DEMYSTIFYING UV & EB TECHNOLOGY
FOCUS: PRINTING INDUSTRY
A Webinar for Government Regulators, Technical Assistance Providers & New Users

Jan. 29, 2014
2:00 PM EST/1:00 PM CST

OBJECTIVES

- To educate those creating regulations
- To educate those enforcing regulations
- To educate those who assist companies to comply with regulations
- Offer an opportunity to connect with RadTech for more information
SPEAKERS

Doreen M. Monteleone
Director of Sustainability & EHS Initiatives
RadTech

Lisa Fine
Technical Director
Joules Angstrom UV
Printing Inks

Steve Lapin
Applications Specialist- BroadBeam
PCT Engineered Systems

AGENDA

- What is RadTech?
- Ultraviolet (UV) & Electron Beam (EB) technologies
- Applications
- Comparison with conventional technology
- Regulatory impact
- Trends
- Resources
WHAT IS RADTECH?

- Technical association for UV & EB technology
- Established 20 Years Ago
- More than 700 members
- Supports more than 20 manufacturing industries with printing being a major industry

Fiber optics
CDs/DVDs
Over Print Varnish on paper
Screen printing
Coated labels
Premium no wax flooring
Ophthalmic plastic lenses (certain types)
RTA furniture
Automotive headlamps
Photoresists used in circuit boards and chip manufacture
Pre-finished hardwood flooring
MDF fillers
Particleboard fillers
Window film coatings
Photopolymer printing plates
Decorative films (certain types)

* End uses where UV/EB already holds a double digit share, ranging from 30% to close to 100%.
Printing Industry Technology

- Conventional
 - Water based
 - Solvent based
 - Oil based
- Energy Cured
 - Ultraviolet (UV)
 - Electron Beam (EB)

Ink Systems Flexography

- Solvent
- Water
- UV/EB

FTA, 2012
UV/EB TECHNOLOGIES IN PRINTING

- In 2012, 15% of the $37B global market for analog equipment & supplies was UV/EB related = $5.5B
- Users report:
 - Fewer quality concerns
 - Increased productivity & turnaround time
 - Quantifiable production cost savings

PRIMIR, 2012

ENERGY CURED VS. CONVENTIONAL
POLYMERIZATION

Liquid
- Monomers
- Oligomers
- Pigments
- Stabilizers
- Photoinitiators (UV)

Solid
- Polymers

Radiant Energy

ULTRAVIOLET
(UV)

Lisa Fine
Joules Angstrom UV Printing Inks
UV TECHNOLOGY

- Photons - 3.5 eV (low energy)
- Photoinitiator needed
- Mercury lamps
- 250-450 nm Wavelength
- 100 - 500 mJ/cm² dosage required to cure
- Difficulty penetrating opaque, metallics & heavily printed substrates
UV Curing on Press

- One or more UV lamps
- Means of dissipating heat from the lamps (ventilation)
- Shield to protect from UV exposure (integral to curing unit)

UV Ranges

- UVV: 400 nm and up (low end of visible range)
- UVA: 320 – 400 nm
- UVB: 280 – 320 nm
- UVC: 200 – 280 nm
UV Ranges (Cont.)

- Short wavelength has higher energy but lower penetration, so is more involved in surface cure – UVB, UVC
- Longer wavelength has deeper penetration and so is involved in through (depth) cure – UVV, UVA

First of all, technically – What is Curing?

- UV inks are comprised of oligomers + monomers + pigment + additives + photoinitiators
- The “curable” parts of the formula are the oligomers and monomers.
- Oligomers and monomers are not capable of curing quickly with just UV light alone
- Energy (in the form of UV light) strikes photoinitiators, in turn making them energetic
- Photoinitiators are energized by absorbing the light...and absorb light optimally at certain UV wavelengths...so lamp must output the right wavelength at an acceptable intensity to energize the photoinitiator
WHAT IS CURING?
(CONTINUED)

- This energy, in turn, is transferred to oligomer and monomer molecules, making them energetic.
- It doesn’t go on forever – eventually, the energetic species COMBINE and crosslink.
- This, essentially, is what curing is – the crosslinking part of the process!

OPERATIONAL BENEFITS OF UV

- Flexibility
- High Print Qualities
- Durability
- Fast Curing Speeds
ELECTRON BEAM

EB

Steve Lapin
PCT Engineered Systems

EB TECHNOLOGY

- Electrons - 70,000 eV to 300,000 eV (much higher energy compared to UV)
- No photoinitiator
- Filaments in a Vacuum Chamber
- 3 Mrad typical cure dose
 - 150 mJ/cm² for 50 micron layer (comparable to UV)
WHY DON’T EB INKS NEED PI?

Electrons are far more energetic than UV light and can induce radical formation of ink components (monomers and oligomers) directly without the additional “help” provided by photoinitiators!

EB CURING ON PRESS

- One EB unit per press
- Nitrogen “blanket” for proper surface curing
- Shield to protect from secondary x-ray exposure (integral to curing unit)
- Most common on web offset presses
- Flexo inks being developed
EB

Low voltage EB system on web offset press

EB Flexographic Printing

OPERATIONAL BENEFITS OF EB

- UV Benefits plus:
- “Color Blind” – cures pigmented or clear materials
- Cool Process
- Low Power Consumption
- Stable Output
COMPARISON & BENEFITS

UV/EB CURING SYSTEM BENEFITS

- No/low VOCs, HAPs, GHGs
- Pollution control not needed
- Reductions in energy demand & emissions
- Eliminates need for explosion proofing
TRADITIONAL SYSTEMS

- Energy
 - Heat large volumes of air/substrate
 - Maintain the oven at temperature
 - Evaporate and remove water/solvent
- Oxidizers for solvents (regulatory requirement)
- Greenhouse gas (GHG) emissions - fuel for oxidizers & combustion of solvents

SOLVENT VS. UV/EB

<table>
<thead>
<tr>
<th></th>
<th>Solvent</th>
<th>UV/EB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosive Vapor</td>
<td>Common</td>
<td>None</td>
</tr>
<tr>
<td>VOCs</td>
<td>Yes</td>
<td>No/Low</td>
</tr>
<tr>
<td>HAPs</td>
<td>Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>Energy Use</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>
SOUTH COAST AQMD

- Qualify as a Super Compliant Material
 - Any material containing 50 grams or less of VOC per liter of material.
- The provisions of Rule 109 Recordkeeping for Volatile Organic Compound Emissions shall not apply to any Super Compliant Material(s) used at a facility which can demonstrate that the total permitted and non-permitted facility VOC emissions, including emissions from the super compliant material, do not exceed 4 tons in any calendar year as shown by annual VOC records.
- Rule 1130 Graphic Arts recognizes Rule 109

UV/EB SAFETY ADVANTAGES

- Low acute systemic toxicity
- Low chronic toxicity
- No flammability hazard
SAFETY

UV
- Intense UV radiation can cause skin/eye damage – shielding used to minimize exposure
- UV lamps operate at high temperature
- Uncured product can cause irritation and sensitization
- Photoinitiators can present a migration concern

EB
- Secondary x-rays generated when electrons interact with matter – shielded design blocks exposure
- Radiation Safety Officer
- Uncured product can cause irritation and sensitization

UV/EB
- Generally not regulated by Department of Transportation (DOT) as
 - Flammable
 - Corrosive
 - Toxic
- Generally not defined as hazardous waste
 - Disposed of properly in accordance with regulations
- Not included in most federal or state Right-to-Know lists – can contain components on CA Prop 65
UV/EB TECHNOLOGY
SUMMARY

- Reduction in
 - Energy use
 - GHG emissions
 - VOC & HAP emissions
 - Permit fees
- Regulatory Relief
- Safe workplace
- Positive performance advantages and economic returns (speed of cure, end product)

ADDITIONAL INFORMATION

- RadTech Report
- Recording of webinar
- Follow-up survey
- Email presenters
May 12-14, 2014

Hyatt Regency O’Hare
Rosemont/Chicago, IL

www.RadTech.com

QUESTIONS?
CONTACTS

Doreen M. Monteleone, Ph.D., Director Sustainability & EHS Initiatives
RadTech International Doreen@RadTech.org 631-319-0319

Lisa Fine, Technical Director
Joules Angstrom UV Printing Inks lfine@joulesangstrom.com 614-573-8510

Steve Lapin, Ph.D., Applications Specialist, BroadBeam
PCT Engineered Systems SCLapin@teamPCT.com 563-285-7411 ext. 4429

www.RadTech.org