AmericaView
Mini-Grant Opportunity
Grant Year 2015

Project Title:  Quantifying change in riparian vegetation in the Genesee River and exploring
relationship to seasonal weather patterns and downstream water quality

Authors: Dr. Lindi J. Quackenbush (ljquack @esf.edu), Associate Professor, NY View Pl
Ge Pu (gpulO00@syr.edu), PhD Student

Institution: State University of New Y ork College of Environmental Science and Forestry
1 Forestry Drive, Syracuse NY 13210

Project period: 16 October 2016 — 31 December 2016



I ntroduction

Riparian areas form the boundaries between terrestrial and aquatic ecosystems and provide
critical functionsin hydrology, geomorphology and biology (Brinson et al. 2002). V egetation
within riparian areas, a'so known as riparian buffers, plays akey rolein providing these
functions through decreasing flow of runoff and floodwater, creating soil macrospores through
root growth and decay, stabilizing streambanks through root systems, and filtering contamination
and maintaining stream water quality (NY SDEC Great Lakes Watershed Program 2014). Recent
studies have also suggested small differencesin riparian vegetation cover can significantly
reduce run-off related effects of agriculture (Chase et a. 2016).

When natural riparian areas are altered by humans, such as through agricultural practices or
channelization, these areas are no longer capable of providing their important ecological
functions. Jones et a. (2010) reported that the total amount of forest and natural land cover in
riparian areas declined in the majority of the continental US from 1972 to 2003. Since then,
major effort has been invested in evaluating these areas. Y et, we still lack comprehensive maps
of the location and condition of riparian areas (Salo and Theobald 2016). Moreover, thereis no
reliable and feasible method to regularly evaluate and monitor trendsin riparian areas.

New methodol ogies should take advantage of recent technological advances in remote sensing,
geographic information systems, Big Data and cloud computing (e.g. Google Earth Engine) to
better address the current issues, and to better aid riparian restoration efforts on the ground. This
project focused on developing a method to enable multi-temporal assessment of riparian
vegetation extent and condition, as well taking a step toward linking remotely sensed riparian
vegetation data with downstream water quality parameters and local weather patterns.

M ethodology

Study Area. This study focused on the main stem of the Genesee River, which originatesin
Gold, PA and flows north to Rochester, NY with atotal length of 247 km and a 6407.6 km?
watershed area. Land cover in the areais dominated by agriculture (52%) and forest (40%), with
smaller amounts of developed land (4.6%), including a mixture of residential, commercial,
industrial, and transportation/utilities uses, wetlands and water (2%), and other non-devel oped
lands (1.4%) (Makarewicz et al. 2015). Various parts of the Genesee River are currently listed as
impaired on Section 303 (d) of the Federal Clean Water Act based on the presence of various
pollutants, which includes phosphorus, sedimentation, oxygen demand, and pathogens

(NY SDEC 2014). Thiswatershed is of particular importance because the Genesee River
discharges into Lake Ontario, a part of the largest body of freshwater in the world, the Great
Lakes. Under these circumstances, riparian buffers along the Genesee River play a significant
rolein improving the overall condition of the river and help combat many of the water quality
related problems through filtering various contaminations, trapping sedimentation and ultimately
improving river water quality.

The Mount Morris gravity dam (42.731° N, 77.904° W) on the Genesee River (Figure 1) was
utilized as a separation point when comparing the results of riparian vegetation indices. This
separation formed alogical break since upstream of the dam the channel follows its natural path,
whereas flow downstream of the dam is regulated by the dam instead of natural flow regimes.
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Figure 1. Map of Genesee River water shed boundary

Data. Remotely sensed datasets utilized in this study focused on two freely accessible image
programs. (1) United States Department of Agriculture National Agriculture Imagery Program
(NAIP) imagery, and (2) Landsat products. Both datasets are available through Google Earth
Engine (GEE). The NAIP images are airborne color-infrared orthorectified images acquired at 1
meter ground sampling distance. This fine spatial resolution enables interpolation of detailed
information on the boundaries of river channels and riparian vegetation. The NAIP program
collectsimagery on aregular basis, with images of the study area available from 2003-2015.
GEE provides access to Landsat 5 and 8 8-day Normalized Difference Vegetation Index (NDV1)
and Enhanced V egetation Index (EV1) composites (https://code.earthengine.google.com/). These
data were provided by Google through compiling Landsat 5 and 8 L1T orthorectified scenes. On
an 8-day basis, this compilation provides NDVI and EVI values for each pixel within the image.
Computation of NDVI and EVI values were generated through Equation 1 and Equation 2,
respectively, shown below:

NIR — RED
NIR + RED

NDVI =

Equation 1

Where NIR and RED are atmospherically-corrected or partially corrected surface reflectance
from the near infrared and red portions of the spectrum, respectively.



NIR—RED .
EVI = G X Equation 2
NIR+C; XRED—Cy XBLUE+L

Where BLUE is atmospherically-corrected or partially corrected surface reflectance from the
blue portion of the spectrum, L isthe canopy background adjustment that addresses non-linear,
differential NIR and red radiant transfer through a canopy, C1 and C2 are the coefficients of the
aerosol resistance term, which uses the blue band to correct for aerosol influences in the red band,
and G isthe grain factor (USGS 2016). L, C1, C2, and G values are referenced from the study
published by Huete et al. (2002). The vegetation index datasets were critical in assessing the
historical trendsin riparian vegetation vigor. Data availability is 1984—2012 for Landsat 5
composites, and from 20132016 for Landsat 8 composites.

Two publicly accessible in-situ datasets were also utilized in this study: (1) United States
Geological Survey (USGS) water quality data, and (2) National Oceanic and Atmospheric
Administration (NOAA) weather data. Downstream water quality data was collected by the
USGS in the Genesee River at the Ford Street Bridge in Rochester, NY and downloaded through
the USGS Water Data for the Nation website (https://waterdata.usgs.gov/usa/nwis/uv?04231600).
Parameters collected include water temperature, specific conductivity, pH, turbidity and
dissolved oxygen. Datais available at the site starting from 2010 and is recorded as daily
maximum, minimum, and mean values. The study also used weather data collected by NOAA at
three airports within the watershed: Greater Rochester International Airport, Cattaraugus County
Olean Airport, and Dansville Municipal Airport (https.//gis.ncdc.noaa.gov/maps/ncei/cdo/daily).
These three stations were selected because their locations are distributed throughout the Genesee
River watershed (Figure 1). Weather parameters recorded include daily mean precipitation and
daily cumulative air temperature. Weather parameters across the three stations were averaged to
eliminate micro climate effects. Available data varies by station, but datais available for all
stations from 2004.

Study Duration. Comparing availability across all of the datasets utilized in this study, the
duration of the study considering the relationship between water parameters and riparian buffer
extent was limited to 2010-2015 based on the water quality data, which has the shortest
availability. Exploration of the change in the stream channel, which did not use the water quality
data, worked with imagery from 2006-2015. In both cases, there is a data gap in 2012 during the
transition from Landsat 5 to Landsat 8 datasets.

Extracting Time Series of Riparian Vegetation Indices. This project developed a new method
to extract multi-temporal riparian vegetation indices directly from satellite image composites. As
shown in Figure 2, this process involved five mgjor steps: (1) Identifying the channel boundary,
(2) creating a buffer around the channel, (3) classifying land cover within the riparian buffer, (4)
converting pixel-based vegetation buffers to polygons, and (5) generating final riparian buffer
boundaries.
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Figure 2. Processfor extracting riparian vegetation index time series data.

Thefirst stage of the process involved manually delineating channel boundaries of the main stem
of theriver in GEE using the USDA NAIP imagery. Since NAIP images were available for the
study site in alternating years and the location of the channel demonstrated annual variability,
separate channel boundaries were digitized separately for each NAIP image. Comparison of river
stages on the days when the NAIP images were collected confirmed that the river stages were
similar when the imagery were acquired. This reduced the possibility of mistakes in drawing
channel boundaries due to extreme high and low river stages or differences in the channel
boundaries due to variationsin the river water depth during delineation. Having identified the
main channel, the second stage of the process buffered each channel boundary to 90 m to create
the limit of the riparian buffers. The selection of a 90 m buffer was based on work presented by
Sweeney and Newbold (2014) who suggested 90 m riparian buffers are optimal to achieve the
highest possible sediment removal efficiency.

The third step of the process was classifying the riparian buffer pixels as vegetation or non-
vegetation. For each available year, the NAIP images were clipped using the riparian buffer
boundaries and then the buffer zone was classified into vegetation and non-vegetation classes.
Classifications utilized the random forest method (Pal 2005) using reference points that were
randomly selected within the riparian buffer boundaries and visually assigned to vegetation or
non-vegetation classes. The total number of reference samples for both above and below dam
sections was 900. The distribution of points between vegetation and non-vegetation categories
varied from image to image (Table 1).

Table 1. Distribution of refer ence points.

Year _Above dam _ _ Below dam _
Vegetation | Non-Vegetation | Vegetation | Non-Vegetation

2011 587 313 569 331

2013 649 251 712 649

2015 387 413 483 317




The inputs to the random forest classification included the reflectance for pixels within each
NAIP image bands and the NDV I values derived from these bands. Half of the reference points
were randomly selected and utilized in the classifier while the other half were utilized in
accuracy verification through generating confusion matrixes. Optimization of the number of trees
for the random forest classifier was performed in R, while buffering, clipping and classification
of the images were done in GEE.

The classified images from the third step were then converted into vector polygons that
delineated the boundaries of the vegetation within the buffered riparian area. These boundaries
were then post-processed through manual identification to interpolate and remove agriculture
vegetation. The decision to exclude agriculture vegetation was because this cover type does not
provide key benefits such as filtering pollutants and trapping sedimentation, and agricultureisin
fact the largest pollution source for phosphorus in the Genesee River (NY S DEC 2015). Upon
cropping the agriculture vegetation, post processed final riparian vegetation boundaries were
generated. Mean NDV1 and EV I values derived from Landsat images across the entire
boundaries were then extracted for each polygon on an 8-day basis. Since the NAIP imagery was
not available each year, the post-processed riparian vegetation boundary derived from an
available NAIP image was used to derive vegetation indices for that year and the following year
e.g. the 2011 boundary was utilized to derive 2011 and 2012 vegetation indices. Finally, time
series of mean NDVI and EVI from the Landsat data within the derived riparian vegetation
boundaries were generated for the sections of the river above and below the dam.

Data Correlation. Correlation between daily water quality data, multi-temporal riparian
vegetation indices, and weather data were evaluated using Spearman’s correlation coefficient.
This method was sel ected because the distribution of each dataset is likely not normal, especialy
for the water quality parameters.

Advantages of Utilizing Google Earth Engine. This project utilized GEE for both image
processing and spatial analysis processes, along with some usage of QGIS (QGIS Devel opment
Team 2016). GEE is an online platform that incorporates data from various agencies, which
includes full image collections from USDA NAIP program and the entire Landsat archive to date
(Patel et a. 2014). GEE provides an efficient means to perform environmental data monitoring
because it eliminates the processing time and effort involved with downloading, sorting, and
combining datasets in order to perform the calculations and other processes necessary to obtain
time series vegetation index data. Another benefit of GEE is easy scalability, with data and
capacity to enableit to be utilized virtually globally. The script that was written in GEE for this
project can be easily modified to be rapidly deployed in other regions in order to more broadly
monitor and evaluate riparian vegetation extent and vigor.

Results and Discussion

Classification

Assessment of the classification of riparian vegetation vs. non-riparian vegetation using the
validation data produced the confusion matrixes shown in

Table 3. Confusion Matrix for section of watershed below the dam. and Table 3.



Table 2. Confusion matrix for section of water shed above the dam.

Y ear Producer User Overall
Vegetation | Non-vegetation | Vegetation | Non-vegetation | Accuracy
2011 0.98 0.97 0.99 0.95 0.98
2013 0.98 0.96 0.98 0.94 0.97
2015 0.97 0.98 0.98 0.98 0.98
Table 3. Confusion Matrix for section of watershed below the dam.
Year Producer User Overall
Vegetation | Non-vegetation | Vegetation | Non-vegetation | Accuracy
2011 0.99 0.87 0.93 0.98 0.95
2013 0.99 0.95 0.99 0.96 0.98
2015 0.97 0.95 0.96 0.95 0.96

Overall and class accuracies were above 90% except for the non-vegetation producer’ s accuracy
(87%) for the region below the dam in the 2011 imagery. These high accuracy values suggest
that theinitial classifications were successful. Note that these accuracies were calculated prior to
performing the post-processing. Whileit isunlikely that the accuracy values would decrease due
to post-processing, it is possible that the post-processing may increase the final accuracies of the
riparian vegetation delineation.

Vegetation extent

V egetation extent data derived from the NAIP imagery (Figure 3) show 10-20% fluctuations in
vegetation coverage within the buffer from 2011-2015. The extent of vegetation cover within the
90m riparian buffer zone averages around 70% along the entire main stem of the Genesee River
within this period. An exploration of the changes in extent, particularly in 2011 and 2015,
suggest that the changes appear to be caused by shadows in the NAIP imagery. The
inconsistency in the time of when the images were taken caused the classification to treat
vegetation covered by shadows to be non-vegetation.
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Figure 3. Temporal changesin buffered channel area and riparian vegetation extent.



An alternate approach to mapping the vegetation extent is to use the vegetation index data
derived from the Landsat imagery. Figure 4 shows the 8-day composite and monthly time series
plots of the values of the mean vegetation index within the riparian buffers calculated using the
Landsat 5/8 8-day products.
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Figure 4. Changein vegetation indices over time

Annual trends within the vegetation index datais very similar across the study period with the
expected index peaks during the summer growing season and lows during the winter senescence.
However, across the entire study duration, both sections of the river had an overall increase in
EVI and NDVI values since 2013. In order to explore this trend and remove the seasonal
variation, Figure 5 plots the change in vegetation index values relative to the 2010 image with
the closest day or month of the year. Aswould be expected, both EVI and NDVI have little to no
difference in the winter season from 2011 to 2015 compared to the 2010 baseline data; however,
thereis more significant variation occurring in the summer months. EVI values in general have
positive change relative to the 2010 baseline, with peak differencesin July and August. NDVI
values have both positive and negative differences, with peak deviation from 2010 also occurring
in the growing season. Figure 5 shows that the sections of the watershed below and above the
dam exhibit similar trends.
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Figure5. Vegetation Index Value Changes Relative to 2010 I magery.

Figure 6 and Figure 7 were produced to try to quantify the annual patternsin the changes of EVI
and NDVI from 2010 to 2015 based on the 8-day Landsat products. Overall vegetation index
data showsthat NDVI peaks at 0.7 while EVI peaks at 0.8. As expected, thereis aclear
increasing trend in both index values from March to May, followed by a period of high index
values and then a clear decreasing period from September to November, with the lowest annual
index values from December. However, there are also unexpectedly high deviations during the
May to September growing season. Fluctuations of the index values are significantly reduced in
EVI comparing to NDVI, especialy from May to September. Index values during summer
season exhibit variation of up to 0.6 for NDVI and up to 0.2 for EVI, which is unlikely to be
related to vegetation change. This large variation in values, particularly in NDVI, makesitis
hard to quantify the annual trend of these vegetation indices. An exploration of the input imagery
suggests that a portion of this apparent variability in index valuesis related to the presence of
image gaps, clouds, and cloud shadows. In order to more fully utilize the GEE datasets, it
appearsthat it is necessary to address these concerns, e.g. through thresholding inputs bands to
eliminate non-vegetated areas from areas being eval uated.
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The NDVI and EVI trends illustrate that NDV| appears to be less sensitive to the seasonal
variation in vegetation vigor. When the seasonal trend was normalized, there did appear to be an
upward trend in the vegetation indices within the riparian zones. However, while the results
demonstrated an overal increase in EVI values across the time period, some of this may reflect
the differencesin sensor configurations onboard Landsat 5 and 8. Next steps of this project
should include comparison of the vegetation indices derived from both NAIP and Landsat
sensors in order to determine if there needs to be any kind of normalization to utilize these
indices when they are derived from the different sensors. Bohon (2014) compared various
vegetation index values derived from both Landsat 7 and NAIP imagery, and concluded that the
results from the lower spatial resolution imagery did not provide sufficient detail compared to the
higher resolution output. Potential future work could utilize the same methodology to compare



among NAIP, Landsat 5, Landsat 8 and other sensorsto quantify the degree of uncertaintiesin
Landsat driven vegetation indices values for accuracy improvement.

Similarity between the index values before and after the dam suggest that despite the different
treatment of the channel, i.e. natural vs. somewhat channelized, there does not appear to be a
difference in terms of the riparian vegetation index. Future study should explore the influence of
adjacent land uses on the vegetation index values of riparian vegetation, since some land uses
(e.g. agricultural or urban) may have greater stress on the riparian zone than others e.g. (forested
regions). Wasser et al. (2015) has previously suggested through lidar assessment that riparian
forest vegetation structures are strongly associated with adjacent land use.

Correlation

Correlation results were initially explored using the averaged vegetation index values for the
watershed for all available Landsat image dates. The correlation coefficients revealed that
downstream water temperature and dissolved oxygen have moderate to strong correlation to
riparian vegetation index (magnitude of Spearman’s correlation coefficient generally above 0.5),
while other water quality parameters do not. Water temperature was positively correlated with
the vegetation index values, while dissolved oxygen was negatively correlated. In general, EVI
values have much higher correlation to the water quality parameters than did NDVI. There were
no significant differencesin terms of correlation between the two sections of theriver (Table 4).

Table4. Correlation between water quality parameters and vegetation indices. Cellsin green highlight where
the magnitude of Spearman’s correlation coefficient is greater than 0.5.

Mean Daily Water Quality Parameters

Water Specific pH Turbidity | Dissolved

Temperature | Conductivity Oxygen
Above | NDVI | 0.53 -0.11 -0.20 | 0.26 -0.53
Dam EVI 0.79 0.12 -0.24 | -0.02 -0.71
Below | NDVI | 0.56 -0.13 -0.10 | 0.19 -0.51
Dam EVI 0.80 0.14 -019 | -0.13 -0.70

Minimum Daily Water Quality Parameters

Water Specific pH Turbidity | Dissolved

Temperature | Conductivity Oxygen
Above | NDVI | 0.46 -0.14 -0.26 | 0.21 -0.46
Dam EVI 0.79 0.12 0.30 -0.06 -0.74
Below | NDVI | 0.56 -0.02 -0.19 | 0.0 -0.54
Dam EVI 0.83 0.15 -0.27 | -0.10 -0.77

Maximum Daily Water Quality Parameters

Water Specific pH Turbidity | Dissolved

Temperature | Conductivity Oxygen
Above | NDVI | 0.46 -0.10 -0.08 | 0.24 -0.42
Dam EVI 0.79 0.16 0.02 0.05 -0.56
Below | NDVI | 0.55 0.00 0.03 0.16 -0.41

Dam EVI 0.83 0.18 0.08 0.06 -0.56




When evaluating the correlation between weather data and water quality data, the most
significant relationship is between air temperature and water temperature, which is expected
(Table 5), although there is also a strong negative relationship between air temperature and
dissolved oxygen. Exploring the correlation between vegetation indices and weather datareveals
that daily mean air temperature has moderate correlation with vegetation index, which is also to
be anticipated since the index values rise during the growing season when the weather is warmer.

Table 5. Correlation results between water quality parameters and weather parameters. Cellsin green
highlight wher e the magnitude of Spearman’s correlation coefficient is greater than 0.5.

Mean Daily Water Quality Parameters
Water Specific pH Turbidity | Dissolved
Temperature | Conductivity Oxygen
Mean Air Temperature | 0.93 0.22 -0.13 -0.03 -0.77
Mean Precipitation 0.01 0.00 -0.09 |0.08 -0.09
Minimum Daily Water Quality Parameters
Water Specific pH Turbidity | Dissolved
Temperature | Conductivity Oxygen
Mean Air Temperature | 0.92 0.23 -0.32 | -0.17 -0.82
M ean Precipitation 0.00 -0.01 -0.05 | 0.06 -0.06
Maximum Daily Water Quality Parameters
Water Specific pH Turbidity | Dissolved
Temperature | Conductivity Oxygen
Mean Air Temperature | 0.92 0.25 0.19 0.06 -0.64
M ean Precipitation 0.00 0.03 -0.09 |0.08 -0.12

Many researchers have utilized vegetation indices as a direct measure of vegetation vigor or
density. However, the approach to correlation analysis explored in this study needs significant
revision in order to remove the effects of seasonal variability, which clearly dominate the results.
Without removing this seasonal effect, it isimpossible to explore the much more subtle
relationship between the vegetation extent within the buffers and water quality.

Channel boundary delineation

This study delineated channel boundaries from NAIP imagery that was acquired at two-year
intervals. Redefining the channel was necessary since some areas of the river underwent
significant change between image dates (Figure 8). Some of these changes are significant enough
to cause the channel to take a different path entirely. Channel variations over time also caused
the phenomenon known as channel incision (Shields et al. 2010), which leads to riparian
expansion into the channel. This was observed along parts of the river (Figure 9).
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Many studies (e.g., Chase et a. 2016; Fu and Burgher 2015; Weller and Baker 2014; Jones et al.
2010) that have investigated changes in riparian buffers do not incorporate changes within the
channel in their analysis. This topic may be a subject for investigation in future projects through
comparing long term trends in channels boundary variations and how this impacts—positively
and negatively—riparian vegetation extents.

Buffer width

This study utilized a 90m fixed riparian buffer width based on the recommendations of prior
studies (Sweeney and Newbold 2014; Hansen et al. 2010; Wenger 1999; Lee, Smyth, and Boutin
2004; Mayer, Reynolds, and Canfield 2005). However, the impact of the riparian buffer width
varies depending on factors such as the size of the stream channel and the surrounding land cover
(Sweeney and Newbold 2014). Thus it would be valuabl e to examine the variation in the results
of this study under changes in the buffer width. This may be helpful in terms of restoration
projects by suggesting optimal riparian buffer width, or locations that could particularly value
from vegetation expansion, for different sections of the Genesee River.

Conclusions

Overall, this study developed a new method to rapidly extract time series of riparian vegetation
indices directly from satellite image composites. This method was applied to the Genesee River
watershed in western New Y ork State and northwestern Pennsylvania. We identified the main
channel of the Genesee River and delineated riparian vegetation within 90 meters of the channel



for 2011, 2013, and 2015 NAIP imagery, and then characterized the vegetation index within the
buffers using Landsat 8-day NDV I and EVI products available through GEE. This project
utilized the produced boundaries to investigate the vegetation index within the buffer zone and
while observing the expected annual trends, where the index rises in the summer season while
falling in the winter season, the analysis aso showed that there was a general upward trend in the
vegetation values across the study period. Future study should focus on extending the duration of
the study to give amuch clear picture of how the riparian vegetation perform in the study area, as
well as some of the observed short-term channel induced riparian vegetation expansions.

Utilization of GEE in this project brought significant time saving when utilizing vegetation index
datasets to analyze riparian vegetation vigor. This project used 300 Landsat scenes covering over
five years, which were available preprocessed with derivative products generated. Because of the
convenience offered by GEE, the mgjority of the time and effort was spent on delineating the
river channel instead of selecting imagery and deriving NDVI and EVI values. Within a short
period, this project was able to delineate the riparian vegetation extent and derive both vegetation
index time series values. There does appear to be some issues with cloud cover and gaps that
require additional consideration; however, the framework established will allow for such analysis
with relatively minor modification.

In this project, biannual riparian vegetation extent data was produced at very high ground
resolution at 1m, and the 30 meter vegetation index data was generated on avery high temporal
resolution of 8-days. While many studies have reported the value of high spatial detail in
managing riparian vegetation, to our knowledge no prior studies have simultaneously explored
these resolutions within this context. Higher resolution data from this study will bring many
benefits to downstream users, such as easy interpolation and identification of areas which need
riparian restoration. Also, stakeholders can now be able to prioritize restoration sites based on
both spatial scales and temporal scales.

All vegetation extent and riparian vegetation index data were devel oped into an online web app
and will be shared though aweb portal. This pilot study has the potential for easy expansion to
other potential riparian vegetation study sites with minimum modification. A detailed step-by-
step guide of the processes involved in this study will also be made available through the web
portal. Also, included on the web portal isthe NDVI and EV1 explorer developed using GEE.
Thistool will give everyone the ability to utilize the convenience of rapid vegetation index
extractions from Landsat 5, 7, and 8 imagery.
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