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Abstract. New aspects and advancements in classical uncertainty propagation methods
were used to develop a nutrient budget with associated uncertainty for a northern Gulf of
Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the
standard error and degrees of freedom. New aspects include the combined use of Monte Carlo
simulations with classical error propagation methods, uncertainty analyses for GIS
computations, and uncertainty propagation involving literature and subjective estimates of
terms used in the budget calculations. The methods employed are broadly applicable to the
mathematical operations employed in ecological studies involving step by step calculations,
scaling procedures, and calculations of variables from direct measurements and/or literature
estimates. Propagation of the standard error and the degrees of freedom allowed for calculation
of the uncertainty intervals around every term in the budget. For scientists and environmental
managers, the methods developed herein provide a relatively simple framework to propagate
and assess the contributions of uncertainty in directly measured and literature estimated
variables to calculated variables. Application of these methods to environmental data used in
scientific reporting and environmental management will improve the interpretation of data and
simplify the estimation of risk associated with decisions based on ecological studies.
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INTRODUCTION

The question of what constitutes the most reliable
value to be assigned as the uncertainty of any given
measured quantity is one that has been discussed for
many decades and, presumably, will continue to be
discussed. It is a question that involves many
considerations and by its very nature has no unique
answer. The subject of the propagation of errors, on
the contrary, is a purely mathematical matter with
very definite and easily ascertained conclusions.
Although the general subject of the present article
is by no means new, many scientists still fail to avail
themselves of the enlightening conclusions that may
often thus be reached, while others frequently use the
theory incorrectly and thus arrive at quite misleading
conclusions.

—Raymond T. Birge

This quote from the physicist Raymond T. Birge (1939)
also opened a paper by Ku (1966) in which Ku lamented
there was not a suitable reference in the literature or in
textbooks on the subject of error propagation. Despite
the general acknowledgement that quantitatively express-
ing uncertainty is important for the management of
ecosystems (e.g., Regan et al. 2002, Halpern et al. 2006),

very rarely is uncertainty rigorously treated in ecological

studies (cf. Lo 2005, Cressie et al. 2009). Calls for
uncertainty analysis in ecological risk assessment and
decision making (e.g., Reckhow 1994) and for a greater
emphasis on teaching of uncertainty analysis in ecological
curricula (Brewer and Gross 2003) point to the need for

uncertainty propagation methods that are accessible to
ecologists. In this paper we reintroduce classical uncer-
tainty propagation methods by demonstrating their use
developing uncertainty intervals around all the terms in

an ecosystem nutrient budget. These methods are
relatively simple compared to many modern methods
and are generally applicable to step by step calculations
ubiquitous in the analysis of ecological data.

Types of uncertainty and methods

of uncertainty propagation

Uncertainty in the reporting of ecological results may
be classified as either linguistic or epistemic (Regan et al.

2002). Linguistic uncertainty arises from miscommuni-
cation in the reporting and interpretation of data.
Epistemic uncertainty is observational in nature and is
described by measurement and systematic error, natural
variability, inherent randomness, model uncertainty,

and subjective judgment (i.e., best guesses). Uncertain-
ties common to many problems include natural vari-
ability in observed variables, uncertainty about the
model form that describes the problem, and uncertainty

in model parameters (Chatfield 1995).
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Of the epistemic uncertainties, measurement error and
natural variability are the most rigorously quantified in
ecological studies. Standardized methods for laboratory
and field instruments serve to both minimize analytical
error and enable the accurate reporting of uncertainty
for analytical results. Statistical methods for quantifying
natural variation in measurements of a population are
routine. Methods for propagating model uncertainty,
including both estimated model parameters and uncer-
tainty in the functional form of a model, have been
developed. Ultimately, hierarchical statistical models
can incorporate and propagate all of the above types of
uncertainty (e.g., Cressie et al. 2009).
The simplest calculations made with ecological data

are step by step calculations, which do not involve
model parameter estimation or model uncertainty. For
example, the scaling of environmental measurements to
a common length, area, or volume is ubiquitous in the
ecological sciences. In fact, in the ecological sciences
there are many routinely used functions that are based
on first-principles and which have analytical solutions
(i.e., no parameter estimation). Propagation of uncer-
tainty associated with input variables to the output
variables calculated with these functions may be
accomplished using classical error propagation theory.

Classical error propagation theory

The classical error propagation equation (Birge 1939;
elaborated by Tukey 1956, Ku 1966) propagates the
error associated with input variables through a function.
In the simplest case, w¼ f(u, v), the propagated error of
w is calculated as

s2w ¼ ]w
]u

! "2

s2u þ
]w
]v

! "2

s2v þ 2
]w
]u

]w
]v

covðu; vÞ ð1Þ

where s2w, s
2
u, and s2v are the estimated variances of w, u,

and v, respectively. The final term, cov(u, v), is the
covariance where cov(u, v) ¼ ruvsusv, where ruv is the
correlation coefficient for the relationship between u and
v. If the random errors in u and v are uncorrelated then
the covariance term in Eq. 1 approaches zero and can be
neglected (Ku 1966).
Eq. 1 is derived from the first-order Taylor series

expansion of the normal distribution equation, and has
been shown to be an accurate approximation when the
following assumptions are satisfied: (1) input variables
have approximately normal distributions and (2) the
functional form of the equation does not possess
derivatives of unreasonably large magnitude when
evaluated at the averages for u and v (Ku 1966). When
these assumptions cannot be satisfied, higher order terms
from the Taylor series expansion may be required to
obtain accurate estimates of s2w (Tukey 1956). Use of Eq.
1 is dependent on knowing the analytical form of f(u, v).
In cases where f(u, v) is not known, numerical methods
may be necessary to propagate uncertainty (seeMethods:
Measurements and budget calculations: Water surface

elevation and embayment area, volume, and depth and
Discussion: Modern uncertainty propagation methods).

If the goal of error propagation is to develop
confidence limits (CL) around a calculated variable,
the standard error (SE) of the mean is the most
appropriate error term to propagate as the SE may be
converted directly to a CL by multiplying with a t value
for a specified a and degrees of freedom (df ). To
differentiate between variables estimated as means from
measured observations vs. variables calculated from two
or more variables or estimated from the literature, we
denote the mean of a directly measured variable U as U.
We denote the SE of the mean U as SEU which is
calculated by the familiar

SEU ¼ sUffiffiffi
n

p ð2Þ

where sU is the standard deviation of the population U
and n is the number of observations of U. The
propagated SE of a parameter calculated as a function
of two means, i.e., W ¼ f(U, V) is denoted SEW. Eq. 1
may be recast in terms of SEW as

SEW ¼ ]W

]U
SEU

! "2

þ ]W

]V
SEV

! "2
"

þ2rUV
]W

]U
SEU

! "
]W

]V
SEV

! "$1=2
: ð3Þ

In cases where U and V are uncorrelated, Eq. 3 may be
simplified for sums, products, and quotients. For sums,
W ¼ aU 6 bV, Eq. 3 simplifies to

SEW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaSEUÞ

2 þ ðbSEVÞ
2

q
: ð4Þ

For products or quotients,W¼U3V orW¼U/V, Eq. 3
simplifies to

SEW ¼ W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEU

U

! "2

þ
SEV

V

! "2
s

: ð5Þ

Eqs. 4 and 5 may be used to propagate error for many
simple step by step calculations in ecological analyses.

Uncertainty intervals and propagation
of degrees of freedom

CLs for mean U are calculated by the familiar

CL ¼ U6tðdf;aÞSEU ð6Þ

where t is the t statistic, obtained from a table of t values
for the specified df and probability (a). The interval
between the upper and lower confidence limits is the
confidence interval (CI). If a¼ 0.05, then 95% of the CIs
constructed from samples of size n, repeatedly drawn
from the population U, would contain the true mean.

The df may be thought of as the uncertainty around
the uncertainty, such that for a large sample size there is
less uncertainty about the SE and for a small sample size
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the SE has greater uncertainty. Hence, for a small
sample size the t value, for a specified a, is greater than
the t value for a larger sample size. The df are calculated
based on the number of estimated parameters. For
example, df ¼ n % 1 for a population mean and in the
case of simple linear regression, where both a slope and
intercept are estimated, df ¼ n % 2.
A confidence interval for a parameter that is a

function of other parameters may be calculated using
the propagated SE and the propagated df. Recasting W
¼ f(U, V) to the more general W¼ f(W1, W2, . . . , W j), the
df for W (dfW) may be approximated using the Welch-
Satterthwaite formula (Satterthwaite 1941, Welch 1947,
Ku 1966). Similar to Eq. 3 we have replaced s2 with SE
to yield

dfW ¼ SE4
W

Xj

i¼1

c4i SE
4
Wi

dfWi

ð7Þ

where c [ ]W/]W i and dfWi
are the degrees of freedom

for W i. The assumptions for Eq. 7 are that variables are
approximately normal, SEWi

are statistically indepen-
dent and

dfW &
Xj

i¼1

dfWi
: ð8Þ

Recent work indicates that the Welch-Satterthwaite
approximation performs well for propagating df
through calculations involving both directly measured
and subjectively estimated variables (Hall and Willink
2001).
Strictly defined, the term ‘‘confidence interval’’ is

applicable to variables or model parameters obtained
from repeated sampling. Uncertainty propagated
through a function of variables obtained by repeated
sampling conforms to the interpretation of the CI
(Taylor and Kuyatt 1994). Often, however, a variable
or model parameter is subjectively estimated (i.e.,
obtained by means other than statistical analysis).
Propagated uncertainty based on one or more subjec-
tively estimated values does not conform to the strict
interpretation of a CI, and in such cases the propagated
uncertainty is often referred to as a ‘‘level of confidence’’
or ‘‘expanded uncertainty’’ (Taylor and Kuyatt 1994,
International Organization for Standardization 1995).
However, Hall and Willink (2001) demonstrate that the
Welch-Satterthwaite formula performs very well when
combining uncertainty from measured and subjectively
estimated variables, and that the results may be
interpreted as a confidence interval.

Application of uncertainty analysis
to an ecosystem budget

Ecosystem mass budgets are an example of the class of
ecological studies requiring step by step calculations and
scaling. Nutrient budgets quantify nutrient sources and

sinks and are a useful tool for cataloging nutrients
dynamics in systems and evaluating the effects of
management actions (Boynton et al. 2008). As it is not
possible to measure all nutrient sources and sinks in an
ecosystem, an ecosystem nutrient budget serves as a good
example for illustrating how budget terms with propa-
gated SE and df may be quantified from direct
measurements, subjective literature estimates, and calcu-
lations. The field data presented in this work are a subset
from a comparative study of three coastal embayments
(cf. Stutes et al. 2007), and are used here to illustrate
uncertainty propagation and the treatment of uncertainty.
This work builds upon a previous application of

classical error propagation to ecological data (Lo 2005)
by including propagation of the degrees of freedom.
Further, we develop a novel method for the estimation
of uncertainty in scaling variables such as area, volume,
and depth calculated via GIS. We also demonstrate
several examples of uncertainty estimation for literature
estimates and subjective data.
In this treatment, we have ignored measurement,

systematic, and model errors. Measurement errors are
generally constrained by the use of appropriate instru-
ments and well-trained operators. Systematic errors
result from bias by instrument or sampling procedures
and are usually small when instruments are well-
calibrated and sample designs are appropriate for the
research question. Model errors arise from the fact that
models generally represent a simplified view of a system.
For the relatively simple step by step and scaling
calculations presented in this paper, natural variability
in the observed and subjectively estimated variables is
assumed to be the dominant error. Hence, the propa-
gation of uncertainty associated with these variables is
the focus of this paper.

METHODS

Study site

An annual nutrient budget was constructed for the
Gongora lagoon (3081801800 N, 8782502600 W) in north-
western Florida, USA (Fig. 1). The lagoon exchanges
through a narrow mouth with the intercoastal waterway
that connects Perdido Bay, Florida to Pensacola Bay,
Florida. Salt marsh (primarily Juncus roemerianus) and
maritime forest border the south side of the lagoon while
houses and maritime forest border the north side.
Anthropogenic modifications to the lagoon include a
culvert that delivers storm water from a golf course at
the northwestern end, bulkheads along the northern
margin, and periodic dredging of a shallow central
channel. Sampling stations in the lagoon were located
along the central axis from the head of the embayment
to its mouth in order to capture a salinity gradient.
Sampling piezometers in the marsh and on the north
side were located to capture horizontal gradients from
uplands to the embayment. Shoalgrass (Halodule wright-
ii ), which is abundant in nearby lagoons, is absent from
the Gongora lagoon (Stutes et al. 2007).
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Analytical methods

NO3
% þ NO2

%, NO2
%, NH4

þ, and PO4
3% (dissolved

inorganic phosphorus) were determined directly with

colorimetric techniques (Strickland and Parsons 1972)

modified for a Skalar SANþþ nutrient autoanalyzer

(Skalar, Breda, The Netherlands). Total dissolved nitro-

gen (TDN) was determined by high temperature and

chemical oxidation (D’Elia et al. 1977), and subsequent

colorimetric measurement of NO3
%þNO2

% on the Skalar

SANþþ autoanalyzer. Dissolved inorganic nitrogen

(DIN) was calculated as the sum of NO3
% þ NO2

% and
NH4

þ. Dissolved organic nitrogen (DON) was calculated
as the difference between TDN and DIN. Particulate
nitrogen (PN) was measured after high temperature
combustion (Sharp 1974) on a Carlo-Erba CNS analyzer
(Carlo-Erba, Lakewood, New Jersey, USA).

Measurements and budget calculations

Field measurements were made over an annual cycle
(1 July 2003 to 30 June 2004) at multiple locations in and
around Gongora lagoon to characterize the seasonal and

FIG. 1. Study location with sampling sites. WSE, water surface elevation.
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spatial variability in the terms used to develop the annual
nutrient budgets of DIN, DON, PN, and dissolved
inorganic phosphorus (DIP). The nutrient budgets of
DIN, DON, PN, and DIP were mass balanced as

DS ¼ AtmDepþ PSþ GWþ N-ExþM-Exþ Black box

ð9Þ

where DS was the change in storage, AtmDep was the
atmospheric deposition, N-Ex was the net exchange
(import % export) with the adjacent intercoastal water-
way, PS was a point source input, GW was groundwater
input, M-Ex was net exchange with the marsh adjacent
to the embayment, and Black Box consisted of unmea-
sured sinks and sources. All sink and source terms were
scaled to 1 m2 of embayment and to an annual time
scale.
Water surface elevation and embayment area, volume,

and depth.—A pressure transducer (model WL16;
Global Water, Inc., Gold River, California, USA) was
installed at the mouth of the embayment (Fig. 1) to
measure hourly water surface elevations (WSE). Hourly
WSE were measured from April to December 2003.
These hourly measured WSEs were used with concom-
itant hourly measurements at the nearby Pensacola Bay
tide gauge (NOAA Station ID 8729840 referenced to
vertical datum NAVD 88) to develop a linear regression

model (R2 ¼ 0.9) for predicting WSEs for the period
when WSEs at the study site were not measured.
Scaling of sinks and sources to the embayment area,

volume, or depth was based on 3-D models of the
embayment and surrounding watershed generated from
point measurements and LIDAR-based elevation con-
tours. Point elevations and horizontal position were
measured with a real-time kinematic global positioning
system (RTK GPS) instrument (Trimble 4800 GPS
Total Station; Trimble, Sunnyvale, California, USA).
The horizontal and vertical accuracy of the RTK GPS
are on the order of 1 to 5 cm. Point elevation
measurements were made in the embayment and
surrounding areas with an aim to capture rapid changes
in elevation associated with edges between the embay-
ment and marsh, the embayment and bulkheads, and
bathymetric gradients in the embayment associated with
channels and shoals.
LIDAR elevation contour data (vertical accuracy ¼

60.6 m) were obtained from Escambia County, Florida.
The contours were converted to point values in a GIS
(ArcGIS; ESRI, Redlands, California, USA) and
adjusted to the same vertical datum as the RTK GPS
data (NAVD 88). These two elevation layers were then
combined to form a coverage of x, y, z point values
spanning the embayment and its surrounding watershed.
The resulting elevation coverage consisted of 8055
points. The elevation points were used to develop a 3-
D surface of the study site using a universal kriging
algorithm (ArcGIS Geostatistical Analyst extension).
To calculate areas and volumes, the 3-D digital

surface was converted to a triangulated irregular
network (TIN). The TIN hull was then used to calculate
embayment areas and volumes at specified WSEs with
the ArcGIS 3D Analyst extension. Areas (A) were
calculated as a flat plane intersecting the specified WSE
and being bounded in the x and y dimensions by the
TIN hull (Fig. 2). The volume (V ) beneath the flat plane
was calculated by numerically integrating the TIN hull
to the bottom vertical boundary. The embayment
average depth (Z ) was calculated as V/A.
The uncertainty of area and volume estimates was

assessed by a novel multi-step method (Appendix A).
The area and volume calculations were subject to
uncertainty propagated from both the WSEs and the
TIN hull generated through kriging (Fig. 2). As the
algorithms for calculating the TIN hull with ArcGIS
were not known, classical error propagation alone could
not be used to determine errors in area and volume.
Thus, error estimates for areas and volumes were
calculated in a hybrid process that used both classical
uncertainty propagation methods and a Monte Carlo
approach (Appendix A).
DS.—Nutrient concentrations, salinity, and tempera-

ture were measured on seven sampling dates (approxi-
mately every two months) at six locations within the
embayment (Fig. 1). Samples from each station were
collected at mid-depth. Salinity and temperature mea-

FIG. 2. Conceptual representation of how uncertainty in
(A) water surface elevation (WSE) and (B) the triangulated
irregular network (TIN) hull may affect estimates of surface
area, depth, and volume. The triangles and the solid horizontal
lines represent the estimated WSE. The dashed lines represent
upper and lower limits of WSE and the solid vertical arrows
indicate the range of these limits. The horizontal dashed arrows
indicate the potential differences in surface area based on the
limits. In A the uncertainty in area, volume, and depth is solely
due to uncertainty in the WSE. Panel B has the same WSE as in
A but the shape of the embayment has been changed based on
uncertainty in the TIN hull. This also affects the uncertainty in
the area, volume, and depth.
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surements indicated the shallow water-column (mean
depth was 0.48 m, see Appendix A) was well mixed.
Annual DS (mmoles'm%2'yr%1) for DIN, DON, DIP,

and PN were calculated from embayment nutrient
concentrations and embayment average depth as

DS ¼
C

% &
last

% C
% &

first

Dt

 !

Z ð10Þ

where [C]last and [C]first (mmoles/m3) were the average
embayment concentrations of DIN, DON, PN, and DIP
from the last and first sampling dates, respectively, Dt
was the time (yr) between the first and last sampling
dates, and Z was the average depth (m) of the
embayment. Uncertainty assessment for DS involved
parameters that were directly measured or directly
calculated (Table 1; Appendix B).
AtmDep.—Precipitation was measured with tipping-

bucket rain gauges at three locations in the vicinity of
the study embayment (Fig. 1). These locations provided
an estimate of precipitation variability at the scale of the
embayment. At these same locations, rainfall samples
were collected in sterile jars during precipitation events.
These samples were immediately frozen, and later
analyzed for NO3

% þ NO2
%, NO2

%, NH4
þ, TDN, and

DIP.
Annual AtmDep (mmoles'm%2'yr%1) for DIN, DON,

and DIP were calculated as

AtmDep ¼ ðP R
% &

Þ þ ðP R
% &

Dry:WetÞ ð11Þ

where P was the mean annual precipitation (m/yr) from
the three precipitation gauges and [R] (mmoles/m3) was
the mean of rainfall nutrient concentrations (either DIN,
DON, or DIP) among the three sites. Dry :Wet was the
mean ratio of dry deposition to wet deposition.

The average Dry :Wet for DIN and DON (Table C1)
were calculated from wet and dry deposition data for
other nearby estuaries; Mobile Bay, Mississippi Sound,
and Apalachicola Bay (Meyers et al. 2001). The
Dry :Wet for DIN ranged from 0.55 to 0.62 at these
three sites, while for DON the Dry :Wet ranged from
0.20 to 0.27. The Dry :Wet for DIP is not as well
constrained. Two previous studies in the State of Florida
showed highly variable results with the mean Dry :Wet
equaling 2.2 from an annual study in the Everglades
(Ahn and James 2001) and 7.9 from a three-month study
in Lake Okeechobee (Peters and Reese 1995). During a
year-long study in Iowa, Anderson and Downing (2006)
reported a mean Dry :Wet 4.2. For this study, the DIP
Dry :Wet (Table C1) was calculated as the mean of 2.2,
7.9, and 4.2. Uncertainty assessment for AtmDep
involved parameters that were directly measured and
subjective estimates from the literature (Table 1;
Appendix C).

PS.—A small culvert draining a storm water deten-
tion pond entered the embayment at its head (Fig. 1).

TABLE 1. Methods for determining ecological variables with associated uncertainty. Listed along with each type of variable are the
parameters of that type which were used to develop the nutrient budgets.

Method Parameters used to develop nutrient budget

A) Direct measurements of a variable
1) Location specific x, y, z points, WSEs, [C ]last, [C ]first, [R], QPS, [PS], [GW],

[I ], [E ], T, S, [PW], [SW], Scarp
2) Region specific P, Pensacola WSEs, Patm

B) Direct calculation of a variable
1) Calculation of a value from measured variables based

on first principles
Aw, l0, lSW, D0 and DSW for NO3

%, NO2
%, and NH4

þ

2) Spatial or temporal scaling based on in site-specific
regressions

A, V, Z, estimated WSEs, AMP, z, Aflood, Fflood

C) Subjective literature estimates of a variable
1) Use many values from the literature Dry :Wet, h2, pH
2) Use maximum and minimum values reported in the

literature
ET, BD, %OM

3) Using a regression from the literature PD, h2!
D) Calculation of a variable using literature estimates and

first principles
D0 and DSW for DON and DIP

Note: Parameters are: x, y, z points, grid point values spanning the embayment and its surrounding watershed; WSEs, water
surface elevations; [C ]last and [C ]first, the average embayment concentrations of the nutrients dissolved inorganic nitrogen (DIN),
dissolved organic nitrogen (DON), particulate nitrogen (PN), and dissolved inorganic phosphorus (DIP) from the last and first
sampling dates, respectively; [R], mean of rainfall nutrient concentrations among the three sites; QPS, discharge from the point
source culvert; [PS] concentration of nutrient input from point source; [GW], measured groundwater nutrient; [I ], import nutrient
concentration; [E ], export nutrient concentration; T, mean temperature of the embayment; S, salinity; [PW], porewater
concentration of nutrients; [SW], surface water concentration of nutrients; Scarp, total scarp area; Pr, pressure; Pratm, mean
atmospheric pressure; Aw, watershed area; l0, viscosity of freshwater; lSW, viscosity of sediment porewater; D0, diffusion coefficient
at infinite dilution in freshwater; DSW, diffusion coefficient in soil porewater; A, embayment area; V, volume of the embayment; Z,
average depth of the embayment; AMP, cumulative annual tidal amplitude; z, depth at which porewater was collected; Aflood,
average area of marsh inundated per tidal cycle; Fflood, fraction of the year that the marsh was flooded; Dry :Wet, mean ratio of dry
deposition to wet deposition; h2, squared tortuosity; ET, evapotranspiration; BD, bulk density of the marsh sediment; %OM,
percentage of organic matter in soil; PD, particle density of marsh sediment.

! h2 was intended to be calculated by C3 but seeMethods: Measurements and budget calculations: M-Ex for explanation of why it
was calculated as a C1.
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The water exiting the culvert was sampled eight times
over the study period for DIN, DON, PN, and DIP. The
culvert had the shape of a rectangular box, which made
it simple to calculate the discharge. The width of the
culvert (0.48 m) and the depth of the water (1–15 cm)
was measured along with the velocity (m/s) of the water
flowing through the culvert on six occasions. The
velocity was measured by simply timing how long it
took a float to traverse a 1-m method of the culvert. The
discharge (m3/s) was then calculated as the product of
the cross-sectional area of water (m2) and the water
velocity (m/s).
The annual PS inputs (mmoles'm%2'yr%1) of DIN,

DON, PN, and DIP were calculated as

PS ¼
QPS PS

% &

A
CF ð12Þ

where QPS (m3/s) was the average measured discharge
from the point source culvert, PS was the average
concentration of DIN, DON, PN or DIP (mmoles/m3),
and A was the embayment area (m2). CF was the
conversion factor (365 3 86 400) for scaling the instan-
taneous flux to an annual scale. Uncertainty assessment
for PS involved parameters derived as direct measure-
ments or direct calculations (Table 1; Appendix D).
GW.—Groundwater samples were collected bimonth-

ly from six piezometers installed in the upland area on
the north side of the embayment (Fig. 1). The
piezometers were arranged in pairs with one well being
approximately 3 m from the water’s edge and the next
one being 8 m from the water’s edge. The piezometers
were constructed from PVC pipe (diameter ¼ 2.54 cm),
screened over a 10-cm interval, and installed to a depth
of approximately 2 m below the surface. Plastic caps
were placed on the bottom and top of the piezometer
with the top cap being removed only for sampling. Prior
to sample collection the piezometers were pumped dry
three times with a hand pump.
Annual GW inputs (mmoles'm%2'yr%1) were deter-

mined as

GW ¼
ðP% ETÞAw GW

% &

A
ð13Þ

where P was the mean precipitation (m/yr), ET was the
mean evapotranspiration (m/yr), Aw was the groundwa-
ter recharge area (m2), GW was the mean of measured
groundwater DIN, DON, PN, and DIP concentrations
(mmoles/m3), and A was the embayment area (m2).
ET was estimated as the mean of minimum and

maximum ET values reported for southeastern coastal
plain watersheds (Lu et al. 2005). Minimum and
maximum ET were found to be approximately 1.0 and
1.3 m/yr, respectively. The degrees of freedom approach
infinity in cases where a parameter is the mean of
estimated minimum and maximum values (see Taylor
and Kuyatt 1994 for further discussion of this topic). In
such cases we arbitrarily set df ¼ 1000. This arbitrary
decision was used as a way to hedge against the

likelihood that estimated minimums and maximums
were not the true extremes in the data. Even so, because
large df have little impact on the propagated df and t
values change minutely, for df . 1000 this decision has
a very small impact on the propagated uncertainty
interval.
Aw was assumed to equal the watershed area based on

the assumption that the potentiometric slope of the
surface of the unconfined groundwater aquifer mim-
icked the slope of the surface terrain (Dingman 1994).
The elevation gradient of the watershed was complex
due to the relic dune topography and, thus, it was
difficult to accurately determine a watershed boundary.
In order to accurately reflect the uncertainty in Aw,
minimum and maximum watershed extents were deter-
mined using the LIDAR elevation data. The average Aw

was calculated from the minimum and maximum extents
with SE calculated from Eq. 2 and df set to 1000. The
assessment of GW uncertainty involved direct measure-
ments, direct calculations, and subjective literature
estimates (Table 1; Appendix E).
N-Ex.—DIN, DON, PN, and DIP concentrations

were measured at the mouth of the embayment (Fig. 1)
during six rising tides (import) and six falling tides
(export) throughout the study period. For each import
or export event, four water samples were collected.
Annual N-Ex (mmoles'm%2'yr%1) of DIN, DON, DIP,
and PN between the lagoon and coastal waters was
calculated from cumulative tidal exchanges and the
measured nutrient concentrations as

N-Ex ¼ 1

2
AMPð Ī½ ) % E

% &
Þ ð14Þ

where AMP was the cumulative annual tidal amplitude
(m/yr) calculated from daily tidal amplitudes, and [Ī ]
and [E] were the means of import and export concen-
trations (mmoles/m3) for DIN, DON, PN, and DIP.
This approach assumes that over an annual cycle the
volume of the embayment is at steady state (i.e.,
incoming tidal volume¼ outgoing tidal volume). Under
this assumption, the difference between [Ī ] and [E] drives
N-Ex and AMP is simply a scaling term with associated
uncertainty (Appendix F).
AMP was derived from hourly water surface elevation

(WSE) measurements obtained at the mouth of the
embayment from April to December 2003. These hourly
measured WSEs were used in conjunction with hourly
measurements at the nearby Pensacola Bay tide gauge
(NOAA Station ID 8729840 referenced to vertical
datum NAVD 88) to develop a linear regression model
(see Methods: Measurements and budget calculations:
Water surface elevation and embayment area, volume, and
depth) predicting WSEs at Gongora for the January to
June 2004 period. Daily maximum and minimum WSE
values were extracted from the measured and predicted
values and used to calculate a daily amplitude.
Unfortunately the Pensacola WSE gauge did not acquire
data from 4 April 2004 to 21 June 2004. Hence, AMP
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was calculated as

AMP ¼ 365

N

XN

i¼1

daily amplitudei ð15Þ

where N is the number of days (286) with either
measured or regression-predicted values of WSE and
RN
i¼1 daily amplitudei is the sum of the 286 daily

amplitudes. The assessment of uncertainty in N-Ex
involved direct measurements and direct calculations
(Table 1; Appendix F).
M-Ex.—DIN, DON, and DIP porewater samples

were collected bimonthly from six piezometers placed in
the marsh adjacent to the embayment (Fig. 1). The
piezometers were arranged in pairs with each pair
consisting of one piezometer located in the marsh
directly adjacent to the embayment (marsh edge) and
one piezometer located 1 m away from the marsh edge.
The marsh piezometers were constructed and sampled in
a similar manner as the groundwater piezometers, the
only difference being that the marsh piezometers were
screened over a 5–15 cm depth interval below the marsh
surface.
The derivation of M-Ex is most instructive of the

theme of this work. The calculations involved make use
of all the methods used here for determining ecological
variables (Table 1). Further, the calculations serve as a
good example of how uncertainty may be propagated

through a complex model built upon step by step
calculations that are ultimately scaled to a common
dimension (Fig. 3). Annual M-Ex with the embayment
(mmoles'm%2'yr%1) were calculated as

M-Ex ¼ J3Aflood 3Fflood

A
ð16Þ

where J (mmoles'm%2'yr%1) was the flux of DIN, DON,
or DIP from the sediment porewater to the overlying
surface water, Aflood was the average areal extent of
marsh inundated per tidal cycle (m2), Fflood was the
fraction of the year that the marsh was flooded, and A
was the embayment area (m2). Uncertainty propagation
equations are described in Appendix G.

J was calculated separately for NO3
%, NO2

%, NH4
þ,

DON, and DIP by a diffusion model (Berner 1980,
Boudreau 1997):

J ¼ /
DSW

h2
dC

dz
3 3153:6 ð17Þ

where / was the porosity (dimensionless), DSW was the
porewater diffusion coefficient (cm2/s), h2 was the
tortuosity squared (dimensionless), dC was the differ-
ence in concentration between the porewater and surface
water (mmoles/m3), and dz was distance between the
depth of the surface sediment to the depth where the
porewater was collected (m). As the piezometers were

FIG. 3. Schematic representation of the step-by-step calculations used to calculate the marsh exchange (M-Ex) term with
associated uncertainty. Gray circles represent variables measured in this study, hatched circles represent variables estimated from
the literature (subjective variables), and open circles are intermediate variables used in the final calculation of M-Ex with estimated
uncertainty. Dashed arrows denote that pH was only used in the DIP calculation of DSW and that MW was only used in the DON
calculation of DSW. SeeMethods: Measurements and budget calculations: M-Ex and Appendix G for definitions of the variables and
the propagation of uncertainty.
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screened from 5 to 15 cm below the surface, dz was the
average of these two depths (0.1 m). The number 3153.6
contains unit conversions. J for DIN was calculated as

JDIN ¼ JNO%
3
þ JNO%

2
þ JNHþ

4
ð18Þ

and / was calculated by

/ ¼ 1% BD=PD ð19Þ

where BD was the bulk density (g/cm3) and PD the
particle density (g/cm3) of the marsh sediment. We
obtained values of BD and PD using the SSURGO geo-
spatial database (available online).5 The marsh sediment
in our study site was found to be Dirego muck soil which
is described as highly organic coastal wetland soil. The
BD was calculated as the mean of the maximum and
minimum BD values for Dirego soils as determined from
the SSURGO Escambia County, Florida database. The
SEBD was calculated using Eq. 2 and df was arbitrarily
set to 1000. PD was calculated from a nonlinear
empirical relationship that describes PD as a function
of the percentage of organic matter content (Rühlmann
et al. 2006; nonlinear model fitting was performed with
S-PLUS statistical software). The percentage of organic
matter (%OM) content for the Dirego soils at the
Gongora site ranged from 25% to 60% (SSURGO).
Using data provided by Rühlmann et al. (2006), we
reproduced their nonlinear regression (Eq. 12 in
Rühlmann et al. 2006) and used it to predict the PD
at 25% and 60% OM. The mean PD was then calculated
as the average of the PD predicted at 25% and 60% OM.
The SE and df of the mean PD was propagated using
Eqs. 3 and 7 based on the PD SE and df of the two
predicted values obtained using the Rühlmann et al.
(2006) data and regression.
We intended to estimate h2 as a function of / using a

regression model between these two variables (Boudreau
1996). To encompass the uncertainty associated with /,
the 99% upper and lower limit of / were to be used as
input to the model in a fashion similar to the derivation
of PD. However, due to the large SE of / (0.47), the
upper and lower 99% limits fell outside the physical
bounds on /, which can only range from 0 to 1.
Therefore, to encompass the uncertainty in / we took
the average of all the h2 values presented in Fig. 1 from
Boudreau (1996), which showed h2 as a function of / for
systems similar to our study site. The h2 were obtained
by digitizing the values in the figure, and the average,
SE, and df were subsequently calculated.
DSW was calculated from an approximate relationship

(Li and Gregory 1974)

DSW

D0
’

l0
lSW

ð20Þ

where D0 was the diffusion coefficient at infinite dilution
in freshwater, l0 was the viscosity of freshwater, and

lSW was the viscosity of sediment porewater. Mean D0

for each of NO3
%, NO2

%, NH4
þ, and DIP were

calculated based on the mean temperature (T ) of the
embayment using the equations of Boudreau (1997).
The speciation of DIP as either HPO4

2% or H2PO4
% was

calculated based on porewater pH values measured in
healthy coastal marshes in the Gulf of Mexico (McKee
et al. 2006) ?1and in the mid-Atlantic (Tyler and Zieman
1997, Kostka et al. 2002; J. Flory and M. Ogburn,
unpublished data). The fractional contributions of the
DIP species were used to calculate a weighted mean D0

for DIP. Similar to a previous study (Alperin et al. 1992)
the D0 for DON was calculated based on diffusion
coefficients and molecular weight data from different
organic molecules presented by Jost (1960).
The parameters l0 and lsw were calculated using an

approximation attributed to Matthaus (Boudreau 1997;
Appendix G). This approximation calculates l as a
function of temperature (T ), salinity (S, for l0S ¼ 0),
and pressure (Pr, millibars). Pr was calculated as

Pr ¼ Pratm þ ðq3 g3 zÞ ð21Þ

where Pratm was the mean atmospheric pressure
calculated from hourly readings from the Pensacola
airport (about 30 km from the study site), q (kg/m3) was
the density of seawater, g was gravity, and z (m) was the
mean depth of water overlying the marsh. Mean q was
calculated as a function of mean T and S (Millero and
Poisson 1981, UNESCO 1983; Appendix G).
The parameter dC was calculated as the difference

between porewater concentrations and the surface water
concentrations. Mean porewater concentrations ( PW

% &
)

were calculated from the piezometer samples and mean
surface water concentration ( SW

% &
) were calculated

from water-column samples obtained in the embayment.
The justification for using these measurements is that the
diffusion gradients (dC ) were driven by the concentra-
tions in the embayment water that flooded the marsh.
The mean Aflood and the Fflood were determined from

the RTK GPS measurements, the WSE data, and the
TINs used to calculate embayment area. To differentiate
between the marsh and the embayment, the mean
elevation of the marsh–embayment interface or marsh
scarp was determined from the RTK GPS measure-
ments. During the RTK GPS survey, detailed measure-
ments were made along rapid changes in elevation.
Generally, there was an abrupt elevation change at the
marsh edge (scarp), and thus, these regions were
surveyed with particular care. Hourly WSEs that were
statistically greater (a ¼ 0.05) than the mean scarp
elevation were determined with Welch’s approximate t
test (Sokal and Rohlf 1995). Welch’s t test is insensitive
to different df as was the case with WSE and scarp
elevation.
The WSEs that exceeded the scarp elevation were used

in two ways. First, the number of hours when the marsh
was flooded was used to calculate Fflood. Second, the
WSEs exceeding the scarp height were used to calculate5 hhttp://www.ncgc.nrcs.usda.gov/products/datasets/ssurgo/i
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the area and volume of water flooding the marsh in a
manner similar to the calculation of embayment area
and volume (see Methods: Measurements and budget
calculations: Water surface elevation and embayment
area, volume, and depth and Appendix G). The mean
Aflood was calculated as

Aflood ¼ ðmean area for WSE greater than

mean scarp elevationÞ
% ðmean area at mean scarp elevationÞ: ð22Þ

The parameter V
flood, the volume of flooded marsh, was

calculated similar to Aflood and the depth of the flooded
marsh (Zflood) was Vflood/Aflood.

Black Box terms.—To close the nutrient budgets, a
Black Box term was calculated for DIN, DON, PN, and
DIP from Eq. 9. This term includes all unmeasured
processes 6 uncertainty (Appendix H).

RESULTS

DIN

AtmDep (50.0 mmoles'm%2'yr%1) and N-Ex (34.3
mmoles'm%2'yr%1) were the largest input terms in the
DIN budget (Fig. 4A). However, the uncertainty around
the N-Ex was so large (SE¼ 36.8) that the term was not
significantly different from zero. GW inputs were
relatively large in magnitude (8.7 mmoles'm%2'yr%1),

FIG. 4. Dissolved inrganic nitrogen (DIN), dissolved organic nitrogen (DON), particulate nitrogen (PN), and dissolved
inorganic phosphorus (DIP) nutrient mass balance terms with propagated uncertainty (6SE, df ). All units are mmoles'm%2'yr%1.
Positive terms represent an input to the embayment, while negative terms represent an output. Variables are AtmDep, atmospheric
deposition; PS, point source input; GW, groundwater input; M-Ex, net exchange with the marsh adjacent to the embayment; DS,
the change in storage; Black Box, unmeasured sinks and sources; and N-Ex, net exchange (import % export) with the adjacent
intercoastal waterway.
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but also had large uncertainty (SE ¼ 6.0). PS, M-Ex,
and DS were small budget terms with large uncer-
tainties relative to the magnitude of the terms. The
Black Box term was the largest output term (%91.4
mmoles'm%2'yr%1).

DON

Similar to the DIN budget, AtmDep (31.3
mmoles'm%2'yr%1) and N-Ex (41.5 mmoles'm%2'yr%1)
were the largest input terms in the DON budget (Fig.
4B). GW input (30.9 mmoles'm%2'yr%1) was comparable
to AtmDep and N-Ex, with GW and N-Ex both having
large uncertainty. DON AtmDep and N-Ex inputs were
of similar magnitude as DIN AtmDep and N-Ex inputs.
DON GW input was approximately three times larger
than DIN GW input, although these two inputs were
not significantly different at a¼ 0.05 owing to the large
uncertainties around these terms. PS, M-Ex, and DS
were small and had large uncertainties relative to their
magnitude The Black Box term was the largest DON
output term (%107.3 mmoles'm%2'yr%1).

PN

Contrary to the budgets for dissolved nitrogen, N-Ex
(%3.5 mmoles'm%2'yr%1) was the largest output and the
Black Box term (2.1 mmoles'm%2'yr%1) was the largest
input in the PN budget (Fig. 4C). For all of the PN terms,
however, the uncertainties were large relative to the
magnitude of the terms, which resulted in none of the
terms being significantly different from zero at a¼ 0.05.
PN N-Ex and Black Box terms were very small in
comparison toDINandDONN-Ex andBlackBox terms.

DIP

DIP terms (Fig. 4D) showed similar trends as with
DIN and DON. AtmDep (5.4 mmoles'm%2'yr%1) and N-
Ex (4.9 mmoles'm%2'yr%1) were the dominant input
terms, and the Black Box (%10.6 mmoles'm%2'yr%1) was
the dominant output term. Due to large uncertainties,
however, neither AtmDep nor N-Ex were significantly
different from zero.

DISCUSSION

The assumptions of the classical equations
for propagating uncertainty

There are assumptions in the error (Tukey 1956, Ku
1966) and df (Welch 1947) propagation equations (Eqs.
1 and 7) that impact the accuracy of the propagated
uncertainty. These assumptions include (1) input vari-
ables with approximately normal distributions and (2)
well-behaved functions with derivatives that are not
unreasonably large.
As regards the first assumption, for large sample sizes

one can generally assume the normality of mean values
based on the Central Limit Theorem. Even for small
sample sizes, means of samples drawn from normally
distributed populations are also normal. Ecosystem field
measurements frequently suffer from small sample sizes,

as is the case for many of the variables in this study, and
usually there is not a priori knowledge of distributions.
Many biological and physical phenomena, however,
result in data distributions that are approximately
normal. Further, as discussed by Ku (1966), Eq. 1 is
‘‘exact’’ only when the input variables come from exactly
normal distributions. Thus, it is important to recognize
that uncertainty estimates based on means from small
sample sizes are themselves approximations.
For assumption 2, the simple functions used in this

study preclude any of the derivatives being excessively
large. For simple functions such as sums the higher
order terms disappear and for products, quotients,
roots, and small powers the accuracy of Eq. 1 is
generally adequate as the higher order terms are much
smaller than the error calculated by Eq. 1 (Ku 1966).
For other functional forms, the higher order terms of the
Taylor series should be evaluated (Tukey 1956). In
mathematical terms, Eqs. 1 and 7 are accurate when
assumptions 1 and 2 are met. In practical terms,
previous work provides evidence that the error and df
propagation equations are fairly robust even when the
above assumptions are poorly met (Tukey 1956, Ku
1966).

Modern uncertainty propagation methods

As described by Chatfield (1995), there are three
primary types of uncertainty encountered in the analysis
of any problem: natural variation in observed variables,
uncertainty about the form of the model that adequately
describes the problem, and uncertainty in the model
parameters.
Classical methods for propagating uncertainty have

their origins in the physical sciences and engineering. In
these disciplines, there is usually little uncertainty around
model formulations. This is also true of simple calcula-
tions that are frequently conducted during the analysis of
environmental data. For example, the calculation of
rainfall nitrogen deposition is simply the product of
precipitation and rainfall nitrogen concentration (first
term on the right side of Eq. 11). There is little
uncertainty around the form of this function and there
are no model parameters to be estimated. For simple step
by step calculations and scaling procedures the classical
equations provide a straightforward method for propa-
gating uncertainty, and, in contrast to more modern
uncertainty propagation methods, are relatively simple.
Uncertainties around model form and model param-

eters may be addressed by modern frequentist and
Bayesian methods. The difference between a Bayesian
and a frequentist analysis is that the Bayesian approach
employs the mathematics of probability distributions for
a model parameter and specifies a prior probability for a
parameter based on a ‘‘degree of belief ’’ (de Valpine
2009). In a Bayesian approach, parameters with
uncertainty are incorporated into a model by integrating
over all the possible parameter values. The calculation of
these integrals to develop a posterior distribution usually
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requires computationally intensive numerical integration
methods such as Markov chain Monte Carlo (MCMC).
MCMC algorithms for Bayesian analyses are often
implemented from software, such as WinBUGS, specif-
ically designed for this purpose (Gilks et al. 1994).
In contrast to Bayesian methods, frequentist methods

estimate model parameters, based on some optimal
estimate, and use the estimated values in the model. Like
Bayesian methods, modern frequentist methods also
employ sophisticated sampling techniques for numerical
integrations (e.g., de Valpine 2004, Lele et al. 2007) as
well as more routine Monte Carlo approaches (e.g.,
Hornberger and Spear 1981). Commercial software
products such as @RISK (Palisade, Ithaca, New York,
USA) and Crystal Ball (Oracle, Redwood Shores,
California, USA) have made Monte Carlo methods
easy to implement in spreadsheet applications. An
advantage of using the sampling techniques in modern
propagation methods is that the full distribution of the
modeled variable is calculated. In contrast, the classical
methods can only propagate the first few moments (i.e.,
s2, s, or SE, skewness, and elongation) of the normal
distribution and the df.
Currently, the state of the art in analyzing uncertainty

in ecological problems is hierarchical statistical modeling.
Hierarchical models can incorporate the types of
uncertainty enumerated above as well as other uncer-
tainties related to sampling design and boundary
conditions (Cressie et al. 2009). Thus, hierarchical models
have the potential to explicitly account for all of the
uncertainty in an ecological analysis. A readable example
of hierarchical modeling is presented by Cressie et al.
(2009) and in the accompanying Forum discussion in a
recent issue of this journal [see Ecological Applications
19(3)]. While hierarchical models are extremely flexible in
their ability to encompass all types of uncertainty, the
methods for implementing these models are both
computationally intensive and technically challenging
(Bolker 2009). Both Bayesian (e.g., Cressie et al. 2009)
and frequentist (de Valpine 2004, Lele et al. 2007)
approaches to hierarchical models have been developed.
As described in this paper, classical uncertainty

propagation methods are used to generate confidence
intervals for functions of other variables with uncer-
tainty. Lo (2005) further demonstrates how classical
methods may be used to propagate both model
parameter uncertainty and natural variability in vari-
ables. To our knowledge classical methods have not
been used in a hierarchical model that includes all of the
uncertainties listed by Chatfield (1995), but we do not
see any reason why these equations could not be applied
in such a context.

Covariance among variables

It is apparent from Eq. 3 that the covariance term, i.e.,

2
]w
]u

]w
]v

ruvsusv

may either increase or decrease the propagated uncer-
tainty. The covariance term will increase the uncertainty
if u and v are positively correlated and the product of
the partial derivatives is positive. In contrast, the
covariance term will decrease the uncertainty in w if u
and v are negatively correlated and the product of the
partial derivatives is positive or if ruv is positive and one
of the partial derivatives is negative.

In our analyses, we have evaluated the covariance
between variables based on correlation analysis as well
as careful consideration of how we formulated our
equations. For example, daily tidal amplitude is
calculated as max WSE % min WSE (Appendix F).
The populations of max WSE and min WSE are
correlated (r ¼ 0.69). At the daily time step at which
we calculated tidal amplitude, however, max WSE and
min WSE are independent of one another and Eq. F.3
does not require the covariance term. Had we instead
chosen to calculate the mean daily amplitude (AMP) as
AMP ¼ max WSE % min WSE it would have been
necessary to include the covariance term. In this
example, the partial derivatives ]AMP/]max WSE and
]AMP/]min WSE would be 1 and%1, respectively. Thus
the product of the partial derivatives is negative and
covariance term would reduce the uncertainty in mean
daily amplitude.

Correlation among variables is also an important
consideration in modern approaches to uncertainty.
Stow et al. (2007) demonstrate that the parameter space
of two correlated variables, x and y, may transcend the
limits of the parameter space derived from the ranges in
x and y taken individually. Advancements in sampling
algorithms such as the Markov chain Monte Carlo have
made it much easier to sample from the appropriate
parameter space in cases with high correlation among
variables. Spatial and temporal correlations within the
population of a variable should also be considered
(Hoeting 2009).

Methods to estimate variables and derive uncertainty

Table 1 compiles a number of methods to estimate the
value and uncertainty of an ecological variable. Starting
with direct measurements of a variable (Table 1, method
A), examples of location specific measurements (Table 1,
method A1) were [I ] and [E]. These concentrations were
measured directly and were used to determine the mean
and associated uncertainty. Examples of region specific
measurements (Table 1, method A2) were Pr and [R] at
sites representing the region surrounding the studied
embayment.

Under method B in Table 1, direct calculations from
two or more measured variables (method B1) were
exemplified by the viscosity coefficients and the diffusion
coefficients for DIN. Under method B2, we include
spatial and temporal scaling. In this study, both spatial
and temporal scaling relied on external data sources that
were specific to our study site. For example, the
estimates of embayment area required both the elevation
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measurements determined from the RTK GPS survey as
well as the LIDAR data obtained from Escambia
County, Florida. Similarly, the WSEs were a combina-
tion of in situ measurements and modeled values based
on the NOAA Pensacola tide gauge.
The use of literature variables (Table 1, method C) in

the absence of measured variables is ubiquitous in the
ecological literature. For example, the calculation of the
ratio Dry :Wet for AtmDep (method C1) was based on
annual values of Dry :Wet deposition from the litera-
ture. However, in the case of BD, which was used to
calculate / in the M-Ex term, the best available data set
provided only minimum and maximum values for our
specific soil type. In this case, a mean and SE were
determined using these minimum and maximum values
(method C2). This resulted in a large SE, but which
approximately encompassed the full error of that mean
value.
Method C3 (Table 1) is demonstrated by the

determination of the PD of marsh soil through the use
of a regression model from the literature (Rühlmann et
al. 2006). No values of PD for our site were available,
but there were values of the minimum and maximum
%OM in the marsh sediment. Hence the Rühlmann et al.
(2006) model relating %OM to PD was used to estimate
the minimum and maximum PD in our site. When using
a regression model from the literature it is important to
confirm that the regression model is applicable to the
study site. This was so in our case because the data used
by the Rühlmann et al. (2006) to develop their
regression model encompassed many different types of
soils, including ours. Further, Rühlmann et al. (2006)
generously provided us with the raw data upon our
request. Had our request not been granted, we would
have had to digitize the values probably losing some
resolution. With the received data from Rühlmann et al.
(2006), we could recreate the regression with precision,
predict maximum and minimum PD, and calculate the
mean PD, SE, and df for our study site.
Another method for estimating an ecological variable

is a subjective judgment based on best guesses or first
principles (Table 1, method D). Ecological variables are
constrained by maximum and minimum values. In the
event that there is no direct information about those
maximum and minimum values, taking a best guess at
possible minimum and maximum values is a way to
capture the uncertainty in that variable. For example the
molecular weight of DON, which was used to calculate
the D0 for DON, in the marsh sediment of our study site
was not known. Using reports from the literature, we
chose possible maximum and minimum molecular
weight values (see Appendix G). When doing this, we
erred towards the liberal side and attempted to capture a
range that most likely encompassed the true range of
DON molecular weight (Burdige and Gardner 1998,
Burdige and Zheng 1998) in the marsh sediment of our
study site. In this manner, the uncertainty was not
underestimated.

As best we can tell, the method presented here for
estimating the uncertainty in the scaling terms A, V, Z,
Aflood, Vflood, and Zflood is novel (Appendix A).
Dimensional scalars are frequently used in ecological
studies to normalize measurements to similar spatial
scales or to extrapolate to ecosystem-wide rates, but
potential uncertainties in the estimates of these scalars
are also frequently ignored. In many cases dimensional
scalars are measured with great accuracy. However,
when parameters prone to natural variation, such as
WSE, are used to demarcate system boundaries the error
in the resulting estimates of dimensional scalars should
be propagated and evaluated. The method developed
here provides a way to do so.

Uncertainty applications

Flux magnitudes and uncertainties.—An obvious
application of uncertainty analyses is the exploratory
value for adapting current monitoring designs or for
guiding future research strategies. For example, the GW
and N-Ex terms were relatively large with large SEs
(Fig. 4). Subsequent work should be directed at reducing
the uncertainty in these terms. The step-by-step uncer-
tainty propagation procedure employed here offers a
template to identify the variables that could contribute
most to reducing the uncertainty around GW and N-Ex

?4(Table E1, Table F1, and Discussion: Uncertainty
applications: Uncertainty budgets). PS and M-Ex terms
also had large uncertainty relative to their magnitude,
but their magnitude was generally negligible in compar-
ison to GW, AtmDep, and N-Ex. Thus, if further
monitoring were to occur these terms might be dropped
in favor of reducing the uncertainty around GW and
monitoring potential sink terms indicated by the large
negative Black Box values.
Though, what if no further work is possible? If, for

example, the resource manager or scientist is asked to
make a recommendation on how to reduce nitrogen
loading to this system, the low risk option would be to
target AtmDep sources as this term was large in
magnitude and was known with more certainty than the
other input terms. The larger uncertainties around the N-
Ex and GW terms indicate a higher risk that management
actions directed at reducing these loading terms would
not have the desired effect on the reduction of total
nutrient load. A cost-benefit analysis, however, may
indicate that the cost of reducing AtmDep from sources
such as power plant and/or vehicle emissions is prohib-
itive and, thus, N-Ex or GW sources may be targeted. In
the end, though, a risk-manager will have some
understanding of how effective such measures will be.
Uncertainty budgets.—It is recognized that quantify-

ing the uncertainty in each component of an ecological
study or model assists in understanding the results of the
study (Reckhow 1994, Borsuk et al. 2004, Lo 2005) and
efficiently identifies needs for future descriptive or
experimental designs (Lo 2005). Quantitative under-
standing of error structure may be developed by
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constructing an error budget (Lo 2005) where Eq. 3,
assuming no covariance, is normalized by the total error
(SEw) to give

1 ¼

]w
]u

! "2

SE2
u

SE2
w

þ

]w
]v

! "2

SE2
v

SE2
w

: ð23Þ

This normalization quantifies the percent contribution
of each variable, in this case u and v where w¼ f(u, v), to
the total error Thus, the variable contributing the most
error is easily identified.
We have extended the concept of the error budget to a

df budget by rearranging Eq. 7 such that

1 ¼ dfw

]w
]u

! "4

SE4
u

dfuSE
4
w

þ dfw

]w
]v

! "4

SE4
v

dfvSE
4
w

: ð24Þ

As opposed to Eq. 23 where the terms on the right side
of the equation are contributing additively to SE2

w, in
Eq. 24 the terms are contributing additively to 1/dfw.
While this may, at first glance, seem counterintuitive, if
we think of the df as the uncertainty around the SE then
it is clear that for large df there is less uncertainty owing
to smaller t-values. Inversely, small df contribute larger
uncertainty. Thus, the 1/dfw budget is more heavily
weighting the contribution of terms with small df and
larger uncertainty.
Exploring the uncertainty budgets of AtmDep, N-Ex,

and GW yields some interesting insights (Table 2).?2 For
the AtmDep term, [R] contributed the most uncertainty
in SE and df for DIN and DON, while for DIP
Dry :Wet was the greatest contributor to uncertainty.
For the N-Ex term, [Ī ] accounts for most of the

uncertainty in SE and df for DIN, DON, and DIP.
The error budget for GW yielded some counterintuitive
results regarding which terms most significantly con-
tributed to the total uncertainty. The watershed area
(Aw) used in the calculation of GW was 14 434 m2 with a
SE of 3042 m2 (Appendix E). The SE of this value was
large because it was derived as the mean of the minimum
and maximum estimated watershed areas. The contri-
bution of Aw to the GW error budget, however, was not
the largest (Table 2). ET (1.15 m/yr, SE ¼ 0.15 m/yr,
Appendix E) was the largest contributor to the GW SE
budget (Table 2) even though the magnitude and SE of
ET were seemingly small in comparison to Aw. It is
interesting to note that, for the df, there was usually only
one term that was dominating the percent contribution
to the aggregate term. For example, [R] contributed
99.61% to the df of AtmDep. The implication is the df
for AtmDep were almost entirely dependent on the df
for [R]. Thus if one wanted to increase the df for
AtmDep, an increase in the df for [R] would be the best
approach.

A further analysis of the uncertainty budget may be
undertaken to estimate how reducing errors in input
variables translates to error reduction in the resulting
term. For example, the SEs of ET and GW

% &
comprise

58.92 and 9.48% of the error in DIN GW (Table 2).
Thus a 1% decrease in SEET would result in a 0.59%
decrease in SEGW. Similarly, a 1% decrease in SE GW½ )
would result in a 0.09% decrease in SEGW. This anal-
ysis or sensitivity index (Lo 2005) provides a strategy for
how a resource manager or scientist might choose to
reduce the uncertainty in a calculated term. In this case,
as SEET is the largest contributor to GW DIN input
uncertainty, the best strategy for reducing uncertainty in

TABLE 2. Uncertainty budgets for the atmospheric deposition (AtmDep), net exchange (N-Ex), and groundwater (GW) flux terms.

Flux term
and component

DIN DON DIP

SE (%) df (%) SE (%) df (%) SE (%) df (%)

AtmDep

P 0.50 0.17 0.31 0.02 0.13 0.001
[R] 98.69 99.61 99.21 99.96 24.17 0.32
Dry :Wet 0.81 0.22 0.48 0.020 75.70 99.68

N-Ex

AMP 0.12 0.00 0.01 0.0 0.31 0.00
[I ] 70.54 85.25 43.19 39.58 96.03 99.86
[E ] 29.34 14.75 56.80 60.42 3.65 0.14

GW

P 0.62 0.17 1.05 8.76 0.74 0.43
ET 47.34 1.01 80.57 51.31 56.83 2.54
[GW] 44.42 98.79 5.41 38.60 33.29 96.96
Aw 7.61 0.03 12.96 1.33 9.14 0.07
A 4 3 10%9 9 3 10%17 7 3 10%9 5 3 10%15 5 3 10%9 2 3 10%16

Notes: Percentage values represent the uncertainty contribution to the total SE and df. Under AtmDep (atmospheric deposition),
the contributions of annual precipitation (P), nutrient concentration in the rainfall ([R]), and the ratio of dry to wet deposition
(Dry :Wet) are shown. Under N-Ex (net exchange [import% export] with the adjacent intercoastal waterway), the contribution of
annual cumulative tidal amplitude (AMP) and the import and export nutrient concentrations ([I ] and [E ]) are shown. For the GW
(groundwater input) term, the contribution of P, evapotranspiration (ET), groundwater nutrient concentrations ([GW]), recharge
area (Aw), and embayment area (A) are shown.
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the GW input would be to improve the accuracy and
precision of the ET estimate.
Overall, we have provided a framework for propa-

gating SE and df through a series of step by step
calculations using both directly measured and subjec-
tively estimated variables. This framework provides for
the estimation of uncertainty intervals around calculated
values. New contributions to uncertainty propagation
methods include uncertainty propagation through GIS
computations used for scaling ecological variables, the
novel application of uncertainty propagation to ecosys-
tem mass balance budgets, and discussion of manage-
ment and scientific applications of uncertainty analysis
results. The framework for uncertainty propagation
presented herein is generally applicable to all ecological
studies that use step by step and/or scaling calculations.
We encourage environmental scientists and managers to
use this framework for calculating, assessing, and
communicating uncertainty.
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APPENDIX A

Uncertainty assessment for annual mean embayment area, volume, and depth. (Ecological Archives A/E/M000-000-A#).

APPENDIX B

Uncertainty assessment for change in storage (DS). (Ecological Archives A/E/M000-000-A#).

APPENDIX C

Uncertainty assessment for atmospheric deposition (AtmDep). (Ecological Archives A/E/M000-000-A#).

APPENDIX D

Uncertainty assessment for point source input (PS). (Ecological Archives A/E/M000-000-A#).

APPENDIX E

Uncertainty assessment for groundwater input (GW). (Ecological Archives A/E/M000-000-A#).

APPENDIX F

Uncertainty assessment for net exchange (N-Ex). (Ecological Archives A/E/M000-000-A#).
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APPENDIX G

Uncertainty assessment for marsh exchange (M-Ex). (Ecological Archives A/E/M000-000-A#).

APPENDIX H

Uncertainty assessment for the Black Box (BB) terms. (Ecological Archives A/E/M000-000-A#).
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