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Ometric equations are essential Ior esumating 1orest blomass, but ey are expensive 1o Construct, so estimates are random selection effects were removed. This resulted in pulling 57.6 million sets of trees to harvest to create an (Figure 5). However, researchers collect only one sample from a population, and that sample could be worse than
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creating a fake forest with characteristics similar to Mexican forests in terms of diameter distribution and a ‘known’ Forest and compared against the known biomass of the forest. Uncertainty values for each combination were the Reverse-J Fake Forest (gray points) following the best performing sample scheme (Figure 5).
biomass with 100,000 individuals. An optimal sample size (n) and distribution of diameters for an allometric equation recorded and then multiplied by the costs associated with the creation of that particular model.
were calculated. From here, we analyzed the effects of n, distribution of n, range of n, and equation form on the
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for a given species we designed a thought experiment to test the assumptions used. By creating a fake forest of known o) = § -
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their effect on uncertainty in the estimates.

The analysis provides concrete data on allometric equation generation best practices that have been published elsewhere. , , , , , ‘ , , Model 1, rn500 Modsl 3, n=500 Modsl 4, n=500
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generation criteria are ignored. For example, is sample size more important than sample distribution and by how much? including 3 (top row) proportional to the distributions of the three underlying fake forests (Figure 3). 3000 ! 3000 3000

This thought experiment allows us to numerically compare the impacts of each design criteria on overall uncertainty. 2000/ 2000 2000/

Analyzing the behavior and statistical characteristics of tree allometric models improves our understanding of them in an | ™

X L A . - i L L N O =" A L N
0 20 40 60 80 100 0 20 40 60 80 100 o) 20 40 60 80 100

effort to strengthen selection criteria. Resu I 'l'.S DBH (cm)

Figure 6. As expected, larger samples better characterize the underlying population (bottom row, n=500). Model
Reverse-J Truncated normal Uniform choice is also important; even with n=500, Model 4 shows more variation in model predictions.
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e i metn demtion Bron 1 i 1 (i ) el Figure 3. We created three simulated forests, each with 100,000 trees, with i i ko distributions, care must be taken to select the best sample scheme.
e e s e s s e e s L contrasting diameter distributions: (a) a reverse-J distribution typical of o ey | o e The total uncertainty of predictions decreases when models were developed with larger and better distributed
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MSumtee e bis 10 gmavste 211 susten wnboes Sy Mmmeoee o the DBH range found in the Mexican forest inventory, with random variation i e Proportional sampling generally performs well, but other, cheaper, sampling schemes can do just as well.
\the biomass VArishiliey followa a nommal distribation (oughly). We also i PP . . 0.000.010.020.02.040.05 .. . .. . . .
et e added; and (c) a truncated normal distribution with a mean of 37.5 and standard e The preliminary results have already been used to adjust the decision tree used for biomass calculations in the
TS ot e ke e deviation of 12.5 cm, which might be expected of a cohort of trees of a single Figure 5. Predicted forest biomass compared to the underlying Fake Forest, with combinations in red having > 5% national forest inventory of Mexico
- age. median absolute error. Combinations of small sample sizes can yield good results if an adequate sampling scheme is
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chosen. Proportional sampling did not perform as well as some other sampling schemes. The Reverse-J DBH
Figure 1. Sample of Matlab code used to create distribution (Figure 3) is the hardest to characterize (Table 1). Model choice is less important than sampling choices.
a Fake Forest for analysis. Biomass values were e Simulated /
created using three diameter distributions Imulated samples .
. : . : : " ‘ ’ - Proportion Lowest cost
(Figure 3) with random variation added to We used 10 sampling intensities from 10 to 1,000 ‘harvested trees’ for use in Next ste ps
simulate real-world variability. creating allometric models. We used a total of 64 unique sampling strategies Distribution ~ Model < 5% uncertainty
defined used 8 diameter classes (Figure 4). To examine model selection Normal 1 58% $5,865 itati - ili il Qi
(Fig ) 0 Table 1. Summary table of model performance and e Develop a quantitative method to balance costs, model selection, and the probability that one sample will give
effects we choose 3 common model forms: 3 58% $5,865 costs. The proportion with <5% uncertainty is the acceptable results to better guide future allometric model creation.
o biomass — e@+b(log(DBH)) 4 57% $6,200 perce_ntage of the §4O combinations that r.esulted iq an e Estimate uncertainties at the level of individual predictions for nonlinear models using a Monte Carlo method
i a+b(log(DBH?)) equation that predicted the Fake Forest biomass within and a Delta method.
: : blomass = e Uniform 1 03% $5,780 5% of the true value. Lowest costs represents the least - - 2 o g -
XS biomass = aDBH?PY 0 - = pre: _ e Graphical analysis of RMSE, R#, uncertainties of predictions and actual uncertainty
| . iR 3 63% $6,170 cost to create a model with <5% uncertainty, which
; o . Costs 4 629% $6.170 d_epends on the number of trees in fche sample and thel_r
o size. Larger trees are more expensive to process, and if
We obtained real-world harvest and processing costs for trees in Mexico as a Reverse-J 1 37% $6,200 it is feasible to cut fewer large trees to obtain a good ACkn OWI e d g m entS
Figure 2. Black dots represent real-world dbh and function of diameter, to look for the most optimal sample size and strategy as 3 36% $6,200 allometric model, cost savings can result.
biomass values for Latin America from part of a cost-benetit analysis. What is most scientifically rigorous may not be 4 37% $6,200 Alex Young, SUNY-ESF, helped with graphics. Benedicto Vargas, Instituto Tecnoldgico de El Salto, provided
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