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CORRECTIONS FOR BIAS IN REGRESSION ESTIMATES
AFTER LOGARITHMIC TRANSFORMATION!

JoHN J. BEAUCHAMP

Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37830

AND
JERRY S. OLsON

Environmental Sciences Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37830

Abstract.

Experience with biological data, such as dimensions of organisms, often confirms

that logarithmic transformations should precede the testing of hypotheses about regression
relations. However, estimates also may be needed in terms of untransformed variables. Just
taking antilogarithms of values from a log-log regression line or function leads to biased esti-
mates. This note compares corrections for this bias, and includes an example relating mass of
tree parts (bole, branches, and leaves) to tree diameter of tulip poplar (Liriodendron tulipifera
L.) in Oak Ridge, Tennessee, forests. An Appendix summarizes derivation of exact and approxi-
mate unbiased estimators of expected values from log-antilog regression, and of variance

around the unbiased regression line.

INTRODUCTION

Regression analysis of the dimensions of organisms
can readily be accomplished by computer programs
using either the original measurements of organisms
or various transformations of the raw data. In many
cases the variability around a fitted line increases in
proportion to the mean size. The variability may
be stabilized by taking the log transformation of the
data and the transformed data more closely satisfy
the assumptions underlying most parametric statis-
tical methods, such as regression and analysis of
variance. Tests of hypotheses, which may be used in
deciding about the desirability of pooling parts of
the total data, are then valid. Baskerville (1970)
provides a diagnostic program to help guide the user’s
judgement leading up to his decisions about such
analysis, and about subsequent use of the resulting
data.

In cases like the example below, there is also a
need for estimates in terms of the original scale, so
that results can be combined to obtain an estimate
of a quantity like total mass per unit area of forest.
Estimates, which are obtained by taking antilogs of
the previously transformed data, are common (Oving-
ton and Olson 1970). Nevertheless, a bias is inherent
in this procedure because the largest values are
compressed on the logarithmic scale and thereby
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tend to have less “leverage” than small values in
making such an estimate.

Successive approximations to correct for this bias
were long ago outlined by Finney (1941), but are
seldom used in practice (Madgwick 1970). Aitchison
and Brown (1969) discuss many of the estimation
problems and properties associated with a random
variable Z whose logarithm is normally distributed.
Finney’s approach has been adapted to log-normal
regression by Mostafa and Mahmoud (1964), who
carry the series approximation to terms of order 1/n
where n is the sample size. The present note carries
similar approximations to terms of 1/n? and also
extends Laurent’s (1963) approach which used
modified Bessel functions for minimum variance
unbiased estimates of the median and variance.
Heinen (1968) and Bradu and Mundlak (1970) use
infinite series for unbiased estimates of the mean
in lognormal regression. Zellner (1971) uses esti-
mators for log-linear regression which are optimal
in the Bayesian sense, and also reviews some non-
Bayesian results. The following sections summarize
point estimation for the mean and variance around
linear regression; and may be useful with or without
confidence interval estimates like those of Land
(1972). Such a correction for the exact minimum
variance unbiased estimate given in the Appendix
of this note is likely to prove important in forestry,
several aspects of production ecology and the allo-
metric analysis of growth and form.

ESTIMATION PROCEDURE

Symbolically, the problem is the consideration of
the random variable Z such that Y = InZ is normally
distributed with mean, E(Y) = B8, + B;x, which is
a linear function of an independent-nonrandom vari-
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able x, and with variance 2. From a sample of n
observations on Z, denoted by z;, s, . . . , z,, it is
desired to obtain minimum variance unbiased esti-
mates of the mean and variance of the distribution
of Z. A derivation of the estimation procedure is
given in the Appendix and the steps involved are
outlined below:
Step 1: For each value of z; there is a correspond-
ing pair of values (x;, y;,) for i = 1, 2,
., n. Fit a straight line to the n pairs
(x;; y;) to obtain the least-squares esti-

mates of 8, and B, denoted by /}0 and f?l,
respectively.

Step 2: From the regression analysis of the n pairs
(x; ¥;), calculate 42 from the expression
given in the Appendix.

Step 3: For each value of the independent variable
calculate ¢ as given in the Appendix.

Step 4: From the above calculations the minimum

variance unbiased estimator of Z is given
by a/(9, 62) = exp(By + B1¥)y(52/2)
where y(6%/2) is defined in equation (1)
of the Appendix.

It should be noted that the first term, exp( ﬁ?o + le),
in a,(9, 6?) is the estimate one would obtain by tak-
ing the untilog of §, which is a biased estimate of
the mean of Z. Therefore, ¥(6%/2) is the term which

corrects for the bias when only exp(éo + [?lx) is used.
If expressions for the modified Bessel function in
y(3%/2) are not available, then equation (3) of the
Appendix may be used. This series expression is an
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Comparisons of log-log regression for Liriodendron tulipifera L. branch weight on bole diameter (a, left)
an unbiased estimate a: and a biased estimate a. obtained by using antilogarithms without correc-

approximation to the unbiased estimator of the
mean of Z through terms of order 1/n2 and has been
a very close approximation in practical examples like
that given in the next section.

Step 5: Approximations to the unbiased estimator
of the variance of Z, through terms of
order 1/n2, and variance of a,(9, ¢2), to
terms of order 1/n may be found by using
equations (5) and (8) in the Appendix.

The computer program to make these calculations

includes the successive approximations of numerical
data and several options of graphical output (Beau-
champ, Hull, and Olson 1972).

EXAMPLE

In this section the estimation procedure of the
previous section is applied to the data on tulip poplar,
Liriodendron tulipifera, given in Table 1. For this
particular example x is the natural logarithm of the
diameter (cm) of the tree at breast height, and Y is
the natural logarithm of the dry weight (kg) of the
branches. Although there are errors present in both
measurements, it is assumed that the error in the
measurement of the diameter is negligible in compari-
son to the measurement error plus random variations
of the dry weight of all the branches in a population
of trees having any given diameter.

The estimates of B,, 8y, and ¢2, needed in Steps
1 and 2 mentioned above, were obtained from the

. . A
regression analysis of ¥ on x and are given by 3, =

-3.9195, ,él = 2.2536, and 62 = 0.2971. Figure 1(a)
shows the observed transformed data and the line
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TaBLE 1. Data and results from lognormal regression
for branch weight of Liriodendron tulipifera L.

BIAS IN REGRESSION ESTIMATES

Tree Dry wt. Unadjusted Estimate
diameter® branches® estimated Adjusted of
(cm) (kg) mean* Y(62/2)% mean* variancef
(1) @) 3) 4) ) 6)
2.5 94238 .15652  1.1083 17346 .00304
4.1 13423 47724 1.1274 .53806 .01770
5.1 .58165 78046  1.1343 .88526 .03731
8.1 1.5963 2.2138 1.1455 2.5358 16969
9.1 2.9754 2.8779 1.1476 3.3025 .24584
12.2 6.1073 5.5718 1.1515 6.4159 63253
14 3.557 7.5978 1.1527 8.7579 1.0133
14.5 7.680 8.2231 1.1529 9.4806 1.1490
14.5 11.982 8.2231 1.1529 9.4806 1.1490
15.2 7.718 9.1449 1.1532  10.5459 1.3664
17 14.300 11.7683 1.1537  13.5767 2.1127
17 6.0178  11.7683 1.1537  13.5767 2.1127
17.8 18.905 13.0534 1.1538  15.0606 2.5556
21.3 13.333 19.5620 1.1537  22.5696 5.7618
23.6 26.598 24.6474 1.1534  28.4286 9.6259
24.1 20.95 25.8399 1.1533  29.8015  10.733
24.6 44,138 27.0638 1.1532  31.2102 11.954
25.1 23.725 28.3193 1.1531  32.6549  13.299
26.4 20.71 31.7325 1.1528 36.5806  17.456
26.7 23.61 32.5509 1.1527 37.5215 18.566
28.4 41.13 37.4090 1.1522 43.1033  26.113
29 32.66 39.2137 1.1520  45.1756  29.355
31.5 67.359 47.2466 1.1512  54.3912  46.913
335 88.584 54.2774 1.1505 62.4469  66.821
34 31.73 56.1202 1.1503  64.5568  72.790
35 74.21 59.9087 1.1500 68.8927  86.091
38.6 137.92 74.6985 1.1486  85.7966 152.15
39.1 69.22 76.8968 1.1484  88.3063 164.01
39.4 104.79 78.2328 1.1483  89.8312 171.49
40.8 132.52 84.6374 1.1477  97.1378 210.23
54 159.00 159.185 1.1422 181.825 1.072.4
Sum of squared
residuals 10,180.2 8.173.7

a Observed at breast height:
b Observed, dried at 105° C.
< From a,(J).

d From equation (1).

¢ From a,(J, ¢%).

f From equation (8).

4.5 feet = 137 cm.

Y= [A;’O + élx. The values of the unadjusted biased

mean a.(9) = exp([}0 + élx), which are the values
obtained by merely taking the antilogs of the trans-
formed estimates, are given in column 3 of Table 1.
The values of y(42/2), needed to obtain a,(J, 4°),
are given in column 4 of Table 1. By multipling the
values in columns 3 and 4 together, the minimum
variance unbiased estimate a, (9, 32), is obtained and
its values are given in column 5. The estimated
variance of a,(J, ¢2), mentioned in Step 5, is given
in column 6 of Table 1. Figure 1(b) shows the
observed data with the fitted curves from the expres-
sions for a;(9, ¢2) and as(9). A closer examination
of data for the two curves in Figure 1(b) shows dry
weight estimated from a,(9, %) is from 10 to 13
percent greater than the dry weight estimated from
a,(9) for a few small trees (2.5 to ~5 cm diameter).
These trees would make very little contribution to
the total branch mass per unit area in a forest having
many tree sizes. Over a wide range of tree diameters
(8 to 54 cm) the difference between these two
estimates is about 15 percent.

Data from boles for the same trees showed smaller
bias (<1 percent) in the estimated dry weight ob-
tained from a,($) relative to our proposed estimate
a,($, 2). For 16 of the trees mentioned above,
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leaves were sampled during the growing season; these
showed differences between the two estimates near
6%. In many forests, foliage represents a smaller
fraction of the total mass than either branches or
boles, but can be important in nutrient budgets
and exchange. These and other examples not shown
here thus suggest there are some data for which our
refinements and those suggested by authors cited in
the first paragraphs are negligible for practical pur-
poses. However, for other cases, the additional terms
in expression (3) of the Appendix of the estimate
a;($, ¢2) could compensate for the distortion intro-
duced by transforming raw data and retransforming
logarithmic regression estimates into terms of the
original observations.

DiscussioN

In this paper the authors have used the properties
of the lognormal distribution to obtain unbiased
estimates for the mean and variance of lognormal
variates in the regression framework which are im-
provements over simply taking antilogarithms after
the logarithmic transformation. Bakersville (1973)
has investigated estimates obtained by substituting
Bo» B1» and 6° in E(Z;) = exp{Bo + B1x; + o*/2}
for approximating the mean of the lognormally dis-
tributed random variable at each particular value of
the independent variable. The above estimates of
the mean are still biased since the true g8, 8, and o
are unknown. Therefore the development of the
estimates in Section 2 and the Appendix is a way to
estimate and eliminate the bias. Further discussion
of the foregoing example and others indicates that
Baskerville’s approximation already may be close to
the unbiased value unless the variance is quite large.

By simply dropping all terms except “1” in the
parentheses of the approximation in (3) of the
Appendix, one obtains the estimator proposed by
Baskerville (1973). The additional parenthetical
terms in (3) would make contributions depending
on the magnitude of 4* and ¢, and also give an
indication of the bias in the estimator exp{/}o + lei
+ 62/2). The computer program mentioned earlier
(Beauchamp, Hull, and Olson 1972) includes in the
output a comparison of the following estimators:

(1) Y BEST = exp{By + Bix:}; (2) YO EST = exp

{B” + ﬁlxi + 42/2}; (3) series (Y1 EST; Y2 EST)
approximations to the unhjased estimator through
terms of order 1/n and 1/n2; and (4) the unbiased
estimator Y3 EST = a;(9, 4%). For any particular
set of data it may be helpful to compare the estimates
which one obtains from these different methods in
order to determine the improvement of one estimator
over another.

Figure 2 shows estimates from the data of Table 1
replotted so the solid diagonal line gives the unbiassed
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estimate. As in Figure 1, Y EST (sample dots and
interpolated dashes) shows a bias which could be
of serious practical concern.

However, YO EST is already a much closer ap-
proximation to Y3 EST. Y! EST and Y2 EST are
not even plotted because they could not be dis-
tinguished from the diagonal line on the present
scale of plotting. A related way of expressing the
improvement in estimates is that the sum of squares
of residual variation around the several estimated fits
in our example diminished from 10,180 for Y EST
(antilog unadjusted) to 8,180 for YO EST, to 8,174
for Y1 EST, Y2 EST and Y3 EST.
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APPENDIX
Derivation of estimators

Consider the random variable Z such that ¥ = InZ is
normally distributed with mean, E(Y) = B, 4 Bix, which
is a linear function of an independent-nonrandom vari-
able x, and with variance ¢2. From a sample of n obser-
vations on Z, desire minimum variance unbiased estimates
of the mean and variance of the distribution of Z. If z;
represents the corresponding observed value of Z for i =
1, 2, ..., n, then by using properties of the lognormal
distribution E(z:) = exp{Bo + Bix: + ¢*/2} and Var(z:)
= (exp(s?) — 1) exp (280 + 2B8ix: + o3).

Let § and 191 be the maximum likelihood estimators of
the paramenters B, and B, respectively, obtained from
the n (xi, y:) pairs of observations transformed so that

yi = Inz;. Then the predicted value § = Bo + le is
normally distributed with mean g, 4 gB:ix and variance

(x: - X)z/_%‘ (x2 = %)~

By following an approach similar to that provided by
Finney (1941), a minimum variance unbiased estimator

of E(Z) is given by ai(P, 6*) = exp (/§o + [%x)\/z(&“/z).

In this expression 6* = 2 (y¢« — $:)%/(n — 2) is an un-
i=1

o’¢/n; where ¢ = =

IR

biased estimator of o> which is independent of Bo and ;é;;
T'((n-2)/2
o) = - (( /2) _
[(1=¢/n)(n—2)t/2]1"*7
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La-o/(V2(1 - ¢/n)(n=2)t); (1)
and the generalized expression of the last term in (1)

L(u) = = [r1T(v +r 4 )17 (u/2)"+* )

is a modified Bessel function. If evaluations of the
modified Bessel function are not available, by expanding
¥(6%/2) in increasing powers of 1/n, a good approxima-
tion to the unbiased estimator of E(Z) through terms of
order 1/n* is given by

exp (Bo + fux + &°/2) { 1 -&ﬁz
n

N (8%)°[(8%)" + 2(164 + 2¢)5° + 4¢° - 16¢]}

32n* )

From the expressions for E[y(r*6%/2)] and E[exp(2,éiU +

Z,élx)], an unbiased estimator of Var(Z) is given by

{d/(z&ﬂ) -y (—1—_%"’7/~ )} exp (28 + 26i%).  (4)

By expanding ¢(¢) an approximation to the unbiased
estimator of Var(Z) through terms of order 1/n? is then
given by

\exp(2[30+2,61\—[—a)},‘(expc‘r")l:l
n 2(6%)°[4(6%)* +2(1%+2¢)30+¢“+4¢]]

n

26%(¢ + 26%)

BIAS IN REGRESSION ESTIMATES
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(&2)2

(1——<*”+2¢>+
[(6%)* 4 (195 + 4¢)6° 4 4¢° + 8¢]>} . (5)

Since the minimum variance unbiased estimator of E(Z)
involves the product of two functions which are indepen-
dent, after extensive algebra (Beauchamp and Olson
1972) we find

(2°T(n=2)r((n - 3)/2)
U T{n-1)/2)T(n-3)
Ji—3; 2(1—¢/n)a] e(1-¢/n)a~}

Var [ay(§, 6°)] = e2Bo+2Bio+20%¢/n

3n-2n-2
F n-3n n—

>

+ e2Bo+22ﬁ1x+(21—¢/n%aﬂ(e203¢/n — e¢72¢/n)‘ (6)
Here
Folar, ooy apyviy ooy vgyld) =
- (al)R(a:)R...(a,,)R_z_;_’i (7)
(e (r)x R

is a generalized hypergeometric series as defined in
Gradshteyn and Ryzhik (1965) with (a:i)r = T'(a: +
R)/T'(«:). Since it may not be easy to evaluate the
generalized hypergeometric series, the following expres-
sion is given as an approximation to Var[a:(§, ¢*)] to
terms of order 1/n;

(‘”” + )exp[Z(ﬁo-f-ﬁxx) Fal o (®)

n
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