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Introduction 
Riparian areas form the boundaries between terrestrial and aquatic ecosystems and provide 
critical functions in hydrology, geomorphology and biology (Brinson et al. 2002). Vegetation 
within riparian areas, also known as riparian buffers, plays a key role in providing these 
functions through decreasing flow of runoff and floodwater, creating soil macrospores through 
root growth and decay, stabilizing streambanks through root systems, and filtering contamination 
and maintaining stream water quality (NYSDEC Great Lakes Watershed Program 2014). Recent 
studies have also suggested small differences in riparian vegetation cover can significantly 
reduce run-off related effects of agriculture (Chase et al. 2016). 
 
When natural riparian areas are altered by humans, such as through agricultural practices or 
channelization, these areas are no longer capable of providing their important ecological 
functions. Jones et al. (2010) reported that the total amount of forest and natural land cover in 
riparian areas declined in the majority of the continental US from 1972 to 2003. Since then, 
major effort has been invested in evaluating these areas. Yet, we still lack comprehensive maps 
of the location and condition of riparian areas (Salo and Theobald 2016). Moreover, there is no 
reliable and feasible method to regularly evaluate and monitor trends in riparian areas.  
 
New methodologies should take advantage of recent technological advances in remote sensing, 
geographic information systems, Big Data and cloud computing (e.g. Google Earth Engine) to 
better address the current issues, and to better aid riparian restoration efforts on the ground.  This 
project focused on developing a method to enable multi-temporal assessment of riparian 
vegetation extent and condition, as well taking a step toward linking remotely sensed riparian 
vegetation data with downstream water quality parameters and local weather patterns.   

Methodology 
Study Area. This study focused on the main stem of the Genesee River, which originates in 
Gold, PA and flows north to Rochester, NY with a total length of 247 km and a 6407.6 km2 
watershed area. Land cover in the area is dominated by agriculture (52%) and forest (40%), with 
smaller amounts of developed land (4.6%), including a mixture of residential, commercial, 
industrial, and transportation/utilities uses, wetlands and water (2%), and other non-developed 
lands (1.4%) (Makarewicz et al. 2015). Various parts of the Genesee River are currently listed as 
impaired on Section 303 (d) of the Federal Clean Water Act based on the presence of various 
pollutants, which includes phosphorus, sedimentation, oxygen demand, and pathogens 
(NYSDEC 2014). This watershed is of particular importance because the Genesee River 
discharges into Lake Ontario, a part of the largest body of freshwater in the world, the Great 
Lakes. Under these circumstances, riparian buffers along the Genesee River play a significant 
role in improving the overall condition of the river and help combat many of the water quality 
related problems through filtering various contaminations, trapping sedimentation and ultimately 
improving river water quality. 

The Mount Morris gravity dam (42.731° N, 77.904° W) on the Genesee River (Figure 1) was 
utilized as a separation point when comparing the results of riparian vegetation indices. This 
separation formed a logical break since upstream of the dam the channel follows its natural path, 
whereas flow downstream of the dam is regulated by the dam instead of natural flow regimes. 



 

 
Figure 1. Map of Genesee River watershed boundary 

Data. Remotely sensed datasets utilized in this study focused on two freely accessible image 
programs: (1) United States Department of Agriculture National Agriculture Imagery Program 
(NAIP) imagery, and (2) Landsat products.  Both datasets are available through Google Earth 
Engine (GEE). The NAIP images are airborne color-infrared orthorectified images acquired at 1 
meter ground sampling distance. This fine spatial resolution enables interpolation of detailed 
information on the boundaries of river channels and riparian vegetation. The NAIP program 
collects imagery on a regular basis, with images of the study area available from 2003–2015.  
GEE provides access to Landsat 5 and 8 8-day Normalized Difference Vegetation Index (NDVI) 
and Enhanced Vegetation Index (EVI) composites (https://code.earthengine.google.com/). These 
data were provided by Google through compiling Landsat 5 and 8 L1T orthorectified scenes. On 
an 8-day basis, this compilation provides NDVI and EVI values for each pixel within the image. 
Computation of NDVI and EVI values were generated through Equation 1 and Equation 2, 
respectively, shown below: 
 

	۷܄۲ۼ  =  Equation 1 ۳۲܀	ା	܀۷ۼ۳۲܀	ି	܀۷ۼ

 
Where NIR and RED are atmospherically-corrected or partially corrected surface reflectance 
from the near infrared and red portions of the spectrum, respectively.  



 

	۷܄۳  = ۵ ×  Equation 2 ۺ۳ା܃ۺ۳۲ି۱૛×۰܀×ା۱૚܀۷ۼ۳۲܀ି܀۷ۼ

 
Where BLUE is atmospherically-corrected or partially corrected surface reflectance from the 
blue portion of the spectrum, L is the canopy background adjustment that addresses non-linear, 
differential NIR and red radiant transfer through a canopy, C1 and C2 are the coefficients of the 
aerosol resistance term, which uses the blue band to correct for aerosol influences in the red band, 
and G is the grain factor (USGS 2016). L, C1, C2, and G values are referenced from the study 
published by Huete et al. (2002). The vegetation index datasets were critical in assessing the 
historical trends in riparian vegetation vigor. Data availability is 1984–2012 for Landsat 5 
composites, and from 2013–2016 for Landsat 8 composites.   
 
Two publicly accessible in-situ datasets were also utilized in this study: (1) United States 
Geological Survey (USGS) water quality data, and (2) National Oceanic and Atmospheric 
Administration (NOAA) weather data.  Downstream water quality data was collected by the 
USGS in the Genesee River at the Ford Street Bridge in Rochester, NY and downloaded through 
the USGS Water Data for the Nation website (https://waterdata.usgs.gov/usa/nwis/uv?04231600). 
Parameters collected include water temperature, specific conductivity, pH, turbidity and 
dissolved oxygen. Data is available at the site starting from 2010 and is recorded as daily 
maximum, minimum, and mean values. The study also used weather data collected by NOAA at 
three airports within the watershed: Greater Rochester International Airport, Cattaraugus County 
Olean Airport, and Dansville Municipal Airport (https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily). 
These three stations were selected because their locations are distributed throughout the Genesee 
River watershed (Figure 1). Weather parameters recorded include daily mean precipitation and 
daily cumulative air temperature. Weather parameters across the three stations were averaged to 
eliminate micro climate effects. Available data varies by station, but data is available for all 
stations from 2004.  
 
Study Duration. Comparing availability across all of the datasets utilized in this study, the 
duration of the study considering the relationship between water parameters and riparian buffer 
extent was limited to 2010–2015 based on the water quality data, which has the shortest 
availability. Exploration of the change in the stream channel, which did not use the water quality 
data, worked with imagery from 2006–2015.  In both cases, there is a data gap in 2012 during the 
transition from Landsat 5 to Landsat 8 datasets.  
 
Extracting Time Series of Riparian Vegetation Indices. This project developed a new method 
to extract multi-temporal riparian vegetation indices directly from satellite image composites. As 
shown in Figure 2, this process involved five major steps: (1) Identifying the channel boundary, 
(2) creating a buffer around the channel, (3) classifying land cover within the riparian buffer, (4) 
converting pixel-based vegetation buffers to polygons, and (5) generating final riparian buffer 
boundaries. 
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The inputs to the random forest classification included the reflectance for pixels within each 
NAIP image bands and the NDVI values derived from these bands.  Half of the reference points 
were randomly selected and utilized in the classifier while the other half were utilized in 
accuracy verification through generating confusion matrixes. Optimization of the number of trees 
for the random forest classifier was performed in R, while buffering, clipping and classification 
of the images were done in GEE.  
 
The classified images from the third step were then converted into vector polygons that 
delineated the boundaries of the vegetation within the buffered riparian area. These boundaries 
were then post-processed through manual identification to interpolate and remove agriculture 
vegetation. The decision to exclude agriculture vegetation was because this cover type does not 
provide key benefits such as filtering pollutants and trapping sedimentation, and agriculture is in 
fact the largest pollution source for phosphorus in the Genesee River (NYS DEC 2015). Upon 
cropping the agriculture vegetation, post processed final riparian vegetation boundaries were 
generated. Mean NDVI and EVI values derived from Landsat images across the entire 
boundaries were then extracted for each polygon on an 8-day basis. Since the NAIP imagery was 
not available each year, the post-processed riparian vegetation boundary derived from an 
available NAIP image was used to derive vegetation indices for that year and the following year 
e.g. the 2011 boundary was utilized to derive 2011 and 2012 vegetation indices. Finally, time 
series of mean NDVI and EVI from the Landsat data within the derived riparian vegetation 
boundaries were generated for the sections of the river above and below the dam. 
 
Data Correlation. Correlation between daily water quality data, multi-temporal riparian 
vegetation indices, and weather data were evaluated using Spearman’s correlation coefficient. 
This method was selected because the distribution of each dataset is likely not normal, especially 
for the water quality parameters.   
 
Advantages of Utilizing Google Earth Engine. This project utilized GEE for both image 
processing and spatial analysis processes, along with some usage of QGIS (QGIS Development 
Team 2016). GEE is an online platform that incorporates data from various agencies, which 
includes full image collections from USDA NAIP program and the entire Landsat archive to date 
(Patel et al. 2014). GEE provides an efficient means to perform environmental data monitoring 
because it eliminates the processing time and effort involved with downloading, sorting, and 
combining datasets in order to perform the calculations and other processes necessary to obtain 
time series vegetation index data. Another benefit of GEE is easy scalability, with data and 
capacity to enable it to be utilized virtually globally. The script that was written in GEE for this 
project can be easily modified to be rapidly deployed in other regions in order to more broadly 
monitor and evaluate riparian vegetation extent and vigor. 
 

Results and Discussion 
Classification 
Assessment of the classification of riparian vegetation vs. non-riparian vegetation using the 
validation data produced the confusion matrixes shown in  
Table 3. Confusion Matrix for section of watershed below the dam. and Table 3.  
 



Table 2. Confusion matrix for section of watershed above the dam. 

Year 
Producer User Overall 

Accuracy Vegetation Non-vegetation Vegetation Non-vegetation 
2011 0.98 0.97 0.99 0.95 0.98 
2013 0.98 0.96 0.98 0.94 0.97 
2015 0.97 0.98 0.98 0.98 0.98 

 
Table 3. Confusion Matrix for section of watershed below the dam. 

Year 
Producer User Overall 

Accuracy Vegetation Non-vegetation Vegetation Non-vegetation 
2011 0.99 0.87 0.93 0.98 0.95 
2013 0.99 0.95 0.99 0.96 0.98 
2015 0.97 0.95 0.96 0.95 0.96 

 
Overall and class accuracies were above 90% except for the non-vegetation producer’s accuracy 
(87%) for the region below the dam in the 2011 imagery. These high accuracy values suggest 
that the initial classifications were successful. Note that these accuracies were calculated prior to 
performing the post-processing.  While it is unlikely that the accuracy values would decrease due 
to post-processing, it is possible that the post-processing may increase the final accuracies of the 
riparian vegetation delineation.  
 
Vegetation extent 
Vegetation extent data derived from the NAIP imagery (Figure 3) show 10–20% fluctuations in 
vegetation coverage within the buffer from 2011–2015. The extent of vegetation cover within the 
90m riparian buffer zone averages around 70% along the entire main stem of the Genesee River 
within this period. An exploration of the changes in extent, particularly in 2011 and 2015, 
suggest that the changes appear to be caused by shadows in the NAIP imagery. The 
inconsistency in the time of when the images were taken caused the classification to treat 
vegetation covered by shadows to be non-vegetation.  
 

 
Figure 3. Temporal changes in buffered channel area and riparian vegetation extent. 
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among NAIP, Landsat 5, Landsat 8 and other sensors to quantify the degree of uncertainties in 
Landsat driven vegetation indices values for accuracy improvement. 
 
Similarity between the index values before and after the dam suggest that despite the different 
treatment of the channel, i.e. natural vs. somewhat channelized, there does not appear to be a 
difference in terms of the riparian vegetation index. Future study should explore the influence of 
adjacent land uses on the vegetation index values of riparian vegetation, since some land uses 
(e.g. agricultural or urban) may have greater stress on the riparian zone than others e.g. (forested 
regions). Wasser et al. (2015) has previously suggested through lidar assessment that riparian 
forest vegetation structures are strongly associated with adjacent land use.  
 
Correlation 
Correlation results were initially explored using the averaged vegetation index values for the 
watershed for all available Landsat image dates.  The correlation coefficients revealed that 
downstream water temperature and dissolved oxygen have moderate to strong correlation to 
riparian vegetation index (magnitude of Spearman’s correlation coefficient generally above 0.5), 
while other water quality parameters do not. Water temperature was positively correlated with 
the vegetation index values, while dissolved oxygen was negatively correlated.  In general, EVI 
values have much higher correlation to the water quality parameters than did NDVI.  There were 
no significant differences in terms of correlation between the two sections of the river (Table 4).   
 
Table 4. Correlation between water quality parameters and vegetation indices. Cells in green highlight where 

the magnitude of Spearman’s correlation coefficient is greater than 0.5. 

 Mean Daily Water Quality Parameters 
  Water 

Temperature
Specific 
Conductivity

pH Turbidity Dissolved 
Oxygen 

Above  
Dam 

NDVI 0.53 -0.11 -0.20 0.26 -0.53 
EVI 0.79 0.12 -0.24 -0.02 -0.71 

Below  
Dam 

NDVI 0.56 -0.13 -0.10 0.19 -0.51 
EVI 0.80 0.14 -0.19 -0.13 -0.70 

       
 Minimum Daily Water Quality Parameters 
  Water 

Temperature
Specific 
Conductivity

pH Turbidity Dissolved 
Oxygen 

Above  
Dam 

NDVI 0.46 -0.14 -0.26 0.21 -0.46 
EVI 0.79 0.12 0.30 -0.06 -0.74 

Below  
Dam 

NDVI 0.56 -0.02 -0.19 0.10 -0.54 
EVI 0.83 0.15 -0.27 -0.10 -0.77 

       
 Maximum Daily Water Quality Parameters 
  Water 

Temperature
Specific 
Conductivity

pH Turbidity Dissolved 
Oxygen 

Above  
Dam 

NDVI 0.46 -0.10 -0.08 0.24 -0.42 
EVI 0.79 0.16 0.02 0.05 -0.56 

Below  
Dam 

NDVI 0.55 0.00 0.03 0.16 -0.41 
EVI 0.83 0.18 0.08 0.06 -0.56 

  



When evaluating the correlation between weather data and water quality data, the most 
significant relationship is between air temperature and water temperature, which is expected 
(Table 5), although there is also a strong negative relationship between air temperature and 
dissolved oxygen. Exploring the correlation between vegetation indices and weather data reveals 
that daily mean air temperature has moderate correlation with vegetation index, which is also to 
be anticipated since the index values rise during the growing season when the weather is warmer.   
 

Table 5. Correlation results between water quality parameters and weather parameters. Cells in green 
highlight where the magnitude of Spearman’s correlation coefficient is greater than 0.5. 

Mean Daily Water Quality Parameters 
 Water 

Temperature
Specific 
Conductivity

pH Turbidity Dissolved 
Oxygen 

Mean Air Temperature 0.93 0.22 -0.13 -0.03 -0.77 
Mean Precipitation 0.01 0.00 -0.09 0.08 -0.09 
      

Minimum Daily Water Quality Parameters 
 Water 

Temperature
Specific 
Conductivity

pH Turbidity Dissolved 
Oxygen 

Mean Air Temperature 0.92 0.23 -0.32 -0.17 -0.82 
Mean Precipitation 0.00 -0.01 -0.05 0.06 -0.06 
      

Maximum Daily Water Quality Parameters 
 Water 

Temperature
Specific 
Conductivity

pH Turbidity Dissolved 
Oxygen 

Mean Air Temperature 0.92 0.25 0.19 0.06 -0.64 
Mean Precipitation 0.00 0.03 -0.09 0.08 -0.12 

 
Many researchers have utilized vegetation indices as a direct measure of vegetation vigor or 
density.  However, the approach to correlation analysis explored in this study needs significant 
revision in order to remove the effects of seasonal variability, which clearly dominate the results.  
Without removing this seasonal effect, it is impossible to explore the much more subtle 
relationship between the vegetation extent within the buffers and water quality.   
 
Channel boundary delineation 
This study delineated channel boundaries from NAIP imagery that was acquired at two-year 
intervals.  Redefining the channel was necessary since some areas of the river underwent 
significant change between image dates (Figure 8). Some of these changes are significant enough 
to cause the channel to take a different path entirely. Channel variations over time also caused 
the phenomenon known as channel incision (Shields et al. 2010), which leads to riparian 
expansion into the channel. This was observed along parts of the river (Figure 9).  
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for 2011, 2013, and 2015 NAIP imagery, and then characterized the vegetation index within the 
buffers using Landsat 8-day NDVI and EVI products available through GEE. This project 
utilized the produced boundaries to investigate the vegetation index within the buffer zone and 
while observing the expected annual trends, where the index rises in the summer season while 
falling in the winter season, the analysis also showed that there was a general upward trend in the 
vegetation values across the study period. Future study should focus on extending the duration of 
the study to give a much clear picture of how the riparian vegetation perform in the study area, as 
well as some of the observed short-term channel induced riparian vegetation expansions.  
 
Utilization of GEE in this project brought significant time saving when utilizing vegetation index 
datasets to analyze riparian vegetation vigor. This project used 300 Landsat scenes covering over 
five years, which were available preprocessed with derivative products generated. Because of the 
convenience offered by GEE, the majority of the time and effort was spent on delineating the 
river channel instead of selecting imagery and deriving NDVI and EVI values. Within a short 
period, this project was able to delineate the riparian vegetation extent and derive both vegetation 
index time series values. There does appear to be some issues with cloud cover and gaps that 
require additional consideration; however, the framework established will allow for such analysis 
with relatively minor modification. 
 
In this project, biannual riparian vegetation extent data was produced at very high ground 
resolution at 1m, and the 30 meter vegetation index data was generated on a very high temporal 
resolution of 8-days. While many studies have reported the value of high spatial detail in 
managing riparian vegetation, to our knowledge no prior studies have simultaneously explored 
these resolutions within this context. Higher resolution data from this study will bring many 
benefits to downstream users, such as easy interpolation and identification of areas which need 
riparian restoration. Also, stakeholders can now be able to prioritize restoration sites based on 
both spatial scales and temporal scales. 
 
All vegetation extent and riparian vegetation index data were developed into an online web app 
and will be shared though a web portal. This pilot study has the potential for easy expansion to 
other potential riparian vegetation study sites with minimum modification. A detailed step-by-
step guide of the processes involved in this study will also be made available through the web 
portal. Also, included on the web portal is the NDVI and EVI explorer developed using GEE. 
This tool will give everyone the ability to utilize the convenience of rapid vegetation index 
extractions from Landsat 5, 7, and 8 imagery.    
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