ESF 300 Introduction to Geospatial Information Technologies Course Syllabus

INSTRUCTOR:	Eddie Bevilac	qua (301 Bray Hall, 470)-6697, ebevilacqua@esf.edu)		
OFFICE HOURS:	Open door, or by appointment				
TEACHING ASSISTANTS:	Cheryl Bondi Lori Cornell Cat Foley Karun Pandit Ning Sun	B7 Marshall B7 Marshall B7 Marshall 401 Bray Hall B7 Marshall	cbondi11@gmail.com Imcornel@syr.edu catmfoley@gmail.com kpandit@syr.edu nsun@syr.edu		
SCHEDULE OF CLASSES:	Lectures Laboratories	Monday & Wednesday Section 1 Friday Section 2 Thursday Section 3 Wednesday Section 4 Thursday Section 5 Wednesday	11:40 –12:35 am (5 Illick) 11:40 – 2:40 pm (437 Baker) 12:30 – 3:30 pm (314 Baker) 1:50 – 4:50 pm (309 Baker) 4:00 – 7:00 pm (314 Baker) 5:00 – 8:00 pm (314 Baker)		
WEB PAGE:	http://blackboa	ard.syr.edu			

PROVERB:	"I hear and I forget; I see and I remember; I do and I understand."
	"Those who fail to plan, plan to fail"

PREREQUISITES:

 No formal prerequisites, but students are expected to have basic math skills (geometry & trigonometry) and computer skills (organizing files and folders, downloading and uncompressing files)

REQUIRED TEXT:

 Bolstad, P. GIS Fundamentals: A first text on Geographic Information Systems (3rd ed). (This text is available at the Orange Book Store)

COURSE OBJECTIVES:

The overall goal of the course is to provide students with the theoretical and practical knowledge necessary to understand the uses and limitations of geospatial information technologies (GIT) [i.e., remote sensing (RS), global positioning systems (GPS) and Geographic Information Systems (GIS)] for environmental science and natural resources management applications.

- The objectives of this course are to:
- 1) increase student awareness of GIT science in environmental sciences & natural resources management;
- 2) introduce fundamental tools used for mapping natural resources;
- 3) provide experience in mapping land cover conditions using maps, GIS data, aerial photographs, satellite images, and navigation-grade GPS technology;
- 4) provide experience in digital spatial analysis techniques; and
- 5) generate enthusiasm and interest in using GIT for meeting environmental science and natural resources management needs.

MEASURABLE LEARNING OUTCOMES OR COMPETENCIES:

- By the end of this course, the student will be able to:
- 1. **Define**, **compare** and **contrast** different types of maps and **explain** fundamental principles of cartographic design
- 2. **Define**, **compare** and **contrast** raster and vector data structures used in GIS software
- 3. **Compare** and **contrast** different map projections and coordinate systems used for georeferencing locations on the earth's surface
- 4. **Compare** and **contrast** the major characteristics of different types of remote sensing data available for environmental and natural resource applications, including satellite imagery, and explain the advantages and disadvantages of each
- 5. **Collect** and **input** geo-referenced data from a variety of sources, including maps, digital imagery and recreation-grade GPS, for use in a GIS
- 6. Define and explain the sources of error in digital data
- 7. **Manage** and **query** both spatial and attribute data within a GIS to answer specific environmental and natural resource management questions
- 8. **Apply** appropriate spatial analysis procedures within a GIS, using both raster and vector data, to answer specific environmental and natural resource management questions
- 9. **Create** quality maps which summarize output from simple spatial analyses using appropriate cartographic design principles
- 10. **Demonstrate** professionalism

GRADING POLICY:

- 1. ATTENDANCE: Class attendance is vital -- absences, for any reason, do not relieve the student of the responsibility for laboratories, guizzes and lecture materials covered during the absence.
- 2. LABORATORY REPORTS:

Laboratory Assignments are due at the end of the day (11:59 pm) of your laboratory period, unless stated otherwise.

Late laboratory assignments will be **severely penalized**:

- 50% grade reduction if turned in 1 to 24 hours late;
- 100% grade reduction if turned in over 24 hours late!
- 3. EXAMS:

Exams will be comprehensive and will cover all materials presented in lectures, laboratories, and reading assignments

4. Weigi	HTS:	Lab Assignments (14) Homework/Quizzes Term Project Final Exam				55% 10% 15% 20%					
		TOTAL			100%						
5. GRADI	ING SC	ALE:									
Grade	A	A-	B+	В	B-	C+	С	C-	D	F	
Min %	93	90	85	80	75	70	68	65	60	<60	

TENTATIVE LAB SCHEDULE (MAY CHANGE)

WEEK OF	Торіс
January 17	1. MAPPING BASICS – GEOMETRY & INTERPRETATION
January 24	2. INTRO TO IDRISI & DIGITAL DATA MODELS – RASTER VS VECTOR
January 31	3. IDRISI – IMAGE PROCESSING I
February 07	4. IDRISI – IMAGE PROCESSING II & MAP ACCURACY ASSESSMENT
FEBRUARY 14	5. INTRO TO ARCGIS
FEBRUARY 21	6. ARCGIS – VECTOR DATABASE CREATION
February 28	7. ARCGIS – ATTRIBUTE TABLE JOINING, DATA QUERIES & MANAGEMENT PLANNING
March 07	8. ARCGIS – SPATIAL ANALYSIS I – POINTS AND POLYGONS
MARCH 14	SPRING BREAK – NO LAB
MARCH 21	9. ARCGIS – SPATIAL ANALYSIS II – RASTER AND POLYGONS
March 28	10. INTRO TO GPS AND SPATIAL DATA ACCURACY
April 04	11. ArcGIS – DATA ACQUISITION AND DATABASE CREATION USING GPS
APRIL 11	12. ARCGIS – SPATIAL ANALYSIS III – SPATIAL INTERPOLATION
APRIL 18*	13. ARCGIS – SPATIAL ANALYSIS IV – DEM AND SURFACE ANALYSIS
April 25	14. ArcGIS – Cartographic Modelling & Site Selection

*APRIL 22 - GOOD FRIDAY (NEED TO RESCHEDULE FOR SECTION 1)