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Use of Logarithmic Regression in the Estimation of Plant Biomassl
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BASKERVILLE, G. L. 1972. Use of logarithmic regression in the estimation of plant biomass. Can.
J. Forest Res. 2, 49-53.

The basic assumptions of regression analysis are recalled with special reference to the use of a
logarithmic transformation. The limitations imposed on inference-making by failure to comply
with these assumptions are discussed and ways to avoid the limitations indicated. A systematic bias
of the order of 10 to 20% which is inherent in most, if not all, prior uses of the logarithmic equation
to estimate plant biomass is noted as is the correction for the bias.
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Les hypotheses de base de I'analyse par regression sont enoncees avec reference speciale a I'emploi

de la transformation logarithmique. Les restrictions imposees sur I'inference, a defaut de satisfaire
les hypotheses, sont discutees et les moyens d'eviter les restrictions sont indiques. Un biais systematique
de 10 a 2070 qui est inherent dans la plupart, sinon tous, les emplois anterieurs de I'equation logarith-
mique pour I'estimation de la biomasse des plantes, est note comme la correction pour le biais.

Occasionally regressions have been calculated
in terms of combinations of x-variables (usual-
ly D2H) which give a linear relation in arith-
metic ~nits. Avoidance of the logarithm may
be dangerous when it leads to violation of
necessary assumptions of regression analysis.

This paper briefly reviews the assumptions
of regression and the reasons for using a
transformation and calls attention to the
appropriate way of converting estimates from
a logarithmic equation back to arithmetic
units. These considerations are inherent in
any use of a logarithm transformation and
not limited to calculations of plant biomass.
However, it is shown that in the past, misinter-
pretation of estimates from logarithmic equa-
tions has resulted in underestimates of biomass
in most, if not all, cases where the logarithmic
transformation has been used. While the
ready access to computers today makes
perpetuation of the error almost automatic,
it is not difficult to seek and use methods that
are appropriate to each data set and will
remove the error.
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Introduction

The most common procedure for estimating
in forest stands is through the use
.and stand tables. A few stems

destructively sampled and the weight of
component determined and related by

rcgression to some dimension of the standing
I ree. A stand table which classifies stems per
unit area by units of the dimension used in the
regression is then expanded to an estimate of
biomass by multiplying the number, of stems
In each dimensi9n class by the weight ~estimat-
ed from regression) for that class. This general
I\pproach has been common for man)' years
Itnd had been called allometry in Europe and
Jupan (Kira and Shidei 1967) and dimensional
I\nalysis in North America (Whitaker and
Woodwell 1968).

The weight of a plant component usually
can be plotted over some dimension (e.g.
diameter, height, or a combination thereof)
10 yield a straight line on double-log paper .
Thus it has been expedient to calculate re-
gressions as linear in the logarithms of the
variables and to transform back to arithmetic
units by determining the antilogarithm for
Ihe expansion of the stand table to biomass.

The Problem
In the general case, we have two variables

Yand X such that, on double-log paper, the
plot of Yon X yields a straight line. The
relationship suggested is that of the allometric
equation "
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[I] Y = 13Xa

We require an efficient and unbiased expres-
sion of this relation which will permit (a)
the estimation of f.- with limits of uncertainty
given X .-and, (b) the comparison of the
parameters 13 and a among independent data
sets.

Solution for the parameters 13 and a can
be accomplished in arithmetic units by com-
puter programs using an iterative least-squares
technique which minimizes the sum of squares

N A
[2] ~ (Y.- -Y.-)2

;=1

where N is the number of paired observations.
Alternatively, equation [I] can be written
in logarithmic form, either base e or base 10,

[3] LN(Y) = LN 13 + a LN (X)

which is linear. The parameters of this equa-
tion can be estimated by solving as in ordinary
linear regression minimizing the sum of

squares

N { ~ }2

.-~1 LN( Y;) -LN( Y;)[4]

The sums of squares given in [2] and [4] are
not equivalent and the importance of choosing
the proper regression model when solving
for f:J and a has recently been emphasized
{Zar 1968).

The Right Model
There are three assumptions fundamental

to a least-squares regression :
I) It is assumed that for each X there is a

normally distributed population of y from
which the sample Y's used in the regression
are taken as a random sample. Failure
to comply with this assumption will limit
the inferences that can be made regarding
the original population.

2) It is assumed that the true means, ~, of
all the sampled populations fall along a
given path, for example in the linear model
~ = a + bX. Failure to comply with
this assumption will result in asystematic
bias in estimated values of Y.

3) It is assumed that the variance, 0"2, is the
same for all the populations. That is, the
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populations of Y at every X are normally
distributed about their respective J.li with
common variance, 0"2. Failure to comply
with this assumption results in an "aver-
aged" estimate of 0"2 and invalidates esti-
mates of uncertainty and comparisons of
13 and a among data sets.

Since we often wish to set limits of uncer-
tainty and to compare sets of 13 and a to de-
termine the feasibility of pooling data (for
which purpose 0"2 must be uniform), it is
desirable that the uniformity of 0"2 be ensured,
if necessary by transformation. The procedures
for checking the uniformity of variance do
not lend themselves to an approach with pass-
or-fail tests of significance and judgment is
an important factor (Draper and Smith 1966).
A sequence of steps which the author has
found useful is as follows :
A-the variance of Y is calculated for each
X class and plotted over the X -class centers
on arithmetic paper
1) If the variance shows a definite trend, in

plant material commonly increasing with
increasing X, proceed as in step B. See
Draper and Smith (1966) or other standard
references for equivocal cases.

2) If the plot of variance of Y over X -class
yields a horizontal band (often with wide,
but random, scatter), this indicates that the
variance of Yi i5 independent of Xi and
it is reasonable to assume a model of
the form

[5] .Y.. = 13X..a + E..

where Ei is a random error. The appro-
priate sum of squares to minimize is that
given by equation [2]. There are several
iterative least-squares methods available
for such a solution, for example see Hull
(1967) and Zar (1968).

B-lf the variance of Y is not uniform across
the domain of X, this indicates that the var-
iance of Y is not independent of Xi. In this
case a pos~i.ble model. would be

[6] yo = (PX.a ) E.
...

which, when transformed to logarithms yields

[7] LN (Yi) = LN(13) + a LN(Xi) + LN(Ei)

To test this possibility, the variance of LN(Y)
is calculated .and plotted over X-class as
before.
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I) If the variance shows a trend away from
the horizontal, proceed as in step c.

2) If the plot of variance of LN(Y) over
X-class is essentially horizontal with ran-
dom deviations, then the model is indeed
of the form of [7] and the appropriate sum
of squares to minimize is that given by
equation [4]. The solution procedure is
to transform each Yand X variate to its log-
arithm and compile as in linear regression.

C-If both the arithmetic and logarithmic
variances fail to show uniformity, it will be
I\ccessary to weight each Y. observation,
I.'ommonly by the inverse of the variance of

~l1ch f; (Draper and Smith 1966) and then
.olve for the regression constants using the
weighted logarithms. ,

For determining the correct model, I have
round a FORTRAN program which cal-
~ulates the variance of Y and of LN(Y)
by X -classes and plots the variance of Y over
X and variance of LN( Y) over X useful
( Bl\skerville 1970). Plots are also obtained of
Y over X, LN( Y) over LN(X) and of the
deviations from regression in both arithmetic
And logarithmic units. Such a display makes
It relatively easy to evaluate the validity
()f the assumptions discussed above and to
determine the appropriate model.

The above is a minimal, but often sufficient,
procedure for ensuring the correct choice of
model. The reader is referred to standard
rcrerences for definitive treatments.
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Interpretation
I f the model is of the form [5] and if the

M(}lution for the parameters is by iterative
techniques that minimize the sum of squares
In equation [2], then using the proper degrees
'1( freedom: a) The sample variance (i.e.,
the variance yielded by the (&;)2) is an unbiased
estimate of 0"2 and is the appropriate value to
use in the comparison of regression para-

meters; b) the estimate Y; is an unbiased
estimate of J1 at X;; and c) The limits of un-
certainty about y can be calculated in the
usual way using 82.

If the model is of the form of [7] and if the
Kolution is by linear regression after transfor-
mation to logarithms thus minimizing the
lum of squares given by equation [4], then:
a) The sample variance (i.e., in terms of (LN-

An Example

As an example of the difference between
retransformation to the median and mean,
Table 1 shows the estimate~ weight of foliage
on balsam fir trees (Abies balsamea (L.)
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(£j))2) is an unbiased estimate of 0"2 at LN(Xj);
""""'

b) The estimate LN(Yj) is an unbiased esti-
mate of J! at LN(Xj); and c) the limits of
uncertainty about LN(Y) are calculated in
the usual way using &2.

Conversion of Logarithmic
Estimates to Arithmetic Units

When the logarithmic transformation is
used, it is usually desirable, indeed necessary,
to be able to express estimated values of Y
in arithmetic (i.e., untransformed) units.
However, the conversion of the unbiased
logarithmic estimates of the mean and var-
iance back to arithmetic units is not direct.
This results from the fact that if the distribu-
tion of LN( Y) at a given X is normal, the
distribution of Y cannot be normal but will
certainly be skewed. In fact, if the distribution
is normal in logarithms, the solution of [3]
for a given Xj and the determining of the
antilogarithm of LN( Yj) yields the median
of the skewed arithmetic distribution rather
than the mean (Brownlee 1967; Finney
1941) ! The corrections for skewness are given
by Brownlee (on p. 62) as follows :

""""' A
if Ji = LN( Y) = 13 + ciLN(X)

and &2 = sample variance of the logarithmic

equation;
Then

[8] y.;, e(~ + g2p>

[9] cr A2 .;, e (2~2 + 2~) -e(~2 + 2~).

where y is the estimated mean in arithmetic
units of the (skewed) Y distribution at X
and GA2 is the estimated variance (for the
skewed Y distribution) in arithmetic units.
Uncertainty limits can be retransformed
from logarithms in a manner similar to y
and these will be asymmetric about the
regression line but the asymmetry will be
in a direction appropriate to account for the
skewness.



Weight (kg) of foliage determined from-
DBH class

(inches} Median Mean Weighted mean

0
0
0
2
5
9

14
23
33
47
64
85

110
140

1
2
3
4
5
6
7
8
9

10
11
12
13
14
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Mill.) from I to 14 in. (2.54 to 35.56 cm)
in diameter at breast height: a) determined
from the median ti' that is the antilog of
[13 + a LN(Xi)]; b) determined from the
mean ii as calculated by [8]; and c) deterrnin-
ed from a weighted mean ti. The last is an

TABLE 1. Comparison of three solu~ions of the allo-
metric equation LN(Y) = fJ + a[LN(X)]

adjustment for the fact that the slope of the
allometric curve is continuously increasing
over the domain of X and therefore the Y at
the X..class mid-point is always a slight
underestimate of the mean for all the possible
Y's for the class. The regressions on which
this table is based contained 102 observations
and by virtue of the scheme outlined above
required transformation to logarithms for
compilation. Further, examination of the
plottings of the y variable and deviations
from the model over X showed that the
distribution of Y at a given X was normal
in logarithm form and skewed in arithmetic
form.

The differences in Table 1 are seen to be
appreciable, particularly between the median
and mean estimates. For some cases it may
be reasonable to use the mediaft value, but
in estimating biomass (and the chemical
inventories which depend upon it) it is clear
that the centroid of the class is the desired
value and this is given by the mean. The
literature contains many estimates of plant
biomass based on logarithmic relationships,
but I ~m ftot aware of any case (including

Conclusions

Proper use of regression techniques often
makes it necessary to transform data to their
logarithms since failure to do so invalidates
limits of uncertainty and the comparison of
regression constants (for example to examine
the possibility of pooling data for stands or for
a group of species). However, the transforma-
tioa from the logarithmic form back to arith-
metic units by simply determining the anti-
logarithm has,.by failing to account for the
skewness of the distribution in arithmetic

.03'
'.26
.97
.45
.04
.09
.95
.02.
.69
.35
.43
.35
.54
.46
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my own data) in which the median was not
inadvertently used in place of the mean in
the expansion to biomass per unit area. The
problem was recognized by Madgwick (1970)
although he did not pursue the matter .

It'ljs evident that the error introduced by
the use of the median Y where the mean Y
is appropriate increases with the average size
in the X dimension. The effect could be
devastating when stands of different structure
are being compared since a differential error
is introduced. For example, when the stand
table for a young stand was expanded by
means of appropriate logarithmic equations
to biomass per hectare determined by each
of the above three estimating procedures, it
was apparent that retransformation of re-
gression estimates to median values as opposed
to mean values introduced an error of the
order of 10-20% of the total biomass for a
tree component. This error will always be in
the nature of an underestimate.

I have examined some 40 regressions for
various components of four broad-leaved and
two coniferous tree species each having some
70 to 100 observations. In every case, the var-
iance was highly unstable in arithmetic units
and the logarithmic transformation rectified
this problem. In every case, the plotted data
(YIX, LN(Y)ILN(X), (Y- Y)IX) indicated the
distribution of Y to be normal in logarithms
and markedly skewed in arithmetic units.
Thus, in every case it was necessary to apply
equation [8] in the retransformation. Casual
inspection of several similar data sets in the
literature indicates that while the use of a
logarithmic transformation was valid, the
retransformation was to the median when
it was intended to have been to the mean.
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BASKERVILLE: LOGARITHMIC REGRESSION

units, yielded the median rather than the
mean value of Yi for a given Xi. This has
resulted in a systematic underestimation of

biomass whenever the logarithmic transfor-
mation has been used. Simply to avoid the
logarithm is not the solution since this will,
in most cases, retain the unstable variance
and associated doubts about limits of un-

certainty.
Inasmuch as there is ready access to com-

puters at virtually all centers of investigation,
it is not a great burden to choose the regression
model and retransformation appropriate to

the data at hand. The bias is sufficiently large
that tests for its existence and, where neces-
sary, its correction are well worth the effort.

The author acknowledges the assistance and advice of
Dr. I. I. Beauchamp of the Oak Ridge National Labo.
ratory, Biometrics Group, in the preparation of the
material for this paper .
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