 81% higher for pin cherry 

(F=53.23, p < 0.01 for the main effect of P addition; Table 2 & 3; Figure 2), 27% higher for red 

maple (F=34.22, p < 0.01), and 49% higher for yellow birch (F=104.31, p < 0.01).  With N 

addition, foliar P concentrations were 18% lower for pin cherry (F=5.34, p < 0.05), but 10% 

higher for red maple (F=7.14, p < 0.05), and 10% higher for yellow birch (F=7.37, p < 

0.01).  Adding N and P together resulted in lower foliar P for pin cherry compared to the main 
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effects of N and P addition (F=3.13, p < 0.10 for N x P interaction); pin cherry trees that were 

treated with both N and P showed 64% higher foliar P than those treated with just N (p < 0.02), 

but 23% lower than those treated with just P (p < 0.06). 

 

Foliar N:P 

 Community-wide average foliar N:P responded to both N addition (F=43.92, p < 0.01 for 

the main effect of N addition in ANCOVA; Table 2 & 3; Figure 3) and P addition (F=249.67, p < 

0.01).  Foliar N:P of trees that received N addition was, on average, 16% lower (p < 0.01) than 

those that did not receive N addition, whereas for those that received P addition, it was 30% 

higher (p < 0.01) than those without P addition.  Adding N and P together did not have a 

significant interactive effect on foliar N:P (F=0.17, p = 0.67; Figure 1). 

  Species differed significantly in their foliar N:P (F=4.90, p < 0.01; Table 2 & 3; Figure 

3).  The most notable contrasts were for yellow birch, which had 13% lower N:P than American 

beech (p < 0.01) and 11% lower than sugar maple (p = 0.06).  Foliar N:P also varied by stand age 

(F=3.47, p = 0.11), with trees in young stands showing 10% higher N:P than those in mid-aged 

stands (p = 0.10). 

 Foliar N:P of five species (i.e., excluding red maple) responded similarly to nutrient 

additions, decreasing in the N addition plots and increasing in the P addition plots.  Specifically, 

for American beech, foliar N:P was 13% lower with N addition (F=38.28, p < 0.01 for the main 

effect of N addition in ANCOVA; Table 2 & 3; Figure 3) and 20% higher with P addition 

(F=130.64, p < 0.01).  For white birch, foliar N:P was 13% lower with N addition (F=7.81, p = 
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0.01) and 31% higher with P addition (F=71.84, p < 0.01).  For pin cherry, foliar N:P was 30% 

lower with N addition (F=6.02, p = 0.03) and 48% higher with P addition (F=39.73, p < 

0.001).  For sugar maple, foliar N:P was 19% lower with N addition (F=11.40, p < 0.01) and 

27% higher with P addition (F=52.33, p < 0.001).  For yellow birch, foliar N:P was 13% lower 

with N addition (F=13.19, p < 0.01) and 33% higher with P addition (F=119.23, p < 0.01). 

 In contrast, foliar N:P of red maple responded only to P addition (F=46.43, p < 0.001; 

Table 2 & 3; Figure 3), and was 24% higher with P addition (p < 0.001).  No significant 

interactive effects of N+P addition on foliar N:P were observed for any species. 

Of the five species, American beech (F=3.56, p = 0.10; Table 2 & 3; Figure 3) and white 

birch (F=4.37, p = 0.17) alone varied in foliar N:P by stand age.  American beech trees in young 

stands had 14% higher foliar N:P than those in mid-aged stands (p = 0.10) and white birch trees 

in young stands had 12% higher foliar N:P than those in mid-aged stands (p = 0.17). 

 

Discussion 

 Decades of anthropogenic N deposition in the northeastern United States might be 

expected to alter biogeochemical cycling (Berendse et al, 1993; Aber et al, 1995; Vitousek et al, 

1997; Stevens et al, 2018), resulting in changes in N and P acquisition by trees.  Temperate 

forests are thought to be primarily N-limited (McGroddy et al, 2004; Reich and Oleksyn, 2004), 

but in the MELNHE sites, aboveground growth between 2011 and 2015 showed evidence of P 

limitation in mid-aged and mature stands and of N limitation in young stands (Goswami et al, 

2018).  Similarly, my findings in this nutrient-manipulation study indicate that northern 
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hardwood forests respond to both N and P addition with adjustments in foliar chemistry, and that 

species differ in their response to N and P addition and by stand age. 

 Foliar N:P in untreated plots was high in comparison to many other forests, ranging from 

18.7±0.7 for red maple to 23.5±0.8 for American beech (Table 3; Figure 3).  While higher foliar 

N:P is indicative of P-limitation and vice versa, these foliar N:P ratios were above the ratios 

believed to correspond to P limitation: 17.7 in understory vegetation in the Catskill region, NY 

(Tessier & Raynal, 2003), 14.7 in a beech forest in Europe (Ljungstrom & Nihlgard, 1995), and 

13.8 in a montane forest in Hawaii (Herbert & Fownes, 1995). 

It was not surprising that adding N increased foliar N (Table 3; Figure 1) and adding P 

increased foliar P (Table 3; Figure 2) across all stands and species.  High foliar nutrient 

concentrations reflect increased uptake of available soil nutrients (Mugasha et al, 1999; Binkley 

& Fisher, 2013; Sariyildiz & Anderson, 2005) and additions of N and P have been shown to 

increase plant and soil concentrations of the respective nutrient (Olander and Vitousek 2000; 

Galloway et al. 2008; Lu and Han 2010; Jones and Power 2012).  The relative effects of P 

addition on foliar P were much greater than for those of N addition and foliar N; this was true as 

a percentage of post-treatment concentration, across stands and by species (Figure 1 & 2).  One 

explanation of this observation is that our rate of P addition was high relative to N, with an N:P 

of 3, much lower than the ratios of these nutrients in foliage.  The relatively higher P addition 

was chosen because P is strongly and often irreversibly sorbed in acid soils like those in our 

study area (Wood et al, 1984; Compton & Cole, 1998). 

Community-wide average foliar N and P concentrations were significantly suppressed by 

the addition of the other nutrient (Table 3; Figure 1 & 2).  This response may be attributed to a 

dilution of effect associated with increased leaf production when the demand for the other 
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nutrient is met (Vitousek, 1984; Haases & Rose, 1995; Ostertag, 2010); however, we have not 

observed significant responses of leaf litter production to the treatments (unpublished data).  In 

contrast to the community-wide responses, foliar P of red maple and yellow birch actually 

increased with N addition (Table 3; Figure 2).  Addition of N could lead to stimulation of P-

mineralizing enzymes (Marklein & Houlton, 2012; Lu et al, 2013). 

Species differ in foliar nutrient concentrations, which may be due to the differences in 

species¶V life-history strategy (Niinemets & Kull, 2005; Hagen-Thorn et al, 2006; Wood et al, 

2011; Reed et al, 2012).  Pin cherry, an extreme pioneer species, had the highest foliar N and P 

concentrations compared to other species.  PLQ cKHUU\ LV aQ ³H[SORLWaWLYH´ VSHcLHV WKaW JURZV 

rapidly (Fahey et al, 1998) and has very high tissue nutrient concentrations (Mou et al, 1993) 

when resources are abundant.   

Diameter growth of trees increased in response to P addition in mature and mid-aged 

stands in our study sites between 2011 and 2015, indicating P limitation (Goswami et al, 2018). 

We expected these tree growth responses would be correlated with pre-treatment foliar N:P 

ratios, with greater responses for stands with higher N:P ratios.  It was surprising that we found 

no clear relationship between aboveground growth responses and foliar N:P for any species 

(Figure 4).  This analysis could be done at a community level since the growth response reported 

by Goswami et al. (2018) was significant at the community level but not for many of the 

individual species.   
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Chapter 3: Conclusions 

 In these forests where P appears to be the most limiting nutrient, foliar N and P responses 

to nutrient addition suggested that foliar P was more sensitive to P addition than was foliar N to 

N addition.  Similar to the findings in a previous study in one of the young MELNHE stands 

(Gonzales & Yanai, 2019), foliar N and P were lower with the addition of the other nutrient.  

Because trees are expected to respond to the addition of a limiting nutrient with increased 

growth, the concentrations of other nutrients may be diluted due to higher production of leaves 

(Vitousek, 1984; Haase & Rose, 1995; Ostertag, 2010).  We have the ability to investigate this 

theory as we have information on annual litter production.  Species differed in their foliar N and 

P responses to nutrient addition, suggesting a need for further research to look into their 

physiologies and how each species adapts to changes in nutrient availability.   
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Table 1. Stand descriptions for the Bartlett Experimental Forest (BEF), Hubbard Brook 
Experimental Forest (HBEF), and Jeffers Brook (JB). 

Site Stand Lat. Long. Year Cut Age Class Studied Species 

BEF C1 ϰϰ°02’N ϳ1°1ϵ’W 1990 Young American beech, pin cherry, and white birch 

 C2 ϰϰ°0ϰ’N ϳ1°1ϲ’W 1988 Young American beech, pin cherry, red maple, white birch, and yellow birch 

 C4 ϰϰ°03’N ϳ1°1ϲ’W 1978 Mid-Aged American beech, pin cherry, red maple, white birch, and yellow birch 

 C6 ϰϰ°02’N ϳ1°1ϲ’W 1975 Mid-Aged American beech, pin cherry, red maple, white birch, and yellow birch 

 C8 ϰϰ°03’N ϳ1°1ϴ’W 1883 Mature American beech, sugar maple, and yellow birch 

 C9 ϰϰ°03’N ϳ1°1ϳ’W ~1890 Mature American beech, sugar maple, and yellow birch 

HBEF HBM ϰ3°ϱϲ’N ϳ1°ϰϰ’W 1970 Mid-Aged American beech, red maple, white birch, and yellow birch 

 HBO ϰ3°ϱϲ’N ϳ1°ϰϰ’W ~1900 Mature American beech, sugar maple, and yellow birch 

JB JBM ϰϰ°02’N ϳ1°ϱ3’W ~1975 Mid-Aged American beech, pin cherry, sugar maple, white birch, and yellow 
birch 

 JBO ϰϰ°02’N ϳ1°ϱ3’W ~1900 Mature American beech, sugar maple, and yellow birch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 

Table 2. Community-level (all species) and species-level results of mixed effects model 
showing the main effects of nutrient addition and stand age on foliar N concentrations, 
foliar P concentrations, and foliar N:P, using pre-treatment foliar indices as covariates.   
Numerator and denominator degrees of freedom are reported and separated by a comma. 

  
Foliar N Foliar P Foliar N:P 

Predictor df F F P P F P 
Community-level 

    
 

     Pre-treatment 1,135 266.1 <0.01 137.6 <0.01 105.4 <0.01 
     N 1,135 52.61 <0.001 7.07 <0.01 43.92 <0.001 
     P 1,135 4.40 0.03 164.3 <0.001 249.6 <0.01 
     Species 5,135 11.48 <0.001 7.80 <0.001 4.90 <0.001 
     Age 2,5 1.02 0.42 1.19 0.37 3.47 0.11 
     N x P 1,135 0.18 0.66 1.93 0.16 0.17 0.67 
American beech 

    
 

     Pre-treatment 1,26 7.29 0.01 4.41 0.04 12.24 <0.01 
     N 1,26 24.24 <0.001 0.04 0.85 38.28 <0.001 
     P 1,26 0.85 0.36 83.55 <0.001 130.6 <0.001 
     Age 2,5 6.09 0.04 0.99 0.43 3.56 0.10 
     N x P 1,26 1.29 0.26 1.75 0.19 1.74 0.19 
Pin cherry 

    
 

     Pre-treatment 1,11 3.03 0.10 2.82 0.12 10.50 <0.01 
     N 1,11 16.49 <0.01 5.34 0.04 6.02 0.03 
     P 1,11 1.47 0.25 53.23 <0.001 39.73 <0.001 
     Age 1,2 0.71 0.48 0.18 0.71 1.67 0.32 
     N x P 1,11 0.56 0.46 3.13 0.10 0.10 0.75 
Red maple 

    
 

     Pre-treatment 1,6 3.78 0.09 9.65 0.02 0.00 0.99 
     N 1,6 33.91 <0.01 7.14 0.03 0.09 0.76 
     P 1,6 12.46 0.01 34.22 <0.01 46.43 <0.001 
     Age 1,1 4.15 0.29 3.21 0.32 0.82 0.52 
     N x P 1,6 12.32 0.01 0.18 0.68 1.29 0.29 
Sugar maple 

    
 

     Pre-treatment 1,11 0.03 0.86 0.18 0.68 0.23 0.63 
     N 1,11 43.30 <0.001 1.53 0.24 11.40 <0.01 
     P 1,11 0.00 0.95 27.59 <0.001 52.33 <0.001 
     Age 1,1 1.70 0.41 4.19 0.28 1.12 0.48 
     N x P 1,11 0.78 0.39 1.68 0.22 0.32 0.58 
White birch 

    
 

     Pre-treatment 1,14 22.42 <0.001 23.86 <0.001 21.17 <0.001 
     N 1,14 12.90 <0.01 0.20 0.66 7.81 0.01 
     P 1,14 1.39 0.25 66.25 <0.001 71.84 <0.001 
     Age 1,2 2.09 0.28 5.45 0.14 4.37 0.17 
     N x P 1,14 0.02 0.88 2.37 0.14 1.34 0.26 
Yellow birch 

    
 

     Pre-treatment 1,23 30.97 <0.001 3.94 0.05 22.04 <0.001 
     N 1,23 11.34 <0.01 7.37 0.01 13.19 <0.01 
     P 1,23 3.39 0.07 104.3 <0.001 119.2 <0.001 
     Age 2,4 2.24 0.22 0.20 0.82 2.33 0.21 
     N x P 1,23 0.38 0.54 1.71 0.20 0.01 0.90 

Note: Significant P values are highlighted in boldface type. 
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Table 3. Mean and standard error of foliar N, P, and N:P by treatment across species in 
pre-treatment and post-treatment. 

 Pre-treatment Foliage Post-treatment Foliage 

Treatment N (mg/g) P (mg/g) N:P N (mg/g) P (mg/g) N:P 

American beech       

     CONTROL 24.0 ±0.6 1.08 ±0.03 22.4 ±0.7 25.3 ±0.4 1.09 ±0.03 23.5 ±0.8 

     N 23.8 ±0.6 1.15 ±0.05 21.0 ±0.9 27.2 ±0.6 1.07 ±0.04 25.8 ±1.0 

     P 23.4 ±0.6 1.07 ±0.03 21.9 ±0.5 24.1 ±1.1 1.29 ±0.03 18.8 ±0.9 

     NP 24.0 ±0.5 1.11 ±0.03 21.6 ±0.6 27.4 ±0.5 1.33 ±0.03 20.8 ±0.7 

Pin cherry       

     CONTROL 28.3 ±2.5 1.49 ±0.10 19.0 ±1.2 32.5 ±3.0 1.47 ±0.09 22.4 ±2.5 

     N 26.2 ±1.8 1.35 ±0.10 19.5 ±0.9 35.2 ±3.4 1.31 ±0.06 27.0 ±3.1 

     P 27.7 ±1.1 1.47 ±0.06 18.9 ±0.6 29.6 ±2.3 2.87 ±0.28 10.4 ±0.3 

     NP 26.8 ±1.1 1.39 ±0.04 19.3 ±0.5 35.0 ±2.8 2.17 ±0.08 16.1 ±1.2 

Red maple       

     CONTROL 18.4 ±1.1 1.09 ±0.08 16.9 ±0.3 19.5 ±0.8 1.05 ±0.06 18.7 ±0.7 

     N 19.0 ±0.8 1.15 ±0.04 16.5 ±0.6 23.7 ±0.7 1.17 ±0.04 20.3 ±0.5 

     P 19.8 ±1.5 1.12 ±0.08 17.8 ±0.04 19.7 ±1.9 1.33 ±0.12 14.8 ±0.1 

     NP 18.9 ±1.7 1.20 ±0.08 15.8 ±0.9 20.9 ±0.3 1.42 ±0.09 14.8 ±0.8 

Sugar maple       

     CONTROL 19.9 ±1.0 1.10 ±0.06 18.2 ±1.1 20.7 ±1.0 1.06 ±0.04 19.5 ±0.8 

     N 19.1 ±1.4 1.20 ±0.11 16.5 ±1.7 23.0 ±1.2 1.10 ±0.09 21.3 ±1.5 

     P 19.5 ±0.8 1.09 ±0.06 18.1 ±1.1 20.8 ±1.3 1.60 ±0.16 13.6 ±1.5 

     NP 18.6 ±0.5 1.08 ±0.03 17.2 ±0.5 22.6 ±1.0 1.37 ±0.11 16.7 ±0.8 

White birch       

     CONTROL 23.5 ±1.0 1.09 ±0.06 21.7 ±1.1 23.6 ±1.2 1.08 ±0.07 22.4 ±2.1 

     N 23.7 ±0.7 1.08 ±0.06 22.0 ±0.6 26.5 ±0.6 1.04 ±0.08 26.3 ±1.9 

     P 23.9 ±1.0 1.07 ±0.04 22.4 ±0.7 23.2 ±1.5 1.39 ±0.07 16.7 ±0.9 

     NP 24.1 ±1.3 1.16 ±0.03 20.8 ±0.9 25.9 ±1.0 1.59 ±0.08 16.4 ±0.7 

Yellow birch       

     CONTROL 24.6 ±1.4 1.30 ±0.06 19.3 ±1.3 25.6 ±1.1 1.35 ±0.08 19.6 ±1.6 

     N 25.5 ±0.6 1.33 ±0.04 19.3 ±0.7 27.9 ±0.8 1.29 ±0.05 21.9 ±1.1 

     P 24.3 ±1.0 1.26 ±0.05 19.2 ±0.4 23.9 ±0.7 2.00 ±0.12 12.3 ±0.8 

     NP 25.2 ±0.7 1.24 ±0.03 20.3 ±0.6 26.9 ±0.7 1.74 ±0.05 15.6 ±0.6 
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Figure 1. Comparison of pre-treatment (x-axis) and post-treatment (y-axis) foliar N 

concentrations of a) American beech, b) pin cherry, c) red maple, d) sugar maple, e) white birch, 

and f) yellow birch.  Points represent means of two to four trees per plot; stands are indicated by 

labels.  The dashed black line indicates 1:1, hence increases in foliar N lie above the line whereas 

the plots that fall below the line had lower foliar N after treatment. 
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Figure 2. Comparison of pre-treatment (x-axis) and post-treatment (y-axis) foliar P 

concentrations of a) American beech, b) pin cherry, c) red maple, d) sugar maple, e) white birch, 

and f) yellow birch.  Points represent means of two to four trees per plot; stands are indicated by 

labels.  The dashed black line indicates 1:1, hence increases in foliar P lie above the line whereas 

the plots that all below the line had lower foliar P after treatment. 
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Figure 3. Comparison of pre-treatment (x-axis) and post-treatment (y-axis) foliar N:P of a) 

American beech, b) pin cherry, c) red maple, d) sugar maple, e) white birch, and f) yellow 

birch.  Points represent means of two to four trees per plot; stands are indicated by labels.  The 

dashed black line indicates 1:1, hence increases in foliar N:P lie above the line whereas the plots 

that fall below the line had lower foliar N:P after treatment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



37 
 

Appendix: Foliar Ca, K, and Mg responses to nutrient addition. 

Table A.1. Community-level (all species) and individual species-level results of mixed 
effects model showing the main effects of nutrient addition and stand age on foliar Ca, K, 
and Mg concentrations. 

  
Foliar Ca Foliar K Foliar Mg 

Predictor Df F P F P F P 
Community-level 

      

     Pre-treatment 1,135 113.22 <0.01 246.40 <0.01 334.36 <0.01 
     N 1,135 14.15 <0.001 0.34 0.56 9.06 <0.01 
     P 1,135 0.92 0.33 0.03 0.87 0.01 0.91 
     Species 5,135 3.30 <0.01 3.99 <0.01 8.28 <0.001 
     Age 2,5 0.07 0.93 0.73 0.52 1.79 0.25 
     N x P 1,135 1.22 0.27 0.03 0.86 0.003 0.95 
American beech 

      

     Pre-treatment 1,26 16.92 <0.001 9.22 <0.01 3.38 0.07 
     N 1,26 4.66 0.04 0.09 0.77 0.18 0.67 
     P 1,26 0.34 0.56 0.35 0.56 0.19 0.67 
     Age 2,5 0.73 0.52 0.66 0.55 0.35 0.71 
     N x P 1,26 1.22 0.27 2.85 0.10 0.00 0.99 
Pin cherry 

      

     Pre-treatment 1,11 3.83 0.07 0.66 0.43 2.56 0.13 
     N 1,11 5.34 0.04 0.78 0.39 0.22 0.64 
     P 1,11 0.04 0.85 0.13 0.72 0.08 0.78 
     Age 1,2 1.02 0.41 0.01 0.93 0.36 0.60 
     N x P 1,11 0.95 0.35 0.00 0.96 0.58 0.46 
Red maple 

      

     Pre-treatment 1,6 0.83 0.39 0.69 0.43 7.19 0.03 
     N 1,6 2.75 0.14 1.70 0.24 3.51 0.11 
     P 1,6 0.01 0.92 0.01 0.93 0.16 0.70 
     Age 1,1 1.71 0.41 9.88 0.19 0.42 0.63 
     N x P 1,6 0.00 0.95 0.11 0.75 0.55 0.48 
Sugar maple 

      

     Pre-treatment 1,11 9.14 0.01 1.10 0.31 0.99 0.34 
     N 1,11 5.68 0.03 10.75 <0.01 0.33 0.57 
     P 1,11 1.03 0.33 2.82 0.12 0.09 0.77 
     Age 1,1 3.65 0.30 0.01 0.92 1.10 0.48 
     N x P 1,11 0.91 0.36 0.11 0.74 0.24 0.63 
White birch 

      

     Pre-treatment 1,14 17.35 <0.001 10.44 <0.01 15.88 <0.01 
     N 1,14 1.76 0.20 2.14 0.16 0.90 0.35 
     P 1,14 3.71 0.07 0.24 0.63 0.59 0.45 
     Age 1,2 0.01 0.92 3.25 0.21 0.01 0.93 
     N x P 1,14 0.28 0.60 0.00 0.97 1.29 0.27 
Yellow birch 

      

     Pre-treatment 1,23 14.13 <0.01 54.62 <0.001 9.99 <0.001 
     N 1,23 7.47 0.01 1.78 0.19 8.84 <0.01 
     P 1,23 0.00 0.98 1.31 0.26 0.05 0.81 
     Age 2,4 3.80 0.12 8.11 0.03 3.60 0.12 
     N x P 1,23 0.39 0.54 0.95 0.33 0.28 0.60 

Note: Significant P values are highlighted in boldface type. 
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Figure A.1. Comparison of pre-treatment (x-axis) and post-treatment (y-axis) foliar Ca of a) 

American beech, b) pin cherry, c) red maple, d) sugar maple, e) white birch, and f) yellow birch 

across all stands under nutrient additions.  The dashed black line indicates 1:1, hence the points 

that lie above the line indicate increases in foliar N whereas the points that fall below the line 

indicate decreases. 
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Figure A.2. Comparison of pre-treatment (x-axis) and post-treatment (y-axis) foliar K of a) 

American beech, b) pin cherry, c) red maple, d) sugar maple, e) white birch, and f) yellow birch 

across all stands under nutrient additions.  The dashed black line indicates 1:1, hence the points 

that lie above the line indicate increases in foliar N whereas the points that fall below the line 

indicate decreases. 
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Figure A.3. Comparison of pre-treatment (x-axis) and post-treatment (y-axis) foliar Mg of a) 

American beech, b) pin cherry, c) red maple, d) sugar maple, e) white birch, and f) yellow birch 

across all stands under nutrient additions.  The dashed black line indicates 1:1, hence the points 

that lie above the line indicate increases in foliar N whereas the points that fall below the line 

indicate decreases.   
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